Calculus Exam (Group A)

I Multiple Answer Questions

To get all points for each question, you must select ALL correct choices and NONE of incorrect choices. If you miss a correct choice or taking an incorrect choice, then you will lose 50% of the full points. For all other cases you will get zero points.

Problem 1. (7 points) Let a_{0}, a_{1}, a_{2} be real numbers such that the limit

$$
\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(a_{0}+a_{1} x+a_{2} x^{2}\right)}{x^{3}}
$$

exists. Which of the following statements are correct?
(A) $a_{0}=0$.
(B) $a_{1}=1$.
(C) $a_{2}=\frac{1}{2}$.
(D) The limit is zero.

Answer: (A), (B). Modified from the Online Test System §10.2.

Problem 2. (7 points) Which of the following statements are correct?
(A) $\int_{-\pi}^{\pi} \sin (x) \mathrm{d} x=\int_{-\pi}^{\pi} \cos (x) \mathrm{d} x$.
(B) $\int_{-\pi}^{\pi} \sin ^{2}(x) \mathrm{d} x=\int_{-\pi}^{\pi} \cos ^{2}(x) \mathrm{d} x$.
(C) $\int_{-\pi}^{\pi} \sin ^{4}(x) \mathrm{d} x=\int_{-\pi}^{\pi} \cos ^{4}(x) \mathrm{d} x$.
(D) $\int_{-\pi}^{\pi} \sin (x) \cos (x) \mathrm{d} x=0$.

Answer: (B), (C), (D).

Problem 3. (8 points) Consider the parametric curve

$$
\Gamma=\{(x, y): x=t-\ln t, y=t+\ln t, \text { for } t>0\}
$$

Which of the following statements are correct?
(A) $(1,1) \in \Gamma$.
(B) Γ is bounded, that is, it is contained in the interior of some circle.
(C) The tangent line of Γ passing through the point $(2-\ln 2,2+\ln 2)$ has slope 3 .
(D) Γ is concave upward.

Answer: (A), (C). Modified from the Textbook $\S 10.2$ P. 19.

Problem 4. (8 points) Let $a_{n}=\sqrt[n]{2}-1$ for $n \in \mathbb{N}$. Which of the following statements are correct?
(A) $\lim _{n \rightarrow \infty} a_{n}=0$.
(B) $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=1$.
(C) $\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=0$.
(D) $\sum_{n=1}^{\infty} a_{n}$ diverges.

Answer: (A), (B), (D). Modified from the Textbook §11.7 P. 48.
Problem 5. (9 points) Consider the series $s=\sum_{n=1}^{\infty}(-1)^{n-1} \frac{n}{8^{n}}$ and its partial sum $s_{k}=\sum_{n=1}^{k}(-1)^{n-1} \frac{n}{8^{n}}$ for $k \in \mathbb{N}$. Which of the following statements are correct?
(A) $\lim _{k \rightarrow \infty} s_{k} \neq s$, that is, s diverges.
(B) $\left|s-s_{k}\right|<10^{-3}$ for all $k \geq 3$.
(C) $s=\frac{1}{9}$.
(D) $10^{-3}<\left|s-s_{k}\right|$ for $k=1,2$.

Answer: (B), (D).
Problem 6. (9 points) Consider $f(x)=e^{-x^{2}} \cos (x)$. Which of the following statements are correct? Notation: $f^{(k)}(0)$ denotes the k-th derivative of f at $x=0$, for instance, $f^{(2)}(0)=f^{\prime \prime}(0)$.
(A) The sequence $\{f(n)\}_{n \in \mathbb{N}}$ converges.
(B) $\sum_{n=0}^{\infty} f(n)$ diverges.
(C) $f^{(4)}(0)=3$.
(D) $f^{(7)}(0)=0$.

Answer: (A), (D). Modified from the Textbook §11.10 P. 73.

II Single Answer Questions

Select only ONE correct choice from a list of four choices.
Problem 1. (5 points) What is $f^{\prime}(1)$, where

$$
f(x)=\int_{1}^{\sqrt{x}} \frac{z^{2}}{z^{4}+1} \mathrm{~d} z ?
$$

(A) 1 .
(B) $\frac{1}{2}$.
(C) $\frac{1}{3}$.
(D) $\frac{1}{4}$.

Answer: (D). From the Textbook §4.3 P. 16.

Problem 2. (5 points) Consider $f(x)=x^{3}-|x|$. What is the area of the region enclosed by $x=-1$, the graph of $f, x=2$, and $y=0$?
(A) -1 .
(B) 1 .
(C) $\frac{13}{4}$.
(D) $\frac{17}{5}$.

Answer: (C).

Problem 3. (6 points) What is the volume of the solid obtained by rotating the region bounded by $y=x^{2}$ and $y=\sqrt{x}$ around the x-axis?
(A) $\frac{3}{4} \pi$.
(B) $\frac{3}{8} \pi$.
(C) $\frac{3}{10} \pi$.
(D) $\frac{3}{14} \pi$.

Answer: (C).

Problem 4. (6 points) What is $\lim _{x \rightarrow 0}(\csc (x)-\cot (x))$?
(A) -1 .
(B) 0 .
(C) 1 .
(D) ∞.

Answer: (B). From the Textbook §6.8 P. 52.

Problem 5. (6 points) Let a, b, c be real numbers such that the partial fraction

$$
\frac{1}{x^{2}(x-1)}=\frac{a}{x}+\frac{b}{x^{2}}+\frac{c}{x-1}
$$

holds for all $x \in \mathbb{R} \backslash\{0,1\}$. Then $a+b+c=$
(A) -1 .
(B) 0 .
(C) 1 .
(D) 2 .

Answer: (A).

Problem 6. (6 points) What is the definite integral

$$
\int_{0}^{1} \sqrt{x} e^{\sqrt{x}} \mathrm{~d} x ?
$$

(A) \sqrt{e}.
(B) e.
(C) $2 e-4$.
(D) $4 e-8$.

Answer: (C). Modified from the Textbook $\S 7.5$ P. 71.

Problem 7. (6 points) With which value p does the following improper integral converges:

$$
\int_{e}^{\infty} \frac{1}{x(\ln x)^{p}} \mathrm{~d} x ?
$$

(A) 0 .
(B) $\frac{1}{2}$.
(C) 1 .
(D) $\frac{3}{2}$.

Answer: (D). From the Online Test System §7.5.

Problem 8. (6 points) What is the arc length of the cardioid given by $r=1+\cos (\vartheta)$ for $\vartheta \in[0,2 \pi]$?
(A) e.
(B) π.
(C) 8 .
(D) 16 .

Answer: (C). From the Online Test System §9.1.
Problem 9. (6 points) Consider the series

$$
s=\sum_{n=0}^{\infty}(-1)^{n}=1-1+1-1+1-\cdots
$$

Which of the following statements are correct?
(A) $s=0$ converges, because $s=(1-1)+(1-1)+\cdots=0+0+\cdots=0$.
(B) $s=1$ converges, because $s=1+(-1+1)+(-1+1)+\cdots=1+0+0+\cdots=1$.
(C) $s=\frac{1}{2}$ converges, because both $s=0$ and $s=1$ imply $s+s=0+1=1$.
(D) s diverges.

Answer: (D).

