Calculus Exam（Group A）

I Multiple Answer Questions（複選題）

To get all points for each question，you must select ALL correct choices and NONE of incorrect choices．If you miss a correct choice or taking an incorrect choice，then you will lose 50% of the full points．For all other cases you will get zero points．

Problem 1．（10 points）Consider the function $F: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
F(x)=\int_{x}^{x^{2}} \frac{1}{t^{2}+4} \mathrm{~d} t
$$

Which of the following statements are correct？
（A）$F(0)=0$ ．
（B）$F(-x)=F(x)$ for all $x \in \mathbb{R}$ ．
（C） $\lim _{x \rightarrow \infty} F(x)=0$ ．
（D） $\lim _{x \rightarrow \infty} x F(x)=0$ ．
Answer：（A），（C）．
Problem 2．（9 points）Let $f(x)$ be the inverse function of $g(x)=x+\sin (x)$ for $x \in[0, \pi]$ ．Which of the following statements are correct？
（A）$f(0)=0$ ．
（B）$f(\pi)=\frac{\pi}{2}$ ．
（C）$f^{\prime}(0)=1$ ．
（D） $\int_{0}^{\pi} f(x) \mathrm{d} x=\frac{1}{2} \pi^{2}-2$ ．
Answer：（A），（D）．Modified from the Online Test System §6．1．
Problem 3．（9 points）A student is trying to prove

$$
\int_{-\pi}^{\pi} \sin (m x) \cos (n x) \mathrm{d} x=0
$$

for any two positive integers m and n ，and writing the following proof．However，the student might not provide a valid proof．Please select the correct steps．
（A） $\int_{-\pi}^{\pi} \sin (m x) \cos (n x) \mathrm{d} x=\int_{-\pi}^{\pi} \frac{1}{2}[\sin (m x-n x)+\sin (m x+n x)] \mathrm{d} x$ ．
（B） $\int_{-\pi}^{\pi} \frac{1}{2}[\sin (m x-n x)+\sin (m x+n x)] \mathrm{d} x=\frac{1}{2} \int_{-\pi}^{\pi}[\sin (m x-n x)] \mathrm{d} x+\frac{1}{2} \int_{-\pi}^{\pi}[\sin (m x+n x)] \mathrm{d} x$ ．
(C) $\frac{1}{2} \int_{-\pi}^{\pi}[\sin (m x-n x)] \mathrm{d} x+\frac{1}{2} \int_{-\pi}^{\pi}[\sin (m x+n x)] \mathrm{d} x=\frac{1}{2}\left[\frac{\cos (m x-n x)}{m-n}\right]_{-\pi}^{\pi}+\frac{1}{2}\left[\frac{\cos (m x+n x)}{m+n}\right]_{-\pi}^{\pi}$.
(D) Since the cosine function is even, we have

$$
\begin{aligned}
& \frac{1}{2}\left[\frac{\cos (m x-n x)}{m-n}\right]_{-\pi}^{\pi}+\frac{1}{2}\left[\frac{\cos (m x+n x)}{m+n}\right]_{-\pi}^{\pi} \\
& =\frac{1}{2}\left[\frac{\cos (m \pi-n \pi)}{m-n}-\frac{\cos (-m \pi+n \pi)}{m-n}\right]+\frac{1}{2}\left[\frac{\cos (m \pi+n \pi)}{m+n}-\frac{\cos (-m \pi-n \pi)}{m+n}\right] \\
& =0
\end{aligned}
$$

Answer: (A) (B). From the Textbook §7.2 Exercise 75.
Problem 4. (9 points) Which of the following correctly simplify

$$
\int \frac{x \mathrm{~d} x}{\sqrt{x^{2}+a^{2}}}, \quad \text { where } a>0 ?
$$

(A) $\int \frac{x \mathrm{~d} x}{\sqrt{x^{2}+a^{2}}} \stackrel{y=x^{2}}{=} \int \frac{\mathrm{d} y}{\sqrt{y+a^{2}}} \stackrel{z=y+a^{2}}{=} \int z^{-\frac{1}{2}} \mathrm{~d} z=2 z^{\frac{1}{2}}+C=2 \sqrt{x^{2}+a^{2}}+C$.
(B) $\int \frac{x \mathrm{~d} x}{\sqrt{x^{2}+a^{2}}} \stackrel{x=a \tan (\theta)}{=} \int \frac{\tan (\theta) \sec ^{2}(\theta) \mathrm{d} \theta}{a \sec (\theta)}=\frac{1}{a} \sec (\theta)+C=\frac{1}{a} \sqrt{1+\tan ^{2}(\theta)}+C=\frac{\sqrt{a^{2}+x^{2}}}{a^{2}}+C$.
(C) $\int \frac{x \mathrm{~d} x}{\sqrt{x^{2}+a^{2}}} \stackrel{x=a}{=} \underset{=}{\sinh (t)} \int \frac{(a \sinh (t))(a \cosh (t) \mathrm{d} t)}{a \cosh (t)}=a \cosh (t)+C=a \cosh \left(\sinh ^{-1}\left(\frac{x}{a}\right)\right)+C$.
(D) $\int \frac{x \mathrm{~d} x}{\sqrt{x^{2}+a^{2}}} \stackrel{y=x^{2}}{=} \int \frac{\mathrm{d} y}{2 \sqrt{y+a^{2}}} \stackrel{z=y+a^{2}}{=} \int \frac{z^{-\frac{1}{2}}}{2} \mathrm{~d} z=z^{\frac{1}{2}}+C=\sqrt{x^{2}+a^{2}}+C$.

Answer: (C) (D). From the Textbook §7.3 Exercise 37.
Problem 5. (9 points) If $f(t)$ is continuous for $t \geq 0$, the Laplace transform of f is the function F defined by

$$
F(s)=\int_{0}^{\infty} f(t) e^{-s t} \mathrm{~d} t
$$

and the domain of F is the set consisting of all numbers s for which the integral converges. Which of the following function can be transformed by the Laplace transform?
(A) $e^{e^{t}}$.
(B) $e^{1+\sqrt{t}}$.
(C) $1+\sqrt{e^{t}}$.
(D) $1+\sqrt{1+\sqrt{t}}$.

Answer: (B) (C) (D). From the Textbook §7.8 Exercise 85.

II Single Answer Questions（單選題）

Select only ONE correct choice from a list of four choices．

Problem 1．（6 points）What is $f^{\prime}(0)$ ，where

$$
f(x)=\int_{2 x}^{3 x} \frac{u^{2}-1}{u^{2}+1} \mathrm{~d} u ?
$$

（A）-1 ．
（B） 1 ．
（C） 3 ．
（D） 5 ．
Answer：（A）．From the Textbook §4．3 P． 59.
Problem 2．（6 points）What is the constant $c \in \mathbb{R}$ such that

$$
\int_{0}^{\pi} \frac{x \sin (x)}{1+\cos ^{2}(x)} \mathrm{d} x=c \int_{0}^{\pi} \frac{\sin (x)}{1+\cos ^{2}(x)} \mathrm{d} x ?
$$

You may use the substitution $u=\pi-x$ ．
（A）π ．
（B）$\frac{\pi}{2}$ ．
（C）π^{2} ．
（D）$\frac{\pi^{2}}{4}$ ．
Answer：（B）．From the Textbook §4．5 P． 84.
Problem 3．（6 points）What is the volume of the solid obtained by rotating the region bounded by $y=4 x-x^{2}$ and $y=x$ around the y－axis？
（A）$\frac{1}{2} \pi$ ．
（B）$\frac{3}{2} \pi$ ．
（C）$\frac{9}{2} \pi$ ．
（D）$\frac{27}{2} \pi$ ．
Answer：（D）．From the Textbook §5．3 P． 50.
Problem 4．（6 points）Find the limit

$$
\lim _{x \rightarrow 1^{+}} x^{\frac{1}{1-x}} .
$$

(A) 1 .
(B) e.
(C) e^{-1}.
(D) -1 .

Answer: (C). From the Textbook $\S 6.8$ P. 61.
Problem 5. (6 points) A student wants to inductively use the following reduction formula:

$$
\int(\ln x)^{n} \mathrm{~d} x=x(\ln x)^{n}-n \int(\ln x)^{n-1} \mathrm{~d} x
$$

to prove $\int(\ln x)^{n} \mathrm{~d} x=\sum_{m=0}^{n}(-1)^{n-m} \frac{n!}{m!} x(\ln x)^{m}+C$ for $n \in \mathbb{N}$. This students writes the proof as follows.

1. When $n=0$, we have

$$
\int(\ln x)^{0} \mathrm{~d} x=\int \mathrm{d} x=x+C=(-1)^{0-0} \frac{0!}{0!} x(\ln x)^{0}+C=\sum_{m=0}^{0}(-1)^{0-m} \frac{0!}{m!} x(\ln x)^{m}+C .
$$

2. Assume when $n=k$, we have

$$
\int(\ln x)^{n} \mathrm{~d} x=\int(\ln x)^{k} \mathrm{~d} x=\sum_{m=0}^{k}(-1)^{k-m} \frac{k!}{m!} x(\ln x)^{m}+C=\sum_{m=0}^{n}(-1)^{n-m} \frac{n!}{m!} x(\ln x)^{m}+C .
$$

Then, when \qquad , we also have $\int(\ln x)^{n} \mathrm{~d} x=\cdots=\sum_{m=0}^{n}(-1)^{n-m} \frac{n!}{m!} x(\ln x)^{m}+C$.
3. Therefore, by mathematical induction,

$$
\int(\ln x)^{n} \mathrm{~d} x=\sum_{m=0}^{n}(-1)^{n-m} \frac{n!}{m!} x(\ln x)^{m}+C, \quad \text { for } n \in \mathbb{N} .
$$

Which of the following formula should be put in the underline location so that the previous forms a valid inductive proof, where the dots represent a long computation and omits here.
(A) $n=k+2$.
(B) $n=k+1$.
(C) $n=k$.
(D) $n=k-1$.

Answer: (B). From the Textbook §7.1 Exercise 57.
Problem 6. (6 points) Find the exact length of the curve

$$
y=\frac{2}{3}\left(x^{2}-1\right)^{\frac{3}{2}} \quad \text { for } 1 \leq x \leq 2 .
$$

(A) $\frac{3}{2}$.
(B) $-\frac{11}{3}$.
(C) $\frac{11}{3}$.
(D) $\frac{17}{3}$.

Answer: (C). From the Textbook $\S 8.1$ Exercise 11.
Problem 7. (6 points) Find the surface area obtained by rotating the curve $y=\frac{x^{3}}{3}, 0 \leq x \leq 1$, about the x-axis.
(A) $\frac{1}{12}$.
(B) $\frac{2}{9} \sqrt{2} \pi$.
(C) $\frac{\pi}{9}(2 \sqrt{2}-1)$.
(D) $\frac{\pi}{63}$.

Answer: (C). From the Online Test System §8.2.
Problem 8. (6 points) Evaluate

$$
\int_{0}^{1} \frac{x^{4}+x^{3}+x^{2}+x+1}{x^{2}+1} \mathrm{~d} x .
$$

(A) $\frac{5}{6}+\ln 2$.
(B) $2+\frac{\pi}{4}$.
(C) $2+\ln 2$.
(D) $\frac{5}{6}+\frac{\pi}{4}$.

Answer: (D). From the Online Test System §7.3.
Problem 9. (6 points) Evaluate

$$
\int \frac{e^{\frac{3}{x}}}{x^{2}} \mathrm{~d} x
$$

(A) $-\frac{1}{3} e^{\frac{3}{x}}+C$.
(B) $\frac{1}{3} e^{\frac{3}{x}}+C$.
(C) $-\frac{1}{3} e^{x}+C$
(D) $\frac{1}{3} e^{x}+C$.

Answer: (A). From the Textbook $\S 7.5$ Exercise 40.

