Approximation algorithms for solving the 1-line Euclidean minimum Steiner tree problem

李建平 雲南大學

In this talk, we consider the 1-line Euclidean minimum Steiner tree problem, which is a variation of the Euclidean minimum Steiner tree problem and defined as follows. Given a set $P = \{r_1, r_2, \ldots, r_n\}$ of n points in the Euclidean plane \mathbb{R}^2 , we are asked to find the location of a line l and an Euclidean Steiner tree T(l) in \mathbb{R}^2 such that at least one Steiner point is located at such a line l, the objective is to minimize total weight of such an Euclidean Steiner tree T(l), *i.e.*, $\min\{\sum_{e \in T(l)} w(e) | T(l)$ is an Euclidean Steiner tree as mentioned-above}, where we define weight w(e) = 0 if the end-points u, v of each edge $e = uv \in T(l)$ are both located at such a line l and otherwise we denote weight w(e) to be the Euclidean distance between u and v. Given a fixed line l as an input in \mathbb{R}^2 , we refer this problem as the 1-line-fixed Euclidean minimum Steiner tree problem; In addition, when Steiner points added are all located at such a fixed line l, we refer this problem as the constrained Euclidean minimum Steiner tree problem.

We obtain the following two main results. (1) Using a polynomial-time exact algorithm to find a constrained Euclidean minimum Steiner tree, we can design a 1.214-approximation algorithm to solve the 1-line-fixed Euclidean minimum Steiner tree problem, and this algorithm runs in time $O(n \log n)$; (2) Using the algorithm designed in (1) for many times, a technique of finding linear facility location and an important lemma proved by some techniques of computational geometry, we can provide a 1.214-approximation algorithm to solve the 1-line Euclidean minimum Steiner tree problem, and this new algorithm runs in time $O(n^3 \log n)$.

Keywords: Euclidean minimum Steiner tree, Constrained Euclidean minimum Steiner tree, Steiner ratio, Approximation algorithms and Complexity.

References

 A. Aazami, J. Cheriyan, and K. R. Jampani. Approximation algorithms and hardness results for packing element-disjoint Steiner trees in planar graphs. in International Workshop and International Workshop on Approximation, 2009.

- [2] S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. Journal of the ACM, 45 (1998), pp. 753-782.
- [3] M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. Information Processing Letters, 32 (1989), pp. 171-176.
- [4] J. Byrka, F. Grandoni, T. Rothvob, and L. Sanita. An improved LP-based approximation for Steiner tree. Proceedings of the Annual ACM Symposium on Theory of Computing, (2010), pp. 583-592.
- [5] Chazelle and Bernard, A minimum spanning tree algorithm with inverseackermann type complexity. Journal of the ACM, 47 (2000), pp. 1028-1047.
- [6] C. Chekuri, A. Ene, and N. Korula. Prize-collecting Steiner tree and forest in planar graphs. Computer Science, (2010).
- [7] G. Chen and G. Zhang. A constrained minimum spanning tree problem. Computers and Operations Research, 27 (2000), pp. 867-875.
- [8] F. R. K. Chung and R. L. Graham. A new bound for Euclidean Steiner minimal trees. Annals of the New York Academy of Sciences, 440 (2010), pp. 328-346.
- [9] D. Cieslik. Steiner minimal trees (vol. 23). Springer Science and Business Media, 2013.
- [10] M. R. Garey, R. L. Graham, and D. S. Johnson. The complexity of computing Steiner minimal trees, SIAM Journal on Applied Mathematics, 32 (1977), pp. 835-859.
- [11] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics, 16 (1968), pp. 1-29.
- [12] J. Holby. Variations on the Euclidean Steiner tree problem and algorithms. Rose-Hulman Undergraduate Mathematics Journal, 18 (2017), p.7.
- [13] F. K. Hwang, On Steiner minimal trees with rectilinear distance. SIAM Journal on Applied Mathematics, 30 (1976), pp. 104-114.
- [14] F. K. Hwang and D. S. Richards. Steiner tree problem. Networks, 22 (1992), pp. 55-89.
- [15] D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. Journal of the ACM, 42 (1995), pp. 321-328.
- [16] B. B. H. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms. Springer, 2008.

- [17] J. G. Morris and J. P. Norback. A simple approach to linear facility location. Transportation Science, 14 (1980), pp. 1-8.
- [18] M. I. Shamos and D. Hoey. Closest-point problems. Symposium on Foundations of Computer Science, 1975, pp. 151-162.
- [19] V. V. Vazirani. Approximation Algorithms. Berlin: Springer, 2004.
- [20] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. Cambridge University Press, 2011.