On judicious bipartitions of directed graphs

Jianfeng Hou

Fuzhou University
Email: jfhou@fzu.edu.cn

Taiwan, August 20, 2019

Outline

(1) Introduction
(2) Max-Cut of H -free graph

- Triangle-free graphs
- Large girth
- Conjecture
- H-free
(3) Max-Bisection in graphs
- Max-Bisection
- Lower bound
- Without 4-cycles
(4) Max-Cut in digraphs
- Scott's problem
- Lee-Loh-Sudakov Conjecture
- Difficulty of the conjecture
- Our results
(5) Conclusion

Max-Cut problem

Let G be a graph. A bipartition of G, denoted by $\left(V_{1}, V_{2}\right)$, is a bipartition of $V(G)$ with $V(G)=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\emptyset$.

If it satisfies $\left|\left|V_{1}\right|-\left|V_{2}\right|\right| \leq 1$, then we call it a bisection.
The size of $\left(V_{1}, V_{2}\right)$, denoted by $e\left(V_{1}, V_{2}\right)$, is the number of edges with one end in V_{1} and the other in V_{2}.
The famous Max-Cut problem is to find a bipartition (V_{1}, V_{2}) of a given graph G that maximizes $e\left(V_{1}, V_{2}\right)$.

Brief analysis

Suppose that G has m edges and chromatic number k. Let $\left(V_{1}, \ldots, V_{k}\right)$ be a k-coloring of G. Let G^{\prime} be the complete multigraph obtained from G by identifying each V_{i} into a single vertex.

Then every bipartition of G^{\prime} yields a bipartition of G with the same size.

Continued

By randomly partition $V(G)$ into two subsets of size $\lfloor k / 2\rfloor$ and $\lceil k / 2\rceil$, the expected number of edges between the two subsets is

$$
\frac{\lfloor k / 2\rfloor \times\lceil k / 2\rceil}{\binom{k}{2}} m \geq \frac{\left(k^{2}-1\right) / 4}{\left(k^{2}-k\right) / 2} m=\frac{m}{2}+\frac{m}{2 k} .
$$

Since $m \geq\binom{ k}{2}$, we have

$$
k \leq \sqrt{2 m+\frac{1}{4}}+\frac{1}{2}
$$

Edwards's bound

This implies that G has a bipartition $\left(V_{1}, V_{2}\right)$ such that

$$
e\left(V_{1}, V_{2}\right) \geq \frac{m}{2}+\frac{1}{4}\left(\sqrt{2 m+\frac{1}{4}}-\frac{1}{2}\right)
$$

and this bound is best possible for $K_{2 n+1}$.
國 C.S. Edwards, Some extremal properties of bipartite graphs, Canad. J. Math. 3 (1973) 475-485.

囯 C.S. Edwards, An improved lower bound for the number of edges in a largest bipartite subgraph, Proc. 2nd Czechoslovak Symposium on Graph Theory (1975) 167-181.

Triangle-free graphs

An natural direction of the Max-Cut problem is to bound the Max-Cut of graphs without a specific subgraph H. The Max-Cut problem of triangle free graphs was posed by Erdős.

Theorem

Every triangle free graph G with m edges admits a bipartition $\left(V_{1}, V_{2}\right)$ such that

$$
e\left(V_{1}, V_{2}\right) \geq m / 2+c m^{2 / 3},
$$

for some $c>0$.
固 P. Erdős, Problems and results in graph theory and comobinatorial analysis, In Graph Theory and Related Topics (Proc. Conf. Waterloo, 1977), Academic Press, New York (1979) 153-163.

Shearer's bound

Let d_{1}, \ldots, d_{n} be the degree sequence of a triangle free graph G with n vertices and m edges. Shearer showed that G has a bipartition of size at least

$$
m / 2+\frac{1}{8 \sqrt{2}} \sum_{i=1}^{n} \sqrt{d_{i}}
$$

It follows as a corollary that G has a bipartition of size at least

$$
m / 2+c m^{3 / 4}
$$

for some $c>0$.
R. Shearer, A note on bipartite subgraphs of triangle-free graphs, Random Struct. Alg. 3 (1992) 223-226.

Alon's bound

In 1996, Alon proved

Theorem

Every triangle free graph G with m edges admits a bipartition $\left(V_{1}, V_{2}\right)$ such that

$$
e\left(V_{1}, V_{2}\right)=m / 2+\Theta\left(m^{4 / 5}\right) .
$$

固 N. Alon, Bipartite subgraphs, Combinatorica 16 (1996) 301-311.

Large girth

For $r \geq 3$, let C_{r} denote a cycle of length r. Alon, Bollobás, Krivelevich and Sudakov considered the maximum cut of graphs G with large girth, and proved that every graph G with m edges and girth at least r admits a bipartition $\left(V_{1}, V_{2}\right)$ such that

$$
e\left(V_{1}, V_{2}\right) \geq m / 2+c(r) m^{\frac{r}{r+1}}
$$

for some $c(r)>0$.
N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov, Maximum cuts and judicious partitions in graphs without short cycles, J. Combin. Theory Ser. B 88 (2003) 329-346.

Even cycle

Alon, Krivelevich and Sudakov considered graphs without even cycles and proved that

Theorem

For every odd $r \geq 5$, and a C_{r-1}-free graph G with m edges, there is a positive constant $c(r)$ such that G has a bipartition of size at least

$$
m / 2+c(r) m^{\frac{r}{r+1}} .
$$

圊
N. Alon, M. Krivelevich and B. Sudakov, Maxcut in H-free graphs, Combin. Probab. Comput. 14 (2005), 629-647.

Conjecture

In the same paper, they conjectured that the lower bound holds for graphs without odd cycles.

Conjecture

For every even integer $r \geq 4$, and a C_{r-1}-free graph G with m edges, there is a positive constant $c(r)$ such that G has a bipartition of size at least

$$
m / 2+c(r) m^{\frac{r}{r+1}} .
$$

So far, this conjecture was confirmed for $r=4$.

Our result

We considered the conjecture and established the following theorem.

Theorem (H., Zeng, 2018, ARS Math. Contemp.)

For every even integer $r>4$, and a C_{r-1}-free graph G with m edges, there is a positive constant $c(r)$ such that G has a bipartition of size at least

$$
m / 2+c(r)\left(m^{r} \log ^{4} m\right)^{\frac{1}{r+2}} .
$$

5-Cycles free

For C_{5}-free graphs, we have

Theorem (H., Zeng, 2018, ARS Math. Contemp.)

For each $s \geq 2$, let G be a $\left\{K_{2, s}, C_{5}\right\}$-free graph with m edges. Then G has a bipartition of size at least

$$
m / 2+c(s) m^{6 / 7}
$$

for a positive constant $c(s)$.

General graph

It is noted that for every fixed graph H there exist positive constants $\epsilon=\epsilon(H)$ and $c=c(H)$ satisfying that:
if a H-free graph G has m edges, then G has a bipartition of size at least

$$
m / 2+c m^{1 / 2+\epsilon} .
$$

A conjecture

Alon, Bollobás, Krivelevich and Sudakov posed the following conjecture.

Conjecture

Let H be a fixed graph, and let G be a graph with m edges. If G is H-free, then G has a bipartition of size at least

$$
\frac{m}{2}+\Omega\left(m^{3 / 4+\epsilon}\right)
$$

for some $\epsilon>0$.
围 N. Alon, B. Bollobás, M. Krivelevich, B. Sudakov, Maximum cuts and judicious partitions in graphs without short cycles, J. Combin. Theory Ser. B 88 (2003) 329-346.

Clearly, it suffices to prove this conjecture for complete graphs H. We considered K_{k+1}-free graph and proved that

Theorem (H., Zeng, 2017, Bull. Aust. Math. Soc.)

For any fixed integer $k \geq 2$, every $K_{k+1}-$ free graph with m edges admits a bipartition of size at least

$$
\frac{m}{2}+c(k) m^{\frac{k}{k-1}}\left(\frac{\log ^{2} m}{\log \log m}\right)^{\frac{k-1}{2 k-1}} .
$$

for some $c(k)>0$.

Max-Bisection

The Max-Bisection problem is that given a graph G, find a bisection (V_{1}, V_{2}) of G that maximizes $e\left(V_{1}, V_{2}\right)$.
Compared to bipartitions, bisections are much more complicated to analyze.

For example, Edwards' bound implicitly implies that a connected graph G with n vertices and m edges admits a bipartition $\left(V_{1}, V_{2}\right)$ with

$$
e\left(V_{1}, V_{2}\right) \geq m / 2+(n-1) / 4
$$

Unfortunately, this result cannot transfers directly to bisections.

Example

Let $K_{k, n-k}$ be the complete bipartite graph with $k \leq n / 2$.
It is easy to see that, the size of the maximum bisection of $K_{k, n-k}$ is $m / 2+k^{2} / 2$ if n is even, and it is $m / 2+\left(k^{2}+k /\right) 2$ if n is odd, where $m=k(n-k)$.
So, for bisections, we cannot get a bound greater than $(m+1) / 2$ for every graph G with m edges.

Maximum matching

Let G be a graph with m edges, and let M be a maximum matching of G.
Then an easy analysis, given by Xu , Yan and Yu , shows that G has a bisection of size at least

$$
\frac{m+|M|}{2} .
$$

軎 B. Xu, J. Yan, X. Yu, A note on balanced bipartitions, Discrete Math. 310 (2010) 2613-2617.

Tight graph

A connected graph T is tight if

- for every vertex $v \in V(T), T-v$ contains a perfect matching, and
- for every vertex $v \in V(T)$ and every perfect matching M of $T-v$, no edge in M has exactly one end adjacent to v.

Lu, Wang and $Y u$ showed that a connected graph G is tight iff every block of G is an odd clique.
E. Lu, K. Wang, X. Yu, On tight components and anti-tight components, Graphs and Combinatorics 31 (2015) 2293-2297.

Tight bound

Lee, Loh and Sudakov gave a lower bound of Max-Bisection of graphs with respect to the tight components and maximum degree by showing

Theorem

Let G be a graph with m edges and maximum degree Δ. If G has τ tight components, then there is a bisection of size at least

$$
\frac{m}{2}+\frac{n-\max \{\tau, \Delta-1\}}{4} .
$$

The vertex-disjoint copies of a triangle and the star $K_{1, n-1}$ show that the theorem is tight in both parameters τ and Δ.
C. Lee, P. Loh, B. Sudakov, Bisections of graphs, J. Combin. Theory Ser. B 103 (2013) 590-629.

Our result

The following result showed a similar bound on bisections of graphs without short cycles.

Theorem (Fan, H., Yu, 2018, CPC)

Let G be a graph with n vertices, m edges and minimum degree $\delta \geq 2$, and without 4 -cycles. If $\delta(G)$ is even, then G has a bisection of size at least

$$
\frac{m}{2}+\frac{n-1}{4}-\frac{|M|}{2 \delta},
$$

where M is a maximum matching in G. Moreover, if the girth $g(G) \geq 5$, then G has a bisection of size at least

$$
\frac{m}{2}+\frac{n-1}{4} .
$$

Generalized results (1)

Note that the distance between two triangles is the length of a shortest path between their vertices.
Jin and Xu generalized the above result by giving the following theorem.

Theorem

Let $I \geq 2$ be an integer, and let G be a connected graph with minimum degree at least 2 and without $K_{2,1}$. Then, G admits a bisection $\left(V_{1}, V_{2}\right)$ with $e\left(V_{1}, V_{2}\right) \geq m / 2+(n-I+1) / 4$ if either G is Eulerian, or G has no triangles at distance 2.
: J. Jin and B. Xu, Bisection of graphs without $K_{2,}$, Discrete Appl. Math. 259 (2019) 112-118.

Generalized results (2)

A (I, r)-fan is a graph on $(r-1) I+1$ vertices consisting of I cliques of order r that intersect in exactly one common vertex.

Theorem (H., Yan, 2019, DM)

Let $I \geq 2$ be an integer, and let G be a connected graph with m edges and minimum degree at least 2. If G contains neither $K_{2, I}$ nor ($I, 4$)-fan, then G admits a bisection $\left(V_{1}, V_{2}\right)$ with

$$
e\left(V_{1}, V_{2}\right) \geq \frac{m}{2}+\frac{n-l+1}{4}
$$

Corollary

When $I=2$, we have the following corollary.

Corollary

Every connected graph G with m edges and minimum degree at leat 2 , and without 4 -cycles admits a bisection of size at least

$$
\frac{m}{2}+\frac{n-1}{4} .
$$

Bondy-Simonovits Theorem

The following result of Bondy and Simonovits gives the maximum number of edges in graphs without cycles of a given even length.

Theorem

Let $I \geq 2$ be an integer and let G be a graph with n vertices. If G contains no cycle of length 21 , then the number of edges in G is at most $100 / n^{1+1 / /}$.

䍰 A. Bondy, M. Simonovits, Cycles of even length in graphs, J. Combin. Theory Ser. B 16 (1974) 97-105.

New bound

Combining Corollary 8 and Theorem 9, we have

Theorem

Let G be a graph with m edges and minimum degree $\delta \geq 2$. If G contains no 4 -cycle, then G has a bisection of size at least

$$
m / 2+\mathrm{cm}^{2 / 3}
$$

for some constant $c>0$.

Definition

Given a digraph D, a digraph version of the Max-Cut problem is to find a partition (V_{1}, V_{2}) of D that maximizes

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} .
$$

Here, $e\left(V_{1}, V_{2}\right)$ is the number of arcs $x y$ with $x \in V_{1}$ and $y \in V_{2}$.
Such a problem are called Judicious Partition Problem by Bollobás and Scott.
B. Bollobás, A.D. Scott, Problems and results on judicious partitions, Random Struct. Alg. 21 (2002) 414-430.

Scott's problem

Scott posed the following natural problem:
What is the maximum constant c_{d} such that every digraph D with m arcs and minimum outdegree d admits a bipartition (V_{1}, V_{2}) satisfying that

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq c_{d} m ?
$$

围 A.D. Scott, Judicious partitions and related problems, Surveys in Combinatorics 327 (2005) 95-117.

$$
d=1
$$

For $d=1$, consider the graph $K_{1, n-1}$ and add a single edge inside the part of size $n-1$. This graph can be oriented easily so that the minimum outdegree is 1 and

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \leq 1
$$

for every partition (V_{1}, V_{2}) of such a graph. Hence,

$$
c_{1}=0 .
$$

Lee-Loh-Sudakov Conjecture

Lee, Loh and Sudakov initiated the study of this problem and conjectured that

Conjecture

Let d be an integer satisfying $d \geq 2$. Every digraph D with m arcs and minimum outdegree at least d admits a bipartition $\left(V_{1}, V_{2}\right)$ for which

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq\left(\frac{d-1}{2(2 d-1)}+o(1)\right) m
$$

R. Lee, P. Loh, B. Sudakov, Judicious partitions of directed graphs, Random Struct. Alg. 48 (2016) 147-170.

Extremal graph

The bound in Conjecture 3 is asymptotically best possible by considering the following extremal graph:

First orient the arcs of the complete graph $K_{2 d-1}$ along an Eulerian circuit.

Then consider the directed graph where we take k vertex disjoint copies of $K_{2 d-1}$ oriented as above, and a single vertex disjoint copy of $K_{2 d+1}$ oriented in a similar manner.
Fix a vertex v_{0} of $K_{2 d+1}$, and add arcs so that all the vertices belonging to the copies of $K_{2 d-1}$ are in-neighbors of v_{0}.

Continued

Clearly, the resulting graph has minimum outdegree d, minimum degree $2 d-1$, minimum semidegree $d-1$.

Progress

In the same paper, they confirmed the conjecture when
$d=2,3$.
On the other hand, they noted that the methods they used turn out to be too limited in strength to cover the cases $d \geq 4$.
C. Lee, P. Loh, B. Sudakov, Judicious partitions of directed graphs, Random Struct. Alg. 48 (2016) 147-170.

Dense case

For digraphs with bounded maximum degree or large number of arcs, we can get a better bound.

Theorem (H., Wu, Yan, EJC, 2017)

Let D be a digraph with n vertices and m arcs. For every $\epsilon>0$, if $m \geq 16 n / \epsilon^{2}$ or the maximum degree Δ of D is at most $\epsilon^{2} m / 8$, then D admits a bisection $\left(V_{1}, V_{2}\right)$ such that

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq \frac{1}{4} m-\epsilon m .
$$

Standard approach

A standard approach to find a "good" bipartition of a digraph D is to first partition $V(D)$ into X, Y, where X consists of certain high degree vertices.

Then, partition X into X_{1} and X_{2} with certain property;
Finally, apply a randomized algorithm to distribute the vertices in Y.
B. B. Bollobás, A.D. Scott, Judicious partitions of hypergraphs, J. Combin. Theory Ser. A 78 (1997) 15-31.

Difficulty

The main step in this approach is to deal with the arcs between X and Y.

The condition that "the minimum outdegree of D is at least d " yields that the number of arcs from Y to X can be bounded. However, if we bound the number of arcs from X to Y, we need to know the indegree of vertices in Y.

Semidegree

Our first result shows that Conjecture 3 holds under the natural (additional) assumption that the minimum indegree of D is at least d.

Theorem (H., Ma, Yu, Zhang, 2019, SCM)

Let $d \geq 2$ be an integer. Every digraph D with m arcs and minimum semidegree at least d admits a bipartition $\left(V_{1}, V_{2}\right)$ for which

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq\left(\frac{d-1}{2(2 d-1)}+o(1)\right) m .
$$

Oriented graph

Note that an oriented graph is an orientation of a simple graph. If we focus on oriented graphs with minimum semidegree d, then we can give a better bound.

Theorem (H., Wu, JCTB, 2018)

Let d be an integer with $d \geq 21$. Every oriented graph D with m arcs and minimum semidegree d admits a bipartition $\left(V_{1}, V_{2}\right)$ such that

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq\left(\frac{d}{2(2 d+1)}+o(1)\right) m
$$

Special digraphs

Let $\overrightarrow{K_{d, 2}}$ be the digraph obtained by orient each edge of a bipartite graph $K_{2, d}$ from the part of size d to the other part.

Theorem (H., L., Wu, 2019+)

Let $d \geq 4$ be an integer and D is a digraph with m arcs and minimum outdegree at least d. If D does not contain $\overrightarrow{K_{d, 2}}$, then there is a bipartition $\left(V_{1}, V_{2}\right)$ such that

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq\left(\frac{d-1}{2(2 d-1)}+o(1)\right) m
$$

Underlying graph

The underlying graph of a digraph is obtained by ignoring arc orientations and removing redundant parallel arcs when arcs in both directions appear between pairs of vertices.

Without 4-cycles

For digraphs whose underlying graph does not have 4-cycles, we have

Theorem (H., Wu, Yan, EJC, 2017)

Let D be a digraph with m arcs and minimum outdegree at least 2, and let G be its underlying graph. If G does not contain 4-cycles, then D admits a bisection $\left(V_{1}, V_{2}\right)$ such that

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq\left(\frac{1}{4}+o(1)\right) m
$$

Conclusion (1)

The Max-Cut problem is a fundamental discrete optimization problem and have been studied widely. We give the lower bound on Max-Cut of graphs without specific structure.

There are litter results on Max-Bisections of graphs. Even for C_{4}-free graphs G, we do not know the maximum constant C such that the following holds:
If G has m edges and minimum degree $\delta \geq 2$, then G has a bisection of size at least

$$
m / 2+\Omega\left(m^{c}\right) .
$$

Conclusion (2)

We conclude our discussion with the following question:

Question (H., Wu, JCTB, 2018)

Is it true that for every integer $d \geq 1$, every digraph D with m arcs and minimum semidegree d admits a bipartition $V(D)=V_{1} \cup V_{2}$ such that

$$
\min \left\{e\left(V_{1}, V_{2}\right), e\left(V_{2}, V_{1}\right)\right\} \geq\left(\frac{d}{2(2 d+1)}+o(1)\right) m ?
$$

As evidence, we have showed that it is true for digraphs with minimum semidegree at most 3 .

Thank you for your attention!

