Calculus Exam (Group B, C)

Part I: Multiple answer questions.

To get all points for each question, you must select ALL correct choices and NONE of incorrect choices. If you miss a correct choice or taking an incorrect choice, then you will lose 50% of the full points. For all other cases you will get zero points.

Which of the following statements are correct?

Problem 1. (5 points) If $s^{\prime \prime}(t)=6 t-4 ; s(0)=-2, s^{\prime}(0)=4$ then
(A) $s^{\prime}(1)=3$
(B) $s^{\prime}(-1)=7$
(C) $s(1)=1$
(D) $s(-1)=-7$.

Ans: (A), (C).

Problem 2. (5 points) Assume $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{3}{n}\left[1-\left(1+\frac{3 i}{n}\right)^{2}\right]$. Which of the following results are true?
(A) $A=\int_{0}^{3}\left(1-x^{2}\right) d x$
(B) $A=\int_{1}^{4}\left(1-x^{2}\right) d x$
(C) -6
(D) -18

Ans: (B), (D).
(question from online test system).

Problem 3. (6 points) Let $G(x)=\int_{-x^{2}}^{x^{2}} \frac{t^{2}}{1+t^{2}} d t$. Which of the following results are true?
(A) $G^{\prime}(0)=0$
(B) $G^{\prime}(1)=2$
(C) $G^{\prime}(-1)=-2$
(D) $G^{\prime}(2)=1$

Ans: (A), (B), (C).

Problem 4. (6 points) Assume $A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{2}{c_{i}^{2}}\right) \Delta x_{i}$ is the limit of Riemann sum over the
interval $[a, b]$. Which of the following results are true?
(A) $A=1$ over $[1,2]$
(B) $A=\frac{4}{3}$ over $[1,3]$
(C) $A=\frac{3}{2}$ over $[1,4]$
(D) $A=\frac{8}{5} \quad$ over $[1,5]$

Ans: (A), (B), (C), (D).
(question from online test system).

Problem 5. (6 points) Let $\int_{0}^{\pi} e^{x} \sin x d x=a+b e^{\pi}$. Which of the following results are true?
(A) $a+b=1$
(B) $b=\frac{1}{2}$
(C) $a-b=1$
(D) $a+b=2$

Ans: (A), (B).

Problem 6. (6 points) Let $\int_{0}^{4} \frac{\sqrt{x}}{1+\sqrt{x}} d x=a+2 \ln b$. Which of the following results are true?
(A) $a=0$
(B) $a=1$
(C) $b=2$
(D) $b=3$.

Ans: (A), (D).

Problem 7. (6 points) At which of the following values of n the improper integral $\int_{1}^{\infty} \frac{1}{x^{n}} d x$ converges?
(A) $\frac{1}{2}$
(B) 1
(C) $\frac{3}{2}$
(D) 2 .

Ans: (C), (D).

Part II: Single answer questions.

Select only ONE correct choice from a list of four choices.

Problem 1. (5 points) Find $\int 2 \sin x \cos (\cos x) d x$.
(A) $-\frac{1}{2} \cos (\cos 2 x)+C$
(B) $-2 \cos (\sin x)+C$
(C) $-2 \sin (\cos x)+C$ (D) $-2 \cos (\cos x)+C$

Ans: (C).

Problem 2. (5 points) Find $\int \frac{1+\sqrt{x}+3 x}{\sqrt{x}} d x$.
(A) $x+\frac{3}{2} x^{2}+C$
(B) $2 x^{3 / 2}+x+2 \sqrt{x}+C$
(C) $\frac{9}{4} \sqrt{x}+1+\frac{3}{2} x^{-1 / 2}+C$
(D) $\frac{3}{2} x^{2}+\frac{2}{3} x^{3 / 2}+$
$x-2 \sqrt{x}+C$
Ans: (B).

Problem 3. (5 points) Find $\int_{-2}^{2}\left(2+x \sqrt{1+x^{2}+x^{4}}\right) d x$.
(A) $5(\mathrm{~B}) 6(\mathrm{C}) 7(\mathrm{D}) 8$

Ans: (D).

(From online test system)

Problem 4. (5 points) Find $\int_{0}^{\pi / 4} \tan ^{3} x d x$.
(A) $\frac{1}{2}+\ln \frac{1}{\sqrt{2}}$
(B) $\frac{1}{2}-\ln \frac{1}{\sqrt{2}}$
(C) $\frac{1}{2}+\ln \frac{1}{2}$
(D) $\frac{1}{2}-\ln \frac{1}{2}$

Ans: (A).
(From online test system)

Problem 5. (5 points) Find $\int_{0}^{5} \frac{1}{\sqrt{25-x^{2}}} d x$.
(A) $\frac{\pi}{4}$
(B) $\frac{\pi}{3}$
(C) $\frac{\pi}{2}$
(D) π

Ans: (C).
(From online test system)

Problem 6. (5 points) Find $\int_{0}^{1} x^{2} e^{-x} d x$.
(A) $1+\frac{3}{e}$
(B) $2+\frac{5}{e}$
(C) $1-\frac{3}{e}$
(D) $2-\frac{5}{e}$

Ans: (D).

Problem 7. (5 points) Assume $f(x)=\left(x^{2}+1\right)^{\sin x}$. Find $f^{\prime}(0)$.
(A) -1 (B) 0 (C) 1 (D) 2

Ans: (B).
(from online test system)

Problem 8. (5 points) Find $\int_{0}^{1} x^{2}+2^{x} d x$.
(A) $\frac{1}{3}+\frac{1}{\ln 2}$
(B) $\frac{1}{3}+\frac{1}{\ln 3}$
(C) $\frac{1}{3}+\frac{2}{\ln 2}$
(D) $\frac{1}{3}+\frac{2}{\ln 3}$

Ans: (A).

Problem 9. (5 points) Find $\lim _{x \rightarrow \infty} e^{-2 x} \int_{0}^{x} \frac{e^{t}}{1+e^{t}} d t$.
(A) 0 (B) $\frac{1}{2}$ (C) 2 (D) It does not exist.

Ans: (A).

Problem 10. (5 points) Find the area of the region bounded by the graphs of $f(x)=\ln x, x=0$, $x=1$ and the x-axis.
(A) 2 (B) $\ln 2$ (C) 1 (D) It does not exist.

Ans: (C).

Problem 11. (5 points) Assume $f(x)=x^{2}, g(x)=\sqrt{x}$. Find the area of region bounded by the graphs of $f(x), \quad g(x)$.
(A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 2 .

Ans: (B).

Problem 12. (5 points) Find the volume of the solid generated by revolving the region bound by the graphs of $f(x), \quad g(x)$ in problem 11 about the x-axis.
(A) $\frac{3}{20} \pi$
(B) $\frac{3}{10} \pi$
(C) $\frac{3}{5} \pi$
(D) $\frac{3}{4} \pi$.

Ans: (B).

