Addressing problem and the distance matrix of a graph
 鄭硯仁

National Taiwan Normal University

Let G be a graph．An addressing of G of length k is a mapping $f: V(G) \rightarrow$ $\{0,1, *\}^{k}$ such that for all $u, v \in V(G), d_{G}(u, v)$ is equal to the number of places in $f(u)$ and $f(v)$ where one has a 0 and the other has a 1 ．Let $N(G)$ be the least length of an addressing of G ．In 1971，Graham and Pollak proved that $N(G)=n-1$ if G is a tree of order n ．In their proof，they showed that the determinant of the distance matrix of a tree of order n does not depend on the structure of the tree．In 1977，Graham，Hoffman and Hosoya gave a generalization by showing that the determinant of the distance matrix of a graph G only depends on its blocks．We give new classes of graphs such that the determinant of the distance matrix is constant among each class．In addition， we also find $N(G)$ for these new graphs．This is a joint work with Jephian C．－H． Lin．

