A new construction of equiangular lines from integral lattices

林延輯
National Taiwan Normal University

Let X be an equiangular set of r lines in the Euclidean space \mathbb{R}^{n} with angle $1 / 5$ ，where $r>n$ ．Since the Seidel matrix S of X has minimum eigenvalue -5 ，there is a subset of norm－3 vectors from some integral lattice whose Gram matrix can be constructed from S ．By a theorem of Conway and Sloane［1］，we only need to look for unimodular odd lattices of ranks at most $n+3$ ．

As a concrete example，we look for equiangular line sets in \mathbb{R}^{14} ．The dual lattice of E_{7}^{2} contains 3,136 vectors of norm 3 ．We make a graph G whose vertices are these norm－3 vectors，and two vertices are adjacent if and only if their inner product is either 0 or 1 ．Inside G we find a 28 －clique，which produces 28 equiangular lines in \mathbb{R}^{14} ．Interestingly，this equiangular line set is not isomorphic with Tremain＇s example［2］that comes from a（7，3，1）－design．

This is joint work with Gary Greaves，Jack H．Koolen，and Wei－Hsuan Yu．

References

［1］John H．Conway and N．J．A．Sloane，Low－dimensional lattices V．Integral coordinates for integral lattices，Proceedings of the Royal Society of London． A．Mathematical and Physical Sciences，426（1871）：211－232， 1989.
［2］Janet C．Tremain，Concrete constructions of real equiangular line sets，arXiv preprint，arXiv：0811．2779，1－39， 2008.

