Calculus Exam（Group B ，C）

Part I．Multiple answer questions．（複選題）

To get all points for each question，you must select ALL correct choices and NONE of incorrect choices．If you miss a correct choice or taking an incorrect choice，then you will lose 50% of the full points．For all other cases you will get zero points．

Problem 1．（5 points）$f(x)=\left\{\begin{array}{c}x^{4} \sin \left(\frac{4}{x}\right) ; x \neq 0 \\ 0 ; x=0\end{array}\right.$ ，Find（a）$f^{\prime}(0)=$ ？（b）$f^{\prime}(1)=$ ？
（A）$f^{\prime}(0)=1$
（B）$f^{\prime}(0)=0$
（C）$f^{\prime}(1)=4 \sin (4)-4 \cos (4)$
（D）$f^{\prime}(1)=4 \sin (2)-2 \cos (2)$
Answer：（B），（C）（From online test system）

Problem 2．（5 points）Let $f(x)=\frac{\pi}{2}-x$ and $g(x)=\frac{2 \sin x}{1+\cos x}$ ．Which of the following are true？
（A）$g(f(0))=2$
（B）$(g \circ f)\left(\frac{\pi}{2}\right)=0$
（C）$f\left(g\left(\frac{\pi}{2}\right)\right)=\frac{\pi}{2}$
（D）$(f \circ f)\left(\frac{\pi}{2}\right)=\frac{\pi}{2}$
Answer：（A），（B），（D）

Problem 3．（5 points）Find all critical numbers for the function $f(x)=(x+3)^{4}(x-2)^{3}$ ．
（A） 0
（B）-3
（C）$-\frac{1}{7}$
（D） 2

Answer：（B），（C），（D）

Problem 4．（5 points）Suppose the derivative of the function $y=f(x)$ is
$f^{\prime}(x)=(x-1)^{2}(x-2)(x-4)$. Which statement(s) of the followings is(are) correct?
(A) f has a local maximum at $x=2$.
(B) f has a local minimum at $x=4$.
(C) f has a point of inflection at $x=1$.
(D) f has a local maximum at $x=1$.

Answer: (A) (B) (C)

Problem 5. (5 points) Given $f(x)=\left\{\begin{array}{lc}x^{2}-1, & -1 \leq x \leq 0 \\ 2 x, & 0<x<1 \\ 1, & x=1, \text { which statement(s) of } \\ -2 x+4, & 1<x<2 \\ 0, & 2<x<3\end{array}\right.$ the followings is (are) NOT correct?
(A) f is continuous at $x=1$.
(B) f is continuous from the right at $x=-1$.
(C) $\lim _{x \rightarrow 3^{-}} f(x)$ does not exist.
(D) If we redefine $f(1)=2$, then f can be changed to be continuous at $x=1$.

Answer: (A)(C)

Problem 6. (5 points) If $f(x)=\frac{2 x^{2}+a x+b}{x^{2}+c x+d}$ satisfies the followings:
(1) f has vertical asymptotes $x=-1$ and $x=2$, horizontal asymptote $y=2$.
(2) $\lim _{x \rightarrow 1} f(x)=0$
(3) $\lim _{x \rightarrow 0} f(x)=3$
(A) $a=4$
(B) $b=6$
(C) $c=-1$
(D) $d=-2$

Answer: (A) (C) (D) (From online test system)

Part II．Single answer questions．（單選題）

Select only ONE correct choice from a list of four choices．

Problem 1．（5 points）IF $f(x)=\left\{\begin{array}{c}x+1 ; x<0 \\ -x^{2}+1 ; 0 \leq x \leq 1 \\ \sin (\pi x) ; x>1\end{array}\right.$ ，then how many points of discontinuity does $f(x)$ have？
（A） 0
（B） 1
（C） 2
（D）Infinitely many
Answer：（A）（From online test system）

Problem 2．（5 points）If $f(x)=\sin \left[\cos \left(x^{2}\right)\right]$ ，then $f^{\prime}(x)=$ ？
（A）$-2 x \sin \left[\cos \left(x^{2}\right)\right] \cdot \sin \left(x^{2}\right)$
（B） $2 x \sin \left[\cos \left(x^{2}\right)\right] \cdot \sin \left(x^{2}\right)$
（C）$-2 x \sin \left[\cos \left(x^{2}\right)\right] \cdot \sin \left(x^{2}\right)$
（D）$-2 x \cos \left[\cos \left(x^{2}\right)\right] \cdot \sin \left(x^{2}\right)$
Answer：（D）（From online test system）

Problem 3．（5 points）Find the limit $\lim _{x \rightarrow 8} \frac{x}{x-8}$ ，if it exists．
（A）$\frac{1}{8}$
（B）$\frac{8}{7}$
（C） 8
（D）The limit does not exist
Answer：（D）

Problem 4．（5 points）Find the slope of the tangent line to the graph of the function at the given point and determine an equation of the tangent line．

$$
f(x)=2 x+8 \text { at }(-1,6)
$$

（A） $2 ; y=2 x+8$
（B） $2 ; y=2 x$
（C）$-2 ; y=-2 x$
(D) $-2 ; y=-2 x+8$

Answer: (A)

Problem 5. (5 points) $x^{2}+y^{2}=25$, find the value of $\frac{d y}{d x}$ at the point (3, 4).
(A) $-\frac{3}{4}$
(B) 0
(C) 1
(D) $\frac{3}{4}$

Answer: (A)

Problem 6. (5 points) If $f(x)=\sqrt[3]{x^{2}-1}$, find $f^{\prime \prime}(3)$
(A) $-\frac{3}{4}$
(B) $-\frac{1}{12}$
(C) $\frac{1}{12}$
(D) $\frac{3}{4}$

Answer: (B)

Problem 7. (5 points) On what interval is the function $f(x)=\frac{x}{x^{2}+1}$ increasing?
(A) $[-1,1]$
(B) $[-2,1]$
(C) $(\infty, 2)$
(D) $(-\infty, 1)$

Answer: (A)

Problem 8. (5 points) $\lim _{t \rightarrow 0}\left(\frac{1}{t \sqrt{1+t}}-\frac{1}{t}\right)=$?
(A) 0.5
(B) -0.5
(C) -1
(D) the limit does not exist

Problem 9. (5 points) Let $f(x)=(x-3)^{-2}$. There is no value of c in $(1,4)$ such that $f(4)-f(1)=f^{\prime}(c)(4-1)$. Why does this not contradict the Mean Value Theorem?
(A) $f(x)=(x-3)^{-2}$ can not be differentiated in (1, 4).
(B) $f(x)=(x-3)^{-2}$ does not have limit in (1, 4).
(C) $f(x)=(x-3)^{-2}$ is not defined in (1, 4).
(D) $f(x)=(x-3)^{-2}$ is not continuous in (1, 4).

Answer: (D)

Problem 10. (5 points) Find equations for the tangent and normal to $y^{2}(2-x)=x^{3}$ at $(1,1)$.
(A) tangent: $x-2 y=1$; normal: $2 x-y=1$
(B) tangent: $x+2 y=3$; normal: $x+2 y=3$
(C) tangent: $x+2 y=3$; normal: $2 x-y=1$
(D) tangent: $2 x-y=1$; normal: $x+2 y=3$

Answer: (D)

Problem 11. (5 points) Only one of these calculations is correct. Which one?
(A) $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x^{2}-\sin x}=\lim _{x \rightarrow 0} \frac{2 x-2}{2 x-\cos x}=\lim _{x \rightarrow 0} \frac{2}{2+\sin x}=\frac{2}{2+0}=1$
(B) $\lim _{x \rightarrow 0} \frac{x^{2}-2 x}{x^{2}-\sin x}=\lim _{x \rightarrow 0} \frac{2 x-2}{2 x-\cos x}=\frac{-2}{0-1}=2$
(C) $\lim _{x \rightarrow 3} \frac{x-3}{x^{2}-3}=\lim _{x \rightarrow 0} \frac{1}{2 x}=\frac{1}{6}$
(D) $\lim _{x \rightarrow(\pi / 2)^{-}} \frac{\sec x}{\tan x}=\frac{-\infty}{\infty}=-1$

Answer: (B)

Problem 12. (5 points) Find a value of c that makes the function below is continuous
at $x=0$.

$$
f(x)= \begin{cases}\frac{9 x-3 \sin 3 x}{5 x^{3}}, & x \neq 0 \\ c, & x=0\end{cases}
$$

(A) $27 / 30$
(B) $-81 / 30$
(C) $81 / 30$
(D) $27 / 15$

Answer: (C)

Problem 13. (5 points) Find the relative maximum of the function with domain $(-\infty, \infty)$.
$f(x)=\frac{x^{3}}{3}-\frac{5}{2} x^{2}+6 x+4$
A. $8 \frac{2}{3}$
B. $8 \frac{1}{2}$
C. $9 \frac{2}{3}$
D. $9 \frac{1}{2}$

Answer: (A) (From online test system)

Problem 14. (5 points) Find the value of the limit $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+x}-x\right)$
A. $-\sqrt{2}$
B. $\sqrt{2}$
C. $\frac{1}{2}$
D. ∞

Answer: (C)

