Problems and results on permutations

孙智伟 南京大学

In this talk we will introduce some new problems and results on permutations. If p = 2n + 1 is an odd prime, then the list $1^2, \ldots, n^2$ is a permutation of all the *n* quadratic residues $a_1 < \ldots < a_n$ among $1, \ldots, p - 1$, and we determine its sign in the case $p \equiv 3 \pmod{4}$. For any positive integer *n*, we show that there is a unique permutation π of $\{1, \ldots, n\}$ such that all the numbers $k + \pi(k)$ $(k = 1, \ldots, n)$ are powers of two. The speaker conjectured that if a group *G* contains no element of order among $2, \ldots, n + 1$ then any $A \subseteq G$ with |A| = n can be written as $\{a_1, \ldots, a_n\}$ with $a_1, a_2^2, \ldots, a_n^n$ pairwise distinct; when *G* is a torsion-free abelian group we confirm this via Alon's Combinatorial Nullstellensatz.