Structures and evolution of bifurcation diagrams for a one-dimensional diffusive generalized logistic problem with constant yield harvesting

Shin-Hwa Wang

Department of Mathematics, National Tsing Hua University E-mail: shwang@math.nthu.edu.tw

Abstract

We study the one-dimensional diffusive generalized logistic problem with constant yield harvesting:

$$\left\{ \begin{array}{ll} u''(x) + \lambda g(u) - \mu = 0, & -1 < x < 1, \\ u(-1) = u(1) = 0, \end{array} \right.$$

where $\lambda, \mu > 0$. We assume that nonlinearity g satisfies g(0) = g(1) = 0, g(u) > 0 on (0, 1), and g either is concave on (0, 1) or (is concave-convex on (0, 1) and satisfies a certain condition). We prove that, for any fixed $\mu > 0$, on the $(\lambda, ||u||_{\infty})$ -plane, the bifurcation diagram consists of a \subset -shaped curve and then we study the structures and evolution of bifurcation diagrams for varying $\mu > 0$. We also prove that, for any fixed $\lambda > \frac{\pi^2}{4g'(0)}$, on the $(\mu, ||u||_{\infty})$ -plane, the bifurcation diagram consists of a reversed \subset -shaped curve and then we study the structures and evolution of bifurcation diagrams for varying $\lambda > \frac{\pi^2}{4g'(0)}$. It is a joint work with Kuo-Chih Hung and Yiu-Nam Suen.

2000 Mathematical subject classification: 34B18, 74G35