Calculus Exam (Group A)

Part I: Multiple answer questions. To get all points for each question, you must select ALL correct choices and NONE of incorrect choices. If you miss a correct choice or taking an incorrect choice, then you will lose 50% of the full points. For all other cases you will get zero points.

Problem 1. (7 points) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is called one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$ for all $x_{1}, x_{2} \in \mathbb{R}$. Let f, g be two one-to-one functions. Which of the following functions must be one-to-one?
(A) Their addition $f+g$.
(B) Their product fg.
(C) The quotient f / g.
(D) The composition $f \circ g$.

Answer: (D)

Problem 2. (7 points) Let f be a function satisfying $\lim _{x \rightarrow 0} x f(x)=1$. Which of the following statements are correct?
(A) $\lim _{x \rightarrow 0} f(x)$ exists.
(B) $f(0)$ must be defined.
(C) $\lim _{x \rightarrow 0} \sin (x) f(x)=1$.
(D) $\lim _{x \rightarrow 0} x^{2} f(x)=0$.

Answer: (C), (D)

Problem 3. (8 points) Let f be a function satisfying $f^{\prime}(a)=1$. Which of the following statements are correct?
(A) $\lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a)}{h}=2$
(B) $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{h}=1$.
(C) $\lim _{h \rightarrow 0} \frac{f\left(a+h^{2}\right)-f(a)}{h}=0$.
(D) $\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h^{2}}=0$.

Answer: (A), (C)

Problem 4. (8 points) Consider the function $f(x)=x^{2}|x|$. Which of the following statements are correct?
(A) $f^{\prime}(0)=0$.
(B) $f^{\prime \prime}(0)=0$.
(C) $f^{\prime \prime \prime}(0)=0$.
(D) $f^{\prime \prime \prime \prime}(0)=0$.

Answer: (A), (B)

Problem 5. (9 points) Consider the function

$$
f(x)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Which of the following statements are correct?
(A) $f(x)>0$ for all $x>0$.
(B) $\lim _{x \rightarrow 0} f(x)=0$.
(C) $f^{\prime}(0)=0$.
(D) $\lim _{x \rightarrow 0} f^{\prime}(x)=0$.

Answer: (B), (C)
From the textbook §2.1 P. 58.

Problem 6. (9 points) Let $y=y(x)$ be the implicit function defined by the equation $x^{2}+y^{3}=$ $x y+3$ near $(x, y)=(2,1)$. Let Γ be the curve defined by the equation. Which of the following statements are correct?
(A) $y(2)=1$.
(B) $y^{\prime}(2)=2$.
(C) The tangent line of Γ passing through $(2,1)$ is given by $y=-3 x+7$.
(D) The normal line of Γ passing through $(2,1)$ is given by $y=\frac{1}{3} x+\frac{1}{3}$.

Answer: (A), (C), (D)
From the online test system §2.2.

Part II: Single answer questions. Select only ONE correct choice from a list of four choices.

Problem 7. (5 points) Consider the function

$$
f(x)= \begin{cases}\frac{x^{2}-7 x+12}{x-3}, & \text { if } x \neq 3 \\ 1, & \text { if } x=3\end{cases}
$$

Then at $x=3$
(A) f is continuous.
(B) f has a removable discontinuity.
(C) f has a jump discontinuity.
(D) f has an infinite discontinuity.

Answer: (B)
Modified from the textbook $\S 1.8$ P. 26.

Problem 8. (5 points) Let m, b be the constants such that the function

$$
f(x)= \begin{cases}x^{2}, & \text { if } x \leq 2 \\ m x+b, & \text { if } x>2\end{cases}
$$

is differentiable everywhere. Then $(m, b)=$
(A) $(1,2)$.
(B) $(2,0)$.
(C) $(4,-4)$.
(D) $(4,2)$.

Answer: (C)
From the textbook §2.3 P. 115.

Problem 9. (6 points) Let A, B be the constants such that the function $y=A \sin (x)+$ $B \cos (x)$ satisfies the differential equation $y^{\prime \prime}+y^{\prime}-2 y=\sin (x)$. Then $(A, B)=$
(A) $(1,0)$.
(B) $(2,-1)$.
(C) $\left(\frac{3}{5}, \frac{-2}{5}\right)$.
(D) $\left(\frac{-3}{10}, \frac{-1}{10}\right)$.

Answer: (D)
From the textbook §2.4 P. 63.

Problem 10. (6 points) Consider the function

$$
f(t)=\sqrt{\frac{1+\sin (t)}{1+\cos (t)}}
$$

Then $f^{\prime}(0)=$
(A) 1 .
(B) $2^{\frac{1}{2}}$.
(C) $2^{\frac{-1}{2}}$.
(D) $2^{\frac{-3}{2}}$.

Answer: (D)
From the textbook $\S 2.5$ P. 26.

Problem 11. (6 points) Let f be a differentiable function satisfying $f(1)=10$, and $f^{\prime}(x) \geq 2$ for all $1 \leq x \leq 4$. Which of the following values for $f(4)$ is impossible?
(A) 15 .
(B) 16 .
(C) 2021 .
(D) 5201314 .

Answer: (A)
From the textbook §3.2 P. 29.

Problem 12. (6 points) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=x^{2021}+x^{51}+x+1 .
$$

(A) f has a local maximum.
(B) f has a local minimum.
(C) f has a saddle point.
(D) f has neither a local maximum nor a local minimum.

Answer: (D)
Modified from the textbook §3.1 P. 72.

Problem 13. (6 points) The linear approximated value of $\sqrt{0.99}$ is
(A) $1-0.003$.
(B) $1-0.004$.
(C) $1-0.005$.
(D) $1-0.006$.

Answer: (C)
From the online test system §3.1.

Problem 14. (6 points) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{x^{2}+1}{x^{2}-1} .
$$

How many horizontal/vertical/slant asymptotes does the graph of f have?
(A) 0 .
(B) 1 .
(C) 2 .
(D) 3 .

Answer: (D)
From the online test system $\S 3.3$.

Problem 15. (6 points) Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{x^{2}+1}{x^{2}-1} .
$$

How many reflection points does the graph of f have?
(A) 0 .
(B) 1 .
(C) 2 .
(D) 3 .

Answer: (A)
From the online test system §3.3.

