Calculus Exam（Group A）

I Multiple Answer Questions（複選題）

To get all points for each question，you must select ALL correct choices and NONE of incorrect choices．If you miss a correct choice or taking an incorrect choice，then you will lose 50% of the full points．For all other cases you will get zero points．

Problem 1．（8 points）A function f is called even if $f(-x)=f(x)$ for all x in its domain，and odd if $f(-x)=-f(x)$ for all such x ．Which of the following statements are correct？
（A）If f and g are both odd functions，then $f g$ is also an odd function．
（B）If f is an even function and g is an odd function，then $f g$ is an odd function．
（C）Let f be a function with domain \mathbb{R} ．Then $f(x)-f(-x)$ is an odd function．
（D）The derivative function of an even function is an odd function．
Answer：（B），（C），（D）．From the Textbook §1．1 Exercise 88，§1．3 Exercise 71，and $\S 2.2$ Exercise 61.
Problem 2．（8 points）Let

$$
f(x)= \begin{cases}x \sin \left(\frac{1}{x}\right), & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Which of the following statements are correct？
（A） $\lim _{x \rightarrow 0} f(x)=0$ ．
（B）f is continuous at 0 ．
（C）f is differentiable at 0 ．
（D） $\lim _{x \rightarrow \infty} f(x)=1$ ．

Answer：（A），（B），（D）．From the Textbook §2．1 Exercise 57.
Problem 3．（8 points）Let f be a differentiable function satisfying $f(1)=10$ and $3 \leq f^{\prime}(x) \leq 5$ for all $1 \leq x \leq 5$ ．What can $f(4)$ possibly be？
（A） 18 ．
（B） 21 ．
（C） 24 ．
（D） 25 ．
Answer：（B），（C），（D）From the Textbook §3．2 Exercise 29.

Problem 4．（8 points）Consider the function $f(t)=2 \cos (t)+\sin (2 t)$ defined on the interval $\left[0, \frac{\pi}{2}\right]$ ．Which of the following statements are correct？
（A）$\frac{3 \sqrt{3}}{2}$ is a local maximum．
（B）$\frac{3 \sqrt{3}}{2}$ is the absolute maximum．
（C） 0 is a local minimum．
（D） 0 is the absolute minimum．
Answer：（A），（B），（D）．From the Textbook §3．1 Exercise 59.
Problem 5．（8 points）Which of the following statements about the curve

$$
y=f(x)=\frac{2 x^{2}}{x^{2}-1}
$$

are correct？
（A）f is an even function and so the curve is symmetric with respect to the y－axis．
（B）There are exactly two asymptotes of the curve．
（C）The only critical point is $x=0$ and f is strictly increasing on $(-\infty,-1) \cup(-1,0)$ ．
（D）f is concave upward on the interval $(-1,1)$ ．
Answer：（A），（C）．

II Single Answer Questions（單選題）

Select only ONE correct choice from a list of four choices．
Problem 1．（6 points）Let $f(x)=4 x+2$ ．We have $\lim _{x \rightarrow 1} f(x)=6$ ．By the definition of limit，for any $\epsilon>0$ ，we can always find a $\delta>0$ such that if $0<|x-1|<\delta$ ，then $|f(x)-6|<\epsilon$ ．Which one of the following pairs of (ϵ, δ) works？
（A）$(\epsilon, \delta)=\left(1, \frac{1}{2}\right)$ ．
（B）$(\epsilon, \delta)=\left(\frac{1}{2}, \frac{1}{4}\right)$ ．
（C）$(\epsilon, \delta)=\left(\frac{1}{3}, \frac{1}{8}\right)$ ．
（D）$(\epsilon, \delta)=\left(\frac{1}{4}, \frac{1}{16}\right)$ ．
Answer：（D）．From the Online Test System §1．2．

Problem 2. (6 points) Which one of the following statement is correct?
(A) $\lim _{x \rightarrow 4^{-}} \frac{x-4}{\sqrt{x}-2}=-4$.
(B) $\lim _{x \rightarrow 3^{+}} \frac{|x-3|}{x-3}=-1$.
(C) $\lim _{x \rightarrow \infty}\left(x-\sqrt{x^{2}+x}\right)=0$.
(D) $\lim _{x \rightarrow 0} \sin (x+\pi \cos (x))=\sin (\pi \cos (0))$.

Answer: (D). From the Online Test System §1.2.
Problem 3. (6 points) Consider the curve $\left\{(x, y): x^{2} y^{2}+x y=2\right\}$. How many statements below are correct?
(i) The curve is the graph of a function y of x.
(ii) There are two points on the curve where the slope of the tangent line is -1 .
(iii) The line defined by $y-2 x+4=0$ is the tangent line to the curve at $(1,-2)$.
(A) Three.
(B) Two.
(C) One.
(D) Zero.

Answer: (B). Only (ii) and (iii) are true.
Problem 4. (6 points) Consider the function $y=f(x)=|\sin (x)|$. How many statements below are correct?
(i) The derivative of y at $x=\frac{\pi}{2}$ is zero.
(ii) The derivative function y^{\prime} is defined for all $x \neq k \pi$, where k is any integer.
(iii) If y represents a position function and x represents time, then $\sin (1)$ is the instantaneous acceleration at time $x=1$.
(A) Three.
(B) Two.
(C) One.
(D) Zero.

Answer: (B). Only (i) and (ii) are true.

Problem 5. (6 points) How many statements below are correct?
(i) If $\lim _{x \rightarrow a} g(x)=b$, $\lim _{y \rightarrow b} f(y)=c$, where $a, b, c \in \mathbb{R}$ and $f(b)$ is defined, then $\lim _{x \rightarrow a} f(g(x))=f(b)$.
(ii) If g is continuous at x and f is continuous at $g(x)$, then the composition $f \circ g$ is continuous at x.
(iii) If g is differentiable at x and f is differentiable at $g(x)$, then $f \circ g$ is differentiable at x.
(A) Three.
(B) Two.
(C) One.
(D) Zero.

Answer: (B). Only (ii) and (iii) are true.
Problem 6. (6 points) Suppose $g(1000)=10$ and $g^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$ for all $x>0$. What is the linearization L of g at $x=1000$?
(A) $L(x)=10+\frac{1}{300}(x-1000)$.
(B) $L(x)=10+\frac{1}{400}(x-1000)$.
(C) $L(x)=10+\frac{1}{500}(x-1000)$.
(D) $L(x)=10+\frac{1}{600}(x-1000)$.

Answer: (A). From the Textbook $\S 2.9$ Exercise 33.
Problem 7. (6 points) Use the linearization L of g at $x=1000$ as above to estimate $g(1001) \approx$?
(A) $\frac{3001}{300}$.
(B) $\frac{4001}{400}$.
(C) $\frac{5001}{500}$.
(D) $\frac{6001}{600}$.

Answer: (A). From the Textbook $\S 2.9$ Exercise 33.
Problem 8. (6 points) A water tank has the shape of an inverted circular cone with base radius $2 \sqrt{2} \mathrm{~m}$ and height 4 m . If water is being pumped into the tank at a rate of $3 \mathrm{~m}^{3} / \mathrm{min}$, find the rate at which the water level is rising, i.e., $\frac{\mathrm{d} h}{\mathrm{~d} t}$, when the water is 3 m deep.
(A) $\frac{8}{9 \pi} \mathrm{~m} / \mathrm{min}$.
(B) $\frac{2 \sqrt{2}}{9 \pi} \mathrm{~m} / \mathrm{min}$.
(C) $\frac{2 \sqrt{2}}{3 \pi} \mathrm{~m} / \mathrm{min}$.
(D) $\frac{2}{3 \pi} \mathrm{~m} / \mathrm{min}$.

Answer: (D). From the Online Test System §3.1.
Problem 9. (6 points) The upper right-hand corner of a piece of paper, 12 cm by 8 cm , as depicted in the figure, is folded over to the bottom edge. Express y as a function of x.
(A) $y=\sqrt{\frac{x^{3}}{x-4}}$.
(B) $y=x^{2}+\frac{4 x^{2}}{x-4}$.
(C) $y=\sqrt{\frac{x^{3}}{x-6}}$.
(D) $y=x^{2}+\frac{4 x^{2}}{x-6}$.

Answer: (A).
Problem 10. (6 points) Based on the above setting, how would you fold it so as to minimize the length y of the fold? Find the minimum value $y=$?
(A) 6 .
(B) $6 \sqrt{2}$.
(C) $6 \sqrt{3}$.
(D) $8 \sqrt{2}$.

Answer: (C).

