Decompose a graph into two disjoint cycles

高欣欣
中原大學

Consider a simple and undirected graph G ．A set of subgraphs of G is disjoint if no two of them share a common vertex in G ．Let $|G|=n$ be the total number of vertices in G ．For $i=1,2$ ，let n_{i} be an integer with $n_{i} \geq 3$ ，and $n_{1}+n_{2}=n$ ．Let $e(\bar{G})$ be the number of edges in the complement of G ．We prove that if $e(\bar{G}) \leq n-3$ ，then G contains two disjoint cycles with lengths n_{1} and n_{2} ．The bound $n-3$ is sharp．

