Rainbow Graph Designs

傅恒霖
National Chiao Tung University

A k－edge－coloring of a graph G is a mapping from $E(G)$ into $\{1,2, \ldots, k\}$ ． If，in addition，incident edges of G receive distinct colors，then the coloring is a proper edge－coloring．A subgraph H of an edge－colored graph G is a rainbow subgraph provided all the edges of H are of distinct colors．

An H－design of G is a decomposition of G such that all its members are isomorphic to H ，denoted by $H \mid G$ ．Furthermore，if G is edge－colored and each member H is a rainbow subgraph，then we have a rainbow H－design of G ，denote by $\left.H\right|_{R} G$ ．In case that $G \cong K_{n}$ ，we simply call it a rainbow H－design of order n ．

We are interested in the following problems．
－Problem 1．Can we find a $\chi^{\prime}(G)$－edge－coloring and an H－decomposition of G such that each member of the decomposition is a rainbow subgraph？
－Problem 2．Given a proper edge－coloring of G ，can G be decomposed into subgraphs such that each member is isomorphic to H and also each member is a rainbow subgraph？

Both of the above problems are easy to solve if $G \cong K_{n}$ and the subgraphs do have certain structure，for example triangles and stars．But，it won＇t be that trivial if we have a larger subgraph to consider．Since our focus is on complete graph of order n ，the H－decomposition obtained in Problem 1 will be referred to as a＂weak＂rainbow H－design of order n and the one obtained in Problem 2 is a＂strong＂rainbow H－design of order n ．In this talk，I shall report some progress of working on these two problems．

