Calculus Exam (Group A)

I Multiple Answer Questions

To get all points for each question, you must select ALL correct choices and NONE of incorrect choices. If you miss a correct choice or taking an incorrect choice, then you will lose 50% of the full points. For all other cases you will get zero points.

Problem 1. (7 points) Let a_0, a_1, a_2 be real numbers such that the limit

$$\lim_{x \to 0} \frac{\ln(1+x) - (a_0 + a_1 x + a_2 x^2)}{x^3}$$

exists. Which of the following statements are correct?

- (A) $a_0 = 0$.
- (B) $a_1 = 1$.
- (C) $a_2 = \frac{1}{2}$.
- (D) The limit is zero.

Answer: (A), (B). Modified from the Online Test System §10.2.

Problem 2. (7 points) Which of the following statements are correct?

- (A) $\int_{-\pi}^{\pi} \sin(x) dx = \int_{-\pi}^{\pi} \cos(x) dx.$
- (B) $\int_{-\pi}^{\pi} \sin^2(x) \, \mathrm{d}x = \int_{-\pi}^{\pi} \cos^2(x) \, \mathrm{d}x.$
- (C) $\int_{-\pi}^{\pi} \sin^4(x) dx = \int_{-\pi}^{\pi} \cos^4(x) dx.$
- (D) $\int_{-\pi}^{\pi} \sin(x) \cos(x) dx = 0.$

Answer: (B), (C), (D).

Problem 3. (8 points) Consider the parametric curve

 $\Gamma = \{(x, y) : x = t - \ln t, y = t + \ln t, \text{ for } t > 0\}.$

Which of the following statements are correct?

- (A) $(1,1) \in \Gamma$.
- (B) Γ is bounded, that is, it is contained in the interior of some circle.
- (C) The tangent line of Γ passing through the point $(2 \ln 2, 2 + \ln 2)$ has slope 3.
- (D) Γ is concave upward.

Answer: (A), (C). Modified from the Textbook §10.2 P. 19.

Problem 4. (8 points) Let $a_n = \sqrt[n]{2} - 1$ for $n \in \mathbb{N}$. Which of the following statements are correct?

- (A) $\lim_{n\to\infty} a_n = 0.$
- (B) $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1.$
- (C) $\lim_{n\to\infty} \sqrt[n]{a_n} = 0.$
- (D) $\sum_{n=1}^{\infty} a_n$ diverges.

Answer: (A), (B), (D). Modified from the Textbook §11.7 P. 48.

Problem 5. (9 points) Consider the series $s = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{8^n}$ and its partial sum $s_k = \sum_{n=1}^k (-1)^{n-1} \frac{n}{8^n}$ for $k \in \mathbb{N}$. Which of the following statements are correct?

- (A) $\lim_{k\to\infty} s_k \neq s$, that is, s diverges.
- (B) $|s s_k| < 10^{-3}$ for all $k \ge 3$.
- (C) $s = \frac{1}{9}$.
- (D) $10^{-3} < |s s_k|$ for k = 1, 2.

Answer: (B), (D).

Problem 6. (9 points) Consider $f(x) = e^{-x^2} \cos(x)$. Which of the following statements are correct? Notation: $f^{(k)}(0)$ denotes the k-th derivative of f at x = 0, for instance, $f^{(2)}(0) = f''(0)$.

- (A) The sequence $\{f(n)\}_{n \in \mathbb{N}}$ converges.
- (B) $\sum_{n=0}^{\infty} f(n)$ diverges.
- (C) $f^{(4)}(0) = 3.$
- (D) $f^{(7)}(0) = 0.$

Answer: (A), (D). Modified from the Textbook §11.10 P. 73.

II Single Answer Questions

Select only ONE correct choice from a list of four choices.

Problem 1. (5 points) What is f'(1), where

$$f(x) = \int_{1}^{\sqrt{x}} \frac{z^2}{z^4 + 1} \,\mathrm{d}z?$$

- (A) 1.
- (B) $\frac{1}{2}$.
- (C) $\frac{1}{3}$.
- (D) $\frac{1}{4}$.

Answer: (D). From the Textbook §4.3 P. 16.

Problem 2. (5 points) Consider $f(x) = x^3 - |x|$. What is the area of the region enclosed by x = -1, the graph of f, x = 2, and y = 0?

- (A) -1.
- (B) 1.
- (C) $\frac{13}{4}$.
- (D) $\frac{17}{5}$.

Answer: (C).

Problem 3. (6 points) What is the volume of the solid obtained by rotating the region bounded by $y = x^2$ and $y = \sqrt{x}$ around the x-axis?

- (A) $\frac{3}{4}\pi$.
- (B) $\frac{3}{8}\pi$.
- (C) $\frac{3}{10}\pi$.
- (D) $\frac{3}{14}\pi$.
- Answer: (C).

Problem 4. (6 points) What is $\lim_{x\to 0} (\csc(x) - \cot(x))$?

- (A) -1.
- (B) 0.
- (C) 1.
- (D) ∞ .

Answer: (B). From the Textbook §6.8 P. 52.

Problem 5. (6 points) Let a, b, c be real numbers such that the partial fraction

$$\frac{1}{x^2(x-1)} = \frac{a}{x} + \frac{b}{x^2} + \frac{c}{x-1}$$

holds for all $x \in \mathbb{R} \setminus \{0, 1\}$. Then a + b + c =

- (A) -1.
- (B) 0.
- (C) 1.
- (D) 2.

Answer: (A).

Problem 6. (6 points) What is the definite integral

$$\int_0^1 \sqrt{x} \, e^{\sqrt{x}} \, \mathrm{d}x?$$

(A) \sqrt{e} .

(B) *e*.

- (C) 2e 4.
- (D) 4e 8.

Problem 7. (6 points) With which value p does the following improper integral converges:

$$\int_{e}^{\infty} \frac{1}{x(\ln x)^p} \,\mathrm{d}x?$$

(A) 0.

- (B) $\frac{1}{2}$.
- (C) 1.
- (D) $\frac{3}{2}$.

Answer: (D). From the Online Test System §7.5.

Problem 8. (6 points) What is the arc length of the cardioid given by $r = 1 + \cos(\vartheta)$ for $\vartheta \in [0, 2\pi]$?

- (A) *e*.
- (B) π .
- (C) 8.
- (D) 16.

Answer: (C). From the Online Test System §9.1.

Problem 9. (6 points) Consider the series

$$s = \sum_{n=0}^{\infty} (-1)^n = 1 - 1 + 1 - 1 + 1 - \dots$$

Which of the following statements are correct?

(A) s = 0 converges, because $s = (1 - 1) + (1 - 1) + \dots = 0 + 0 + \dots = 0$.

(B)
$$s = 1$$
 converges, because $s = 1 + (-1 + 1) + (-1 + 1) + \cdots = 1 + 0 + 0 + \cdots = 1$.

(C) $s = \frac{1}{2}$ converges, because both s = 0 and s = 1 imply s + s = 0 + 1 = 1.

(D) s diverges.

Answer: (D).