Calculus Exam (Group B)

Part I: Multiple answer questions. To get all points for each question, you must select ALL correct choices and NONE of incorrect choices. If you miss a correct choice or taking an incorrect choice, then you will lose 50% of the full points. For all other cases you will get zero points.

Problem 1. (5 points) Let

$$
f(x)=\frac{x^{2}+x-6}{|x-2|}
$$

Which of the following statements are correct?
(A) $\lim _{x \rightarrow 2+} f(x)=5$
(B) $\lim _{x \rightarrow 2-} f(x)=5$
(C) $\lim _{x \rightarrow 2-} f(x)=-5$
(D) $\lim _{x \rightarrow 2} f(x)=5$

Answer: (A), (C)

Problem 2. (5 points) Let $f(x)=x(3 x-4)^{2 / 3}$. Which of the following statements are correct?
(A) $x=\frac{8}{5}$ is an inflection point.
(B) $f\left(\frac{4}{5}\right)$ is a local minimum.
(C) $x=\frac{4}{3}$ is an inflection point.
(D) $f\left(\frac{4}{3}\right)$ is a local minimum.

Answer: (A), (D) (From online test system)

Problem 3. (5 points) If $f(2)=4, \quad f(4)=7, \quad f^{\prime}(2)=2, \quad f^{\prime}(4)=1, \quad f^{\prime}(8)=-3$, let
$g(x)=f(f(x)), h(x)=f\left(x^{3}\right), \quad k(x)=[f(x)]^{3}$. Which of the following statements are correct?
(A) $g^{\prime}(2)=3$
(B) $g^{\prime}(2)=2$
(C) $h^{\prime}(2)=5$
(D) $k^{\prime}(2)=96$

Answer: (B), (D) (From online test system)

Problem 4. (5 points) Assume

$$
f(x)= \begin{cases}3 \sin x+2 \cos x & x<0 \\ a x+b & 0 \leq x<2 \\ \sqrt{x+2} & x \geq 2\end{cases}
$$

is continuous at $x=0,2$. Which of the following are true?
(A) $a+b=1$
(B) $a+b=2$
(C) $a b=1$
(D) $b=2$

Answer: (B), (D)

Problem 5. (6 points) Assume

$$
f(x)= \begin{cases}a x^{2} & x \leq-1 \\ x^{2}+b x & x>-1\end{cases}
$$

is differentiable at $x=-1$. Which of the following are true?
(A) $a+b=1$
(B) $a+b=2$
(C) $a+2 b=1$
(D) $2 a-b=2$

Answer: (A), (C), (D)

Problem 6. (4 points) Let (a, b) be the largest interval in which $f(x)=x^{3}-3 x^{2}+2$ is decreasing. Which of the following are true?
(A) $a+b=0$
(B) $b-a=2$
(C) $a b=0$
(D) $a b=-1$

Answer: (B), (C)

Problem 7. (5 points) Let $f(x)=\sin x-\cos x$ be defined on $[-\pi, 3 \pi]$. By the Mean Value Theorem, there is at least one $c \in(-\pi, 3 \pi)$ such that the tangent line to $f(x)$ at $x=c$ is parallel to the secant line through the endpoints $(-\pi, f(-\pi)),(3 \pi, f(3 \pi))$. Which of the following values of c satisfy the conclusion to the Mean Value Theorem?
(A) $-\frac{\pi}{4}$
(B) $\frac{3}{4} \pi$
(C) $\frac{5}{4} \pi$
(D) $\frac{7}{4} \pi$

Answer: (A), (B), (D)

Part II: Single answer questions. Select only ONE correct choice from a list of four choices.
Problem 1. (5 points) Find numbers a and b such that $\lim _{x \rightarrow 0} \frac{\sqrt{a x+b}-2}{x}=1$.
(A) $(a, b)=(2,2)$
(B) $(a, b)=(2,4)$
(C) $(a, b)=(4,4)$
(D) $(a, b)=(4,2)$

Answer: (C)

Problem 2. (5 points) If $h(x)=\frac{x+1}{x-5}$, then $\lim _{x \rightarrow 5-} h(x)=$
(A) 1
(B) $-\frac{1}{5}$
(C) ∞
(D) $-\infty$

Answer: (D)

Problem 3. (5 points) If $f(t)=\sqrt{4 t+1}$, then $f^{\prime \prime}(2)=$
(A) $-\frac{1}{27}$
(B) $-\frac{1}{108}$
(C) $-\frac{4}{108}$
(D) $-\frac{4}{27}$

Answer: (D)

Problem 4. (5 points) If $g(x)+x \sin g(x)=x^{2}$, then $g^{\prime}(0)=$
(A) 2
(B) 1
(C) $\frac{1}{2}$
(D) 0

Answer: (D)

Problem 5. (5 points) Let $f(x)=2 x^{3}+x^{2}+2 x$ for all $x \in \mathbb{R}$. How many critical numbers does f have?
(A) 0
(B) 1
(C) 2
(D) 3

Answer: (A)

Problem 6. (5 points) Let $f(t)=2 \cos t+\sin 2 t$. The absolute maximum value of f on $\left[0, \frac{\pi}{2}\right]$ is
(A) $\frac{3 \sqrt{3}}{2}$
(B) 2
(C) $\sqrt{3}$
(D) 0

Answer: (A)

Problem 7. (5 points) The slope of the tangent to the curve $y=\sqrt{x} /\left(1+x^{2}\right)$ at the point $\left(1, \frac{1}{2}\right)$ is
(A) $-\frac{3}{8}$
(B) $-\frac{1}{4}$
(C) $-\frac{1}{8}$
(D) $-\frac{3}{4}$

Answer: (B)

Problem 8. (6 points) Find $\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1}$.
(A) 3
(B) -3
(C) 0
(D) It does not exist.

Answer: (B)
(Section 1.2 online test system)

Problem 9. (6 points) Assume $\lim _{x \rightarrow-2} \frac{3 x^{2}+a x+a+3}{x^{2}+x-2}$ exists. Find the value of a.
(A) 15
(B) 12
(C) 9
(D) 6

Answer: (A)
(Section 1.2 online test system)

Problem 10. (6 points) Find $\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{3}+x-2}$.
(A) 0
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) $\frac{1}{3}$

Answer: (C)

Problem 11. (6 points) In which of the following interval or intervals is $f(x)=x^{4}-4 x^{3}+12$ concave
upward?
(A) $(-\infty, 1),(2, \infty)$
(B) $(-\infty, 0),(2, \infty)$
(C) $(1,2)$
(D) $(0,2)$

Answer: (B)

Problem 12 (6 points) $x^{2}+y^{2}=20$ is an equation of circle. Find $\left.y^{\prime \prime}\right|_{(-4,2)}$.
(A) -5
(B) $-\frac{5}{2}$
(C) -2
(D) $\frac{-5}{16}$

Answer: (B)

