Critical permutation sets for generalized signed graph colouring

齊豪
Academia Sinica

Assume G is a graph and k is a positive integer. We view G as a symmetric digraph, in which each edge $u v$ of G is replaced by a pair of opposite arcs $e=(u, v)$ and $e^{-1}=(v, u)$. Let S be a set of permutations on $[k]$ that is inverse closed. An S-signature of G is a mapping $\sigma: E(G) \rightarrow S$ for which $\sigma_{e^{-1}}=\sigma_{e}^{-1}$. The pair (G, σ) is called a generalized signed graph. A k-colouring of (G, σ) is a mapping $\varphi: V(G) \rightarrow[k]$ such that for each arc $e=(u, v), \sigma_{e}(\varphi(u)) \neq \varphi(v)$. We say G is S - k-colourable if for any S-signature σ of $G,(G, \sigma)$ is k-colourable. If $S=\{i d\}$, then S - k-colourable is the same as k-colourable. If $S=S_{k}$, then S - k-colourable is equivalent to DP- k-colourable. For other inverse closed sets S of permutations, S - k-colourability reveals a complex hierarchy of colourability of graphs. We say an inverse closed subset S of S_{k} is critical if for any inverse closed subset S^{\prime} containing S as a proper subset, there is a graph G which is S - k-colorable but not $S^{\prime}-k$-colorable. For a set X, denote by S_{X} the symmtric group of all permutations on X. In this paper, we prove the following results: Assume [k] is the disjoint union of $X_{1}, X_{2}, \ldots, X_{q}$. If $S=\Gamma_{1} \times \Gamma_{2} \times \ldots \times \Gamma_{q}$, where for each i, either $\Gamma_{i}=S_{X_{i}}$ or $\left|X_{i}\right|=3$ and Γ_{i} is the subgroup of $S_{X_{i}}$ generated by a cyclic permutation of X_{i}, then S is critical.

