Weakly symmetric hexavalent graphs of order $9p$

Song-Tao Guo

Henan University of Science and Technology

gsongtao@gmail.com

August 19 2019
Outline

- Definitions
- Motivation
- The arc-transitive case
- Classification for arc-transitive case
- The half-arc-transitive case
- Classification for half-arc-transitive case
- Examples
Definitions

Let X be a regular graph and $\text{Aut}(X)$ the full automorphism group.

Different types of transitivity

- **vertex-transitive**: $\text{Aut}(X)$ is transitive on vertices.
- **edge-transitive**: $\text{Aut}(X)$ is transitive on edges.
- **arc-transitive**: $\text{Aut}(X)$ is transitive on arcs.
- **half-arc-transitive**: $\text{Aut}(X)$ is transitive on vertices and edges but not on arcs.
- **weakly symmetric**: $\text{Aut}(X)$ is transitive on vertices and edges.
Let X be a regular graph and $\text{Aut}(X)$ the full automorphism group.

Different types of transitivity

- **vertex-transitive**: $\text{Aut}(X)$ is transitive on vertices.
- **edge-transitive**: $\text{Aut}(X)$ is transitive on edges.
- **arc-transitive**: $\text{Aut}(X)$ is transitive on arcs.
- **half-arc-transitive**: $\text{Aut}(X)$ is transitive on vertices and edges but not on arcs.
- **weakly symmetric**: $\text{Aut}(X)$ is transitive on vertices and edges.
Let X be a regular graph and $\text{Aut}(X)$ the full automorphism group.

Different types of transitivity

- **vertex-transitive**: $\text{Aut}(X)$ is transitive on vertices.
- **edge-transitive**: $\text{Aut}(X)$ is transitive on edges.
- **arc-transitive**: $\text{Aut}(X)$ is transitive on arcs.
- **half-arc-transitive**: $\text{Aut}(X)$ is transitive on vertices and edges but not on arcs.
- **weakly symmetric**: $\text{Aut}(X)$ is transitive on vertices and edges.
Let X be a regular graph and $\text{Aut}(X)$ the full automorphism group.

Different types of transitivity

- **vertex-transitive**: $\text{Aut}(X)$ is transitive on vertices.
- **edge-transitive**: $\text{Aut}(X)$ is transitive on edges.
- **arc-transitive**: $\text{Aut}(X)$ is transitive on arcs.
- **half-arc-transitive**: $\text{Aut}(X)$ is transitive on vertices and edges but not on arcs.
- **weakly symmetric**: $\text{Aut}(X)$ is transitive on vertices and edges.
Let X be a regular graph and $\text{Aut}(X)$ the full automorphism group.

Different types of transitivity

- **vertex-transitive**: $\text{Aut}(X)$ is transitive on vertices.
- **edge-transitive**: $\text{Aut}(X)$ is transitive on edges.
- **arc-transitive**: $\text{Aut}(X)$ is transitive on arcs.
- **half-arc-transitive**: $\text{Aut}(X)$ is transitive on vertices and edges but not on arcs.
- **weakly symmetric**: $\text{Aut}(X)$ is transitive on vertices and edges.
Let X be a regular graph and $\text{Aut}(X)$ the full automorphism group.

Different types of transitivity

- **vertex-transitive**: $\text{Aut}(X)$ is transitive on vertices.
- **edge-transitive**: $\text{Aut}(X)$ is transitive on edges.
- **arc-transitive**: $\text{Aut}(X)$ is transitive on arcs.
- **half-arc-transitive**: $\text{Aut}(X)$ is transitive on vertices and edges but not on arcs.
- **weakly symmetric**: $\text{Aut}(X)$ is transitive on vertices and edges.
Weakly symmetric graphs

Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)| = p$: by Chao in 1971, X must be arc-transitive.

- $|V(X)| = 2p$: by Cheng and Oxley in 1987, X must be arc-transitive.

- $|V(X)| = pq$: by Alspach, Praeger, Wang and Xu in 1994, X can be arc-transitive or half-arc-transitive.

- $|V(X)| = 2p^2$: by Zhou and Zhang in 2018, X must be arc-transitive.
Weakly symmetric graphs

Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)| = p$: by Chao in 1971, X must be \textbf{arc-transitive}.

- $|V(X)| = 2p$: by Cheng and Oxley in 1987, X must be \textbf{arc-transitive}.

- $|V(X)| = pq$: by Alspach, Praeger, Wang and Xu in 1994, X can be \textbf{arc-transitive or half-arc-transitive}.

- $|V(X)| = 2p^2$: by Zhou and Zhang in 2018, X must be \textbf{arc-transitive}.
Weakly symmetric graphs

Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)| = p$: by Chao in 1971, X must be **arc-transitive**.
- $|V(X)| = 2p$: by Cheng and Oxley in 1987, X must be **arc-transitive**.
- $|V(X)| = pq$: by Alspach, Praeger, Wang and Xu in 1994, X can be **arc-transitive** or **half-arc-transitive**.
- $|V(X)| = 2p^2$: by Zhou and Zhang in 2018, X must be **arc-transitive**.
Weakly symmetric graphs

Let X be a weakly symmetric graph, and p, q two distinct primes.

- $|V(X)| = p$: by Chao in 1971, X must be arc-transitive.
- $|V(X)| = 2p$: by Cheng and Oxley in 1987, X must be arc-transitive.
- $|V(X)| = pq$: by Alspach, Praeger, Wang and Xu in 1994, X can be arc-transitive or half-arc-transitive.
- $|V(X)| = 2p^2$: by Zhou and Zhang in 2018, X must be arc-transitive.
Motivation

Arc-transitive graphs

- **Characterization and classification on highly arc-transitive graphs**: Praeger, Li, Fang and Lu, et al.
- Such graphs with **certain primitive action**: Praeger, Li, Fang and Lu, et al.
- **Prime valency**: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- **Four valency**: by Fang, Feng, Li, Lu and Zhou, et al.
Arc-transitive graphs

- **Characterization and classification on highly arc-transitive graphs**: Praeger, Li, Fang and Lu, et al.

- **Such graphs with certain primitive action**: Praeger, Li, Fang and Lu, et al.

- **Prime valency**: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.

- **Four valency**: by Fang, Feng, Li, Lu and Zhou, et al.
Motivation

Arc-transitive graphs

- Prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- Four valency: by Fang, Feng, Li, Lu and Zhou, et al.
Arc-transitive graphs

- Prime valency: by using the structure of vertex stabilizers, and covering and lifting technique, for example, Feng, Marušič and Zhou, et al.
- Four valency: by Fang, Feng, Li, Lu and Zhou, et al.
Half-arc-transitive graphs

- $|V(X)| = p, 2p$ or $2p^2$: All are arc-transitive.
- $|V(X)| = 4p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)| = pq$: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- $|V(X)| = p^3$: by Feng and Wang, an infinite family of non-metacirculants.

NH-number: stands for non-half-arc-transitive, defined by Zhou in 2018.
Half-arc-transitive graphs

- $|V(X)| = p, 2p$ or $2p^2$: All are arc-transitive.
- $|V(X)| = 4p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)| = pq$: by Alspach, Xu, Wang and Dobson. All are metacirculants.

Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.

- $|V(X)| = p^3$: by Feng and Wang, an infinite family of non-metacirculants.
- \mathcal{NH}-number: stands for non-half-arc-transitive, defined by Zhou in 2018.
Half-arc-transitive graphs

- $|V(X)| = p, 2p$ or $2p^2$: All are arc-transitive.
- $|V(X)| = 4p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)| = pq$: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- $|V(X)| = p^3$: by Feng and Wang, an infinite family of non-metacirculants.
- NH-number: stands for non-half-arc-transitive, defined by Zhou in 2018.
Half-arc-transitive graphs

- $|V(X)| = p, 2p$ or $2p^2$: All are arc-transitive.

- $|V(X)| = 4p$: by Kutnar, Marušič, et al. All are metacirculants.

- $|V(X)| = pq$: by Alspach, Xu, Wang and Dobson. All are metacirculants.

- **Tetravalent case**: by Conder, Marušič, Feng, Xu, Zhou, et al.

- $|V(X)| = p^3$: by Feng and Wang, an infinite family of non-metacirculants.

- $\mathcal{N}\mathcal{H}$-number: stands for non-half-arc-transitive, defined by Zhou in 2018.
Half-arc-transitive graphs

- $|V(X)| = p, 2p \text{ or } 2p^2$: All are arc-transitive.
- $|V(X)| = 4p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)| = pq$: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- Tetravalent case: by Conder, Marušič, Feng, Xu, Zhou, et al.
- $|V(X)| = p^3$: by Feng and Wang, an infinite family of non-metacirculants.

NH-number: stands for non-half-arc-transitive, defined by Zhou in 2018.
Motivation

Half-arc-transitive graphs

- $|V(X)| = p, 2p$ or $2p^2$: All are arc-transitive.
- $|V(X)| = 4p$: by Kutnar, Marušič, et al. All are metacirculants.
- $|V(X)| = pq$: by Alspach, Xu, Wang and Dobson. All are metacirculants.
- **Tetravalent case**: by Conder, Marušič, Feng, Xu, Zhou, et al.
- $|V(X)| = p^3$: by Feng and Wang, an infinite family of non-metacirculants.
- \mathcal{NH}-number: stands for non-half-arc-transitive, defined by Zhou in 2018.
The arc-transitive case

Theorem 1.1, DM, 2017

Let p be a prime. Then any connected hexavalent arc-transitive graph of order $9p$ is isomorphic to one of the following graphs.

<table>
<thead>
<tr>
<th>p</th>
<th>s-transitive</th>
<th>$\text{Aut}(X)$</th>
<th>Num.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1-transitive</td>
<td>$(S_3 \times \mathbb{Z}3).D{12}$</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1-transitive</td>
<td>$\text{Aut}(X)v=D{12}$, $S_4 \times \mathbb{Z}_2$, $D_8 \times S_3$</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1-transitive</td>
<td>$\mathbb{Z}_3.S_6$</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1-transitive</td>
<td>$G_2(2)$</td>
<td>2</td>
</tr>
<tr>
<td>p</td>
<td>1-transitive</td>
<td>$S_3 \wr D_{6p}$</td>
<td>1</td>
</tr>
<tr>
<td>$p \geq 3$</td>
<td>1-transitive</td>
<td>$S_3 \wr D_{2p}$</td>
<td>1</td>
</tr>
<tr>
<td>$p \equiv 1 (\text{mod } 6)$</td>
<td>1-regular</td>
<td>$\mathbb{Z}_{9p} \rtimes \mathbb{Z}_6$</td>
<td>3</td>
</tr>
<tr>
<td>$p \equiv 1 (\text{mod } 6)$</td>
<td>1-regular</td>
<td>$(\mathbb{Z}_3^2 \times \mathbb{Z}_p) \rtimes \mathbb{Z}_6$</td>
<td>1</td>
</tr>
</tbody>
</table>
Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.

 By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive.

 By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.

 For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.

 For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Classification for arc-transitive case

Ideas of proof
Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive. By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.
 - For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.
 - For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.

 By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive.

 By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.

 For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.

 For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive. By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.
 - For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.
 - For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Classification for arc-transitive case

Ideas of proof

Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.

 By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive.

 By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.

 For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.

 For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Classification for arc-transitive case

Ideas of proof
Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive. By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.

 For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.

 For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Ideas of proof
Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive. By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.

 For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.

 For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Ideas of proof

Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group.
 By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive.
 By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.
 For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.
 For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
Ideas of proof
Let X be such graph, $A = \text{Aut}(X)$ and N a minimal normal subgroup of A.

- X cannot be a normal Cayley graph on a non-abelian group. By using the automorphisms of non-abelian group of order $9p$.

- X cannot be 2-arc-transitive. By using the structure of vertex stabilizers of 2-arc-transitive hexavalent graphs, quotient graphs relative to the orbits of a minimal normal subgroup of A, and the K_3- and K_4-simple groups.

- N has two cases: $N_v \neq 1$ or $N_v = 1$.
 - For $N_v \neq 1$, $X \cong C_{3p}[3K_1]$ or $C(3, p, 2)$.
 - For $N_v = 1$, X is isomorphic to a normal Cayley graph on an abelian group of order $9p$ or some sporadic graphs.
The half-arc-transitive case

Theorem 1.1, DM, 2019

Let p be a prime and X a connected hexavalent half-arc-transitive graph of order $9p$. Then X, the automorphism group $\text{Aut}(X)$ and the vertex stabilizer $\text{Aut}(X)_v$ for a vertex $v \in V(X)$ are described in the following table:

<table>
<thead>
<tr>
<th>p</th>
<th>$\text{Aut}(X)$</th>
<th>$\text{Aut}(X)_v$</th>
<th>Numeration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$9\mid (p - 1)$</td>
<td>$\mathbb{Z}_3 \rtimes \mathbb{Z}_9$</td>
<td>\mathbb{Z}_3</td>
<td>1</td>
</tr>
<tr>
<td>$27\mid (p - 1)$</td>
<td>$\mathbb{Z}p \rtimes \mathbb{Z}{27}$</td>
<td>\mathbb{Z}_3</td>
<td>3</td>
</tr>
</tbody>
</table>
Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

- Classification.
 Constructing coset graph by the full automorphism group A. By using the $G\text{I}$-property and calculating the orbits of A acting on the corresponding right cosets.
Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

- Classification.
 Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.
Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

- Classification.
 Constructing coset graph by the full automorphism group A. By using the GL-property and calculating the orbits of A acting on the corresponding right cosets.
Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \ncong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

Classification.

Constructing coset graph by the full automorphism group A. By using the GL-property and calculating the orbits of A acting on the corresponding right cosets.
Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

Classification.
Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.
Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

Classification.

Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.
Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

Classification.

Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.
Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_{v} is a $\{2, 3\}$-group and K_{3}-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_{3}.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_{3}$, then X is arc-transitive.

- $A \cong \mathbb{Z}_{3} \times (\mathbb{Z}_{p} \rtimes \mathbb{Z}_{9})$ with $9 \mid (p - 1)$ or $\mathbb{Z}_{p} \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

Classification.

Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.
Classification for half-arc-transitive case

Ideas of proof

- Every minimal normal subgroup of A is solvable.
 By using that A_v is a $\{2, 3\}$-group and K_3-simple group.

- Every normal abelian 3-subgroup M of A is isomorphic to \mathbb{Z}_3.
 By using quotient graphs relative to the orbits of M. If $M \not\cong \mathbb{Z}_3$, then X is arc-transitive.

- $A \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $9 \mid (p - 1)$ or $\mathbb{Z}_p \rtimes \mathbb{Z}_{27}$ with $27 \mid (p - 1)$.
 By using the edge-transitive graphs of order $3p$ or 9.

Classification.

Constructing coset graph by the full automorphism group A. By using the GI-property and calculating the orbits of A acting on the corresponding right cosets.
Examples: arc-transitive case

Example (Definition 2.1, Praeger and Xu, European J. Combin., 1989)

Let $p \geq 3$. Then define the graph $C(3, p, 2) = (V, E)$ as follows:

$V(X) = \mathbb{Z}_p \times \mathbb{Z}_3^2$, \quad $E = \{((i, x, y), (i + 1, y, z))\}$

where \mathbb{Z}_p and \mathbb{Z}_3 are additive groups of order p and 3, $i \in \mathbb{Z}_p$ and $x, y, z \in \mathbb{Z}_3$. Then $C(3, p, 2)$ is a connected hexavalent symmetric graphs of order $9p$ and $\text{Aut}(C(3, p, 2)) = S_3 \text{ wr } D_{2p}$.

Remark. It is easy to check that $C(3, 3p, 1) \cong C_{3p}[3K_1]$. Clearly, $C(3, p, 2)$ is not isomorphic to $C_{3p}[3K_1]$ because

$\text{Aut}(C(3, p, 2)) \neq \text{Aut}(C_{3p}[3K_1])$.

$\text{Aut}(C(3, p, 2))$ has a minimal normal subgroup isomorphic to \mathbb{Z}_3^p, which is not semiregular on $V(C(3, p, 2))$.
Example (Definition 2.1, Praeger and Xu, European J. Combin., 1989)

Let $p \geq 3$. Then define the graph $C(3, p, 2) = (V, E)$ as follows:

$$V(X) = \mathbb{Z}_p \times \mathbb{Z}_3^2, \quad E = \{(i, x, y), (i + 1, y, z)\}$$

where \mathbb{Z}_p and \mathbb{Z}_3 are additive groups of order p and 3, $i \in \mathbb{Z}_p$ and $x, y, z \in \mathbb{Z}_3$. Then $C(3, p, 2)$ is a connected hexavalent symmetric graphs of order $9p$ and $\text{Aut}(C(3, p, 2)) = S_3 \text{ wr } D_{2p}$.

Remark. It is easy to check that $C(3, 3p, 1) \cong C_{3p}[3K_1]$. Clearly, $C(3, p, 2)$ is not isomorphic to $C_{3p}[3K_1]$ because

$$\text{Aut}(C(3, p, 2)) \neq \text{Aut}(C_{3p}[3K_1]).$$

$\text{Aut}(C(3, p, 2))$ has a minimal normal subgroup isomorphic to \mathbb{Z}_3^p, which is not semiregular on $V(C(3, p, 2))$.
Let p be a prime and r an element of order 9 in \mathbb{Z}_p^*. Then $9 \mid (p - 1)$. Suppose that $G(3p \times 9) = \langle a, b, c \mid a^p = b^9 = c^3 = [a, c] = [b, c] = 1, b^{-1}ab = a' \rangle \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $r \neq 1$.

Construction 4.3, DM, 2019

Take $H = \langle b^3c \rangle \leq G(3p \times 9)$ and $g = ab$. Then $H \cong \mathbb{Z}_3$. Define the following coset graph:

$$\mathcal{HC}_{3p \times 9}(9p) = \text{Cos}(G(3p \times 9), H, H\{g, g^{-1}\}H).$$

The coset graph $\mathcal{HC}_{3p \times 9}(9p)$ is a connected hexavalent half-arc-transitive graph of order $9p$, and

$$\text{Aut}(\mathcal{HC}_{3p \times 9}(9p)) \cong G(3p \times 9).$$
Let p be a prime and r an element of order 9 in \mathbb{Z}_p^*. Then $9 \mid (p - 1)$. Suppose that $G(3p \times 9) = \langle a, b, c \mid a^p = b^9 = c^3 = [a, c] = [b, c] = 1, b^{-1}ab = a^r \rangle \cong \mathbb{Z}_3 \times (\mathbb{Z}_p \rtimes \mathbb{Z}_9)$ with $r \neq 1$.

Construction 4.3, DM, 2019

Take $H = \langle b^3c \rangle \leq G(3p \times 9)$ and $g = ab$. Then $H \cong \mathbb{Z}_3$. Define the following coset graph:

$$\mathcal{H}C_{3p \times 9}(9p) = \text{Cos}(G(3p \times 9), H, H\{g, g^{-1}\}H).$$

The coset graph $\mathcal{H}C_{3p \times 9}(9p)$ is a connected hexavalent half-arc-transitive graph of order $9p$, and

$$\text{Aut}(\mathcal{H}C_{3p \times 9}(9p)) \cong G(3p \times 9).$$
Examples: half-arc-transitive case

Let p be a prime and s an element of order 27 in \mathbb{Z}_p^*. Then $27 \mid (p - 1)$. Suppose that $G(p \times 27) = \langle x, y \mid x^p = y^{27} = 1, y^{-1}xy = x^s \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_{27}$ with $s \neq 1$.

Construction 4.5, DM, 2019

Take $K = \langle y^9 \rangle \leq G(p \times 27)$. Then $K \cong \mathbb{Z}_3$. Set $g_1 = xy$, $g_2 = xy^2$, $g_3 = xy^4$. Define the following coset graphs:

- $HC_{p \times 27}(9p, 1) = \text{Cos}(G(p \times 27), K, K\{g_1, g_1^{-1}\}K)$;
- $HC_{p \times 27}(9p, 2) = \text{Cos}(G(p \times 27), K, K\{g_2, g_2^{-1}\}K)$;
- $HC_{p \times 27}(9p, 3) = \text{Cos}(G(p \times 27), K, K\{g_3, g_3^{-1}\}K)$.

The coset graphs $HC_{p \times 27}(9p, i)$ are connected hexavalent half-arc-transitive graphs of order $9p$, and for $i = 1, 2, 3$

$$\text{Aut}(HC_{p \times 27}(9p, i)) \cong G(p \times 27).$$
Let p be a prime and s an element of order 27 in \mathbb{Z}_p^*. Then $27 \mid (p - 1)$.

Suppose that $G(p \times 27) = \langle x, y \mid x^p = y^{27} = 1, y^{-1}xy = x^s \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_{27}$ with $s \neq 1$.

Construction 4.5, DM, 2019

Take $K = \langle y^9 \rangle \leq G(p \times 27)$. Then $K \cong \mathbb{Z}_3$. Set $g_1 = xy$, $g_2 = xy^2$, $g_3 = xy^4$. Define the following coset graphs:

$$
\mathcal{H}C_{p \times 27}(9p, 1) = \text{Cos}(G(p \times 27), K, K\{g_1, g_1^{-1}\}K);
$$

$$
\mathcal{H}C_{p \times 27}(9p, 2) = \text{Cos}(G(p \times 27), K, K\{g_2, g_2^{-1}\}K);
$$

$$
\mathcal{H}C_{p \times 27}(9p, 3) = \text{Cos}(G(p \times 27), K, K\{g_3, g_3^{-1}\}K).
$$

The coset graphs $\mathcal{H}C_{p \times 27}(9p, i)$ are connected hexavalent half-arc-transitive graphs of order $9p$, and for $i = 1, 2, 3$

$$
\text{Aut}(\mathcal{H}C_{p \times 27}(9p, i)) \cong G(p \times 27).
$$
Thank you!