# Approximation algorithms for solving the 1－line Euclidean minimum Steiner tree problem 

李建平<br>雲南大學

In this talk，we consider the 1－line Euclidean minimum Steiner tree problem， which is a variation of the Euclidean minimum Steiner tree problem and defined as follows．Given a set $P=\left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$ of $n$ points in the Euclidean plane $\mathbb{R}^{2}$ ，we are asked to find the location of a line $l$ and an Euclidean Steiner tree $T(l)$ in $\mathbb{R}^{2}$ such that at least one Steiner point is located at such a line $l$ ，the objective is to minimize total weight of such an Euclidean Steiner tree $T(l)$ ，i．e．， $\min \left\{\sum_{e \in T(l)} w(e) \mid T(l)\right.$ is an Euclidean Steiner tree as mentioned－above $\}$ ，where we define weight $w(e)=0$ if the end－points $u, v$ of each edge $e=u v \in T(l)$ are both located at such a line $l$ and otherwise we denote weight $w(e)$ to be the Euclidean distance between $u$ and $v$ ．Given a fixed line $l$ as an input in $\mathbb{R}^{2}$ ，we refer this problem as the 1－line－fixed Euclidean minimum Steiner tree problem； In addition，when Steiner points added are all located at such a fixed line $l$ ，we refer this problem as the constrained Euclidean minimum Steiner tree problem．

We obtain the following two main results．（1）Using a polynomial－time exact algorithm to find a constrained Euclidean minimum Steiner tree，we can design a 1．214－approximation algorithm to solve the 1－line－fixed Euclidean minimum Steiner tree problem，and this algorithm runs in time $O(n \log n)$ ；（2）Using the algorithm designed in（1）for many times，a technique of finding linear facility location and an important lemma proved by some techniques of computational geometry，we can provide a 1．214－approximation algorithm to solve the 1－line Euclidean minimum Steiner tree problem，and this new algorithm runs in time $O\left(n^{3} \log n\right)$ ．
Keywords：Euclidean minimum Steiner tree，Constrained Euclidean minimum Steiner tree，Steiner ratio，Approximation algorithms and Complexity．

## References

［1］A．Aazami，J．Cheriyan，and K．R．Jampani．Approximation algorithms and hardness results for packing element－disjoint Steiner trees in planar graphs． in International Workshop and International Workshop on Approximation， 2009.
[2] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM, 45 (1998), pp. 753-782.
[3] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information Processing Letters, 32 (1989), pp. 171-176.
[4] J. Byrka, F. Grandoni, T. Rothvob, and L. Sanita. An improved LP-based approximation for Steiner tree. Proceedings of the Annual ACM Symposium on Theory of Computing, (2010), pp. 583-592.
[5] Chazelle and Bernard, A minimum spanning tree algorithm with inverseackermann type complexity. Journal of the ACM, 47 (2000), pp. 1028-1047.
[6] C. Chekuri, A. Ene, and N. Korula. Prize-collecting Steiner tree and forest in planar graphs. Computer Science, (2010).
[7] G. Chen and G. Zhang. A constrained minimum spanning tree problem. Computers and Operations Research, 27 (2000), pp. 867-875.
[8] F. R. K. Chung and R. L. Graham. A new bound for Euclidean Steiner minimal trees. Annals of the New York Academy of Sciences, 440 (2010), pp. 328-346.
[9] D. Cieslik. Steiner minimal trees (vol. 23). Springer Science and Business Media, 2013.
[10] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner minimal trees, SIAM Journal on Applied Mathematics, 32 (1977), pp. 835-859.
[11] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics, 16 (1968), pp. 1-29.
[12] J. Holby. Variations on the Euclidean Steiner tree problem and algorithms. Rose-Hulman Undergraduate Mathematics Journal, 18 (2017), p.7.
[13] F. K. Hwang, On Steiner minimal trees with rectilinear distance. SIAM Journal on Applied Mathematics, 30 (1976), pp. 104-114.
[14] F. K. Hwang and D. S. Richards. Steiner tree problem. Networks, 22 (1992),pp. 55-89.
[15] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM, 42 (1995), pp. 321-328.
[16] B. B. H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 2008.
[17] J. G. Morris and J. P. Norback. A simple approach to linear facility location. Transportation Science, 14 (1980), pp. 1-8.
[18] M. I. Shamos and D. Hoey. Closest-point problems. Symposium on Foundations of Computer Science, 1975, pp. 151-162.
[19] V. V. Vazirani. Approximation Algorithms. Berlin: Springer, 2004.
[20] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011.

