
Approximation algorithms for solving the 1-line
Euclidean minimum Steiner tree problem

李建平
雲南大學

In this talk, we consider the 1-line Euclidean minimum Steiner tree problem,
which is a variation of the Euclidean minimum Steiner tree problem and defined
as follows. Given a set P = {r1, r2, . . . , rn} of n points in the Euclidean plane
R2, we are asked to find the location of a line l and an Euclidean Steiner tree
T (l) in R2 such that at least one Steiner point is located at such a line l, the
objective is to minimize total weight of such an Euclidean Steiner tree T (l), i.e.,
min{

∑
e∈T (l) w(e)|T (l) is an Euclidean Steiner tree as mentioned-above}, where

we define weight w(e) = 0 if the end-points u, v of each edge e = uv ∈ T (l)
are both located at such a line l and otherwise we denote weight w(e) to be the
Euclidean distance between u and v. Given a fixed line l as an input in R2, we
refer this problem as the 1-line-fixed Euclidean minimum Steiner tree problem;
In addition, when Steiner points added are all located at such a fixed line l, we
refer this problem as the constrained Euclidean minimum Steiner tree problem.

We obtain the following two main results. (1) Using a polynomial-time exact
algorithm to find a constrained Euclidean minimum Steiner tree, we can design
a 1.214-approximation algorithm to solve the 1-line-fixed Euclidean minimum
Steiner tree problem, and this algorithm runs in time O(n logn); (2) Using the
algorithm designed in (1) for many times, a technique of finding linear facility
location and an important lemma proved by some techniques of computational
geometry, we can provide a 1.214-approximation algorithm to solve the 1-line
Euclidean minimum Steiner tree problem, and this new algorithm runs in time
O(n3 logn).
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