# Semidefinite programming bounds for spherical three－distance sets 

Wei－Hsuan Yu（俞韋亘）<br>National Central University Joint work with Feng－Yuan Liu（劉豐源）

2019 海峽兩岸圖論與組合數學研討會

## Outline

-Introduction \& history
-Harmonic absolute bound
-Linear programming (LP)
-Semidefinite programming (SDP)

- Discrete sampling points with Nozaki theorem
-Rigorous proof with sum of squares method (SOS)


## Outline

-Introduction \& history
previous method
-Harmonic absolute bound
$\because \cdot$ Linear programming (LP)
${ }^{\text {our. }}$-Sethod .
experiment technique Discrete sampling points with Nozaki theorem

- Rigorous proof with sum of squares method (SOS)


## Outline

- Introduction \& history
previous method
- Harmonic absolute bound
- -Linear programming (LP)

experiment technique Discrete sampling points with Nozaki theorem
- Rigorous proof with sum of squares method (SOS)


## spherical

- $S^{n-1}:=\left\{x \in \mathbb{R}^{n}:\langle x, x\rangle=1\right\}$



## $s$-distance set

$$
\begin{aligned}
& \boldsymbol{X}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}, X \subset S^{n-1} \\
& \left\|x_{i}-x_{j}\right\|_{2}=\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{s}\right\} \forall i \neq j
\end{aligned}
$$

## Max s-distance set

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}, X \subset S^{n-1}
$$

Object: $\max |X|$
Subject to: $\left\|x_{i}-x_{j}\right\|_{2}=\left\{l_{1}, l_{2}, l_{3}, \ldots, l_{s}\right\} \forall i \neq j$

## Max 2-distance set

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}, X \subset S^{n-1}
$$

Object: $\max |\boldsymbol{X}|$
Subject to: $\left\|x_{i}-x_{j}\right\|_{2}=\left\{l_{1}, l_{2}\right\} \forall i \neq j$

## Max spherical 2-distance set in $R^{2}$



## Max spherical 2-distance set in $R^{3}$



## Max spherical 2-distance set in $R^{n}$

| $(\mathrm{n})$ | bound |  |
| :---: | :---: | :--- |
| 2 | 5 |  |
| 3 | 6 | (Pentagon) |
| 4 | 10 | (Pctahedron) |
| 5 | 16 |  |
| 6 | 27 |  |

## Max spherical 2-distance set in $R^{n}$

| (n) | bound |  |
| :---: | :---: | :--- |
| 2 | 5 | (Pentagon) |
| 3 | 6 | (Octahedron) |
| 4 | 10 | (Petersen graph) |
| 5 | 16 |  |
| 6 | 27 |  |

- $6<\mathrm{n} \leq 22,23<\mathrm{n}<40$ : O. R. Musin, 2008, LP
- $\mathrm{n}=23,40 \leq \mathrm{n} \leq 93$, (except $\mathrm{n}=46,78$ ): A. Barg \& W. H. Yu, 2013, SDP
- $\mathrm{n} \leq 417$ : W. H. Yu, 2016
- for all n , except $\mathrm{n}=(2 \mathrm{k}+1)^{2}-3$ : A. Glazyrin, W. H. Yu, 2018 (Adv. in math)


## Max 3-distance set

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}, X \subset S^{n-1}
$$

Object: $\max |X|$
Subject to: $\left\|x_{i}-x_{j}\right\|_{2}=\left\{l_{1}, l_{2}, l_{3}\right\} \forall i \neq j$

## Max spherical 3-distance set in $R^{2}$



Regular Heptagon

## Max spherical 3-distance set in $R^{3}$



$$
\begin{aligned}
&\left\|x_{i}-x_{j}\right\|_{2}=\left\{\begin{array}{l}
a \\
b \\
c
\end{array}\right. \\
& i \neq j
\end{aligned}
$$

## Max spherical 3-distance set in $R^{3}$


$i \neq j$

## Max spherical 3-distance set in $R^{3}$



$$
\begin{aligned}
&\left\|x_{i}-x_{j}\right\|_{2}=\left\{\begin{array}{l}
a \\
b \\
c
\end{array}\right. \\
& i \neq j
\end{aligned}
$$

## Max spherical 3-distance set in $R^{3}$



$$
\begin{array}{r}
\left\|x_{i}-x_{j}\right\|_{2}=\left\{\begin{array}{l}
a \\
b \\
c
\end{array},\right. \\
i \neq j
\end{array}
$$

## Max spherical 3-distance set in $R^{3}$



$$
\begin{array}{r}
\left\|x_{i}-x_{j}\right\|_{2}=\left\{\begin{array}{l}
a \\
b \\
c
\end{array},\right. \\
i \neq j
\end{array}
$$

## Max spherical 3-distance set in $R^{3}$

- Regular icosahedron is the unique max spherical 3-dis set in $\mathrm{R}^{3}$


# Uniqueness of maximum three-distance sets in the three-dimensional Euclidean space 

Masashi Shinohara<br>Faculty of Education, Shiga University, Hiratsu 2-5-1, Shiga, 520-0862, Japan, shino@edu.shiga-u.ac.jp

## Abstract

A subset $X$ in the $d$-dimensional Euclidean space is called a $k$-distance set if there are exactly $k$ distances between two distinct points in $X$. Einhorn and Schoenberg conjectured that the vertices of the regular icosahedron is the only 12 -point three-distance set in $\mathbb{R}^{3}$ up to isomorphism. In this paper, we prove the uniqueness of 12 -point three-distance sets in $\mathbb{R}^{3}$.

Max Spherical 3-distance set in $R^{n}$

| (n) | bound |  |
| :---: | :---: | :--- |
| 2 | 7 | (Heptagon) |
| 3 | 12 | (Icosahedron), M. Shinohara, 2013 |
| 4 | 13 | F. Szöllősi \& P. R. J. Östergård, 2018 |

## Max Spherical 3-distance set in $R^{n}$

| $(n)$ | bound |
| :---: | :---: |
| 2 | 7 |
| 3 | 12 |
| 4 | 13 |
| 5 | $\leq 39$ |
| 6 | $\leq 56$ |
| 7 | $\leq 91$ |
| 8 | 120 |
| 22 | 2025 |
| 23 | $\leq 2301$ |

(Heptagon)
(Icosahedron), M. Shinohara, 2013
F. Szöllősi \& P. R. J. Östergård, 2018
(LP) Musin \& Nozaki, 2010
(LP) Musin \& Nozaki, 2010
(LP) Musin \& Nozaki, 2010
(Subset of $E_{8}$ root system), (LP) Musin \& Nozaki, 2010
(Subset of Leech lattice), (LP) Musin \& Nozaki, 2010
(LP) Musin \& Nozaki, 2010

## Max Spherical 3-distance set in $R^{n}$

| $(\mathrm{n})$ | bound |
| :---: | :---: |
| 2 | 7 |
| 3 | 12 |
| 4 | 13 |
| 5 | $\leq 39$ |
| 6 | $\leq 56$ |
| 7 | $\leq 91$ <br> $\leq 84$ |
| 8 | 120 |
| 22 | 2025 |
| 23 | $\leq 2301$ <br> 2300 |

(Heptagon)
(Icosahedron), M. Shinohara, 2013
F. Szöllősi \& P. R. J. Östergård, 2018
(LP) Musin \& Nozaki, 2010
(LP) Musin \& Nozaki, 2010
(LP) Musin \& Nozaki, 2010
(SDP) F. Y. Liu \& W. H. Yu, 2019+
(Subset of $E_{8}$ root system), (LP) Musin \& Nozaki, 2010
(Subset of Leech lattice), (LP) Musin \& Nozaki, 2010
(LP) Musin \& Nozaki, 2010
(A half of Tight spherical 7-design), (SDP) F. Y. Liu \& W. H. Yu, 2019+

## Outline

-Introduction \& history
previous method

- Harmonic absolute bound
- -Linear programming (LP)
method
${ }^{\text {our }}$. Seemidhod .
experiment technique
- Discrete sampling points with Nozaki theorem
$\because \cdot R i g o r o u s$ proof with sum of squares method (SOS)


## Upper bound of spherical 3-distance set

Harmonic absolute bound

- Proved by Delsarte
- Nozaki improved this bound

Delsarte's linear programming bound

## Upper bound of spherical 3-distance set

Harmonic absolute bound

- Proved by Delsarte
- Nozaki improved this bound

Delsarte's linear programming bound

+ Semidefinite programming bound


## Max 3-distance set

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}, X \subset S^{n-1}
$$

Object: $\max |X|$
Subject to: $\left\|x_{i}-x_{j}\right\|_{2}=\left\{l_{1}, l_{2}, l_{3}\right\}$
॥

$$
\left\langle x_{i}, x_{j}\right\rangle=\left\{d_{1}, d_{2}, d_{3}\right\}
$$

## Max 3-distance set

$$
X=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{k}\right\}, X \subset S^{n-1}
$$

Object: $\max |X|$
Subject to: $\left\|x_{i}-x_{j}\right\|_{2}=\left\{l_{1}, l_{2}, l_{3}\right\}$
(1) Law of cosines
$\left\langle x_{i}, x_{j}\right\rangle=\left\{d_{1}, d_{2}, d_{3}\right\}$

## Outline

-Introduction \& history
previous method
Harmonic absolute bound
$\because \cdot$ Linear programming (LP)
${ }^{\text {our. }}$-Semidhod .
experiment technique Discrete sampling points with Nozaki theorem

- Rigorous proof with sum of squares method (SOS)


## Gegenbauer polynomials

Definition (Gegenbauer polynomials)
Denote the Gegenbauer polynomials of degree $k$ in $\mathbb{R}^{n}$ by $G_{k}^{n}(t)$. They are defined with the following recursive relationship:

$$
\begin{gathered}
G_{0}^{n}(t) \equiv 1, G_{1}^{n}(t)=t \\
G_{k}^{n}(t)=\frac{(2 k+n-4) t G_{k-1}^{n}(t)-(k-1) G_{k-2}^{n}(t)}{k+n-3}, k \geq 2
\end{gathered}
$$

## Harmonic Absolute Bound

-Theorem (Nozaki) Let $\boldsymbol{X}$ be an 3-distance set in $S^{n-1}$ with $\mathrm{D}(X)=\left\{\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right\}$. Consider the polynomial $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$

## Harmonic Absolute Bound

-Theorem (Nozaki) Let $\boldsymbol{X}$ be an 3 -distance set in $S^{n-1}$ with $\mathrm{D}(X)=\left\{\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right\}$. Consider the polynomial $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$ and suppose that its expansion in the basis $\left\{\boldsymbol{G}_{\boldsymbol{k}}^{n}\right\}$ has the form $f(x)=\sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(\boldsymbol{x})$.

## Harmonic Absolute Bound

## -Theorem (Nozaki)

 Let $\boldsymbol{X}$ be an 3 -distance set in $S^{n-1}$ with $\mathrm{D}(X)=\left\{\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right\}$. Consider the polynomial $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$ and suppose that its expansion in the basis $\left\{\boldsymbol{G}_{\boldsymbol{k}}^{n}\right\}$ has the form $f(\boldsymbol{x})=\sum_{k=0}^{3} f_{k}^{n} \boldsymbol{G}_{k}^{n}(\boldsymbol{x})$.Then $|X| \leq \sum_{k: f_{k}^{n}>0} h_{k}^{n}$.
Harmonic bound

## Harmonic Absolute Bound

## -Theorem (Nozaki)

 Let $\boldsymbol{X}$ be an 3-distance set in $S^{n-1}$ with $\mathrm{D}(X)=\left\{\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right\}$. Consider the polynomial $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$ and suppose that its expansion in the basis $\left\{\boldsymbol{G}_{\boldsymbol{k}}^{\boldsymbol{n}}\right\}$ has the form $f(x)=\sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(\boldsymbol{x})$.Gegenbauer polynomials
Then $|X| \leq \sum_{k: f_{k}^{n}>0} h_{k}^{n}$.
Harmonic bound
$\cdot h_{k}^{n}:=\operatorname{dim}\left(\operatorname{Harm}_{k}\left(\mathbb{R}^{n}\right)\right)=\binom{n+k-1}{k}-\binom{n+k-3}{k-2}$ dimension of linear space on all real harmonic homogeneous polynomials of degree k in $\mathbb{R}^{n}$

Example: $\boldsymbol{n}=23,\left(\boldsymbol{d}_{\boldsymbol{l}}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right)=(-1 / 3,0,1 / 3)$
$f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$.
$f(x)=\sum_{k=0}^{3} f_{k}^{n} \boldsymbol{G}_{k}^{n}(x)$.

Example: $\boldsymbol{n}=23,\left(\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right)=(-1 / 3,0,1 / 3)$
$f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$.
$f(x)=\sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(x)$.

$$
\begin{aligned}
G_{0}^{n}(x) & =1 \\
G_{1}^{n}(x) & =x \\
G_{2}^{n}(x) & =\frac{n x^{2}-1}{n-1} \\
G_{3}^{n}(x) & =\frac{x}{n-1}\left(n x^{2}+2 x^{2}-3\right)
\end{aligned}
$$

## Example: $\boldsymbol{n}=23,\left(\boldsymbol{d}_{\boldsymbol{l}}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right)=(-1 / 3,0,1 / 3)$ $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$. <br> $$
\begin{aligned} & G_{0}^{n}(x)=1 \\ & G_{1}^{n}(x)=x \end{aligned}
$$ <br> $$
G_{2}^{n}(x)=\frac{n x^{2}-1}{n-1}
$$ <br> $$
G_{3}^{n}(x)=\frac{x}{n-1}\left(n x^{2}+2 x^{2}-3\right)
$$

$$
\begin{aligned}
f_{0}^{n} & =-d_{1} d_{2} d_{3}-\frac{d_{1}+d_{2}+d_{3}}{n} \\
f_{1}^{n} & =d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}+\frac{3}{n+2} \\
f_{2}^{n} & =\frac{1-n}{n}\left(d_{1}+d_{2}+d_{3}\right) \\
f_{3}^{n} & =\frac{n-1}{n+2}
\end{aligned}
$$

## Example: $\boldsymbol{n}=23,\left(\boldsymbol{d}_{\boldsymbol{l}}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right)=(-1 / 3,0,1 / 3)$

$$
f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right) .
$$

$$
G_{0}^{n}(x)=1
$$

$$
f(x)=\sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(x) .
$$

$$
G_{1}^{n}(x)=x
$$

$$
\begin{aligned}
f_{0}^{n} & =-d_{1} d_{2} d_{3}-\frac{d_{1}+d_{2}+d_{3}}{n} & & \leq 0 \\
f_{1}^{n} & =d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}+\frac{3}{n+2} & & >0 \\
f_{2}^{n} & =\frac{1-n}{n}\left(d_{1}+d_{2}+d_{3}\right) & & \leq 0 \\
f_{3}^{n} & =\frac{n-1}{n+2} & & >0
\end{aligned}
$$

## Example: $\boldsymbol{n}=23,\left(\boldsymbol{d}_{\boldsymbol{l}}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right)=(-1 / 3,0,1 / 3)$

$$
f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right) .
$$

$$
\longdiv { G _ { 0 } ^ { n } ( x ) = 1 }
$$

$$
f(x)=\sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(x)
$$

$$
G_{1}^{n}(x)=x
$$

$$
G_{2}^{n}(x)=\frac{n x^{2}-1}{n-1}
$$

$$
\begin{array}{ll}
f_{0}^{n}=-d_{1} d_{2} d_{3}-\frac{d_{1}+d_{2}+d_{3}}{n} & \leq 0 \\
f_{1}^{n}=d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}+\frac{3}{n+2} & >0 \\
f_{2}^{n}=\frac{1-n}{n}\left(d_{1}+d_{2}+d_{3}\right) & \leq 0 \\
f_{3}^{n}=\frac{n-1}{n+2} & \\
& \\
&
\end{array}
$$

## Example: $\boldsymbol{n}=23,\left(\boldsymbol{d}_{\boldsymbol{l}}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right)=(-1 / 3,0,1 / 3)$

 $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$.$$
f(x)=\sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(x) .
$$

$$
\begin{array}{lr}
f_{0}^{n}=-d_{1} d_{2} d_{3}-\frac{d_{1}+d_{2}+d_{3}}{n} & \leq 0 \\
f_{1}^{n}=d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}+\frac{3}{n+2} & >0 \\
f_{2}^{n}=\frac{1-n}{n}\left(d_{1}+d_{2}+d_{3}\right) & \leq \frac{x}{n-1}\left(n x^{2}+2 x^{2}-3\right) \\
f_{3}^{n}=\frac{n-1}{n+2} & \\
f_{k} & \leq \sum_{k}^{n} f_{k}^{n}+h_{3}^{n} \\
h_{k}^{n}
\end{array}
$$

$$
\begin{aligned}
G_{0}^{n}(x) & =1 \\
G_{1}^{n}(x) & =x \\
G_{2}^{n}(x) & =\frac{n x^{2}-1}{n-1} \\
G_{3}^{n}(x) & =\frac{x}{n-1}\left(n x^{2}+2 x^{2}-3\right)
\end{aligned}
$$

## Example: $\boldsymbol{n}=23,\left(\boldsymbol{d}_{1}, \boldsymbol{d}_{2}, \boldsymbol{d}_{3}\right)=(-1 / 3,0,1 / 3)$

 $f(x)=\left(d_{1}-x\right)\left(d_{2}-x\right)\left(d_{3}-x\right)$.$$
f(x)=\sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(x) .
$$

$$
\begin{aligned}
& G_{0}^{n}(x)=1 \\
& G_{1}^{n}(x)=x \\
& G_{2}^{n}(x)=\frac{n x^{2}-1}{n-1} \\
& G_{3}^{n}(x)=\frac{x}{n-1}\left(n x^{2}+2 x^{2}-3\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
f_{0}^{n}=-d_{1} d_{2} d_{3}-\frac{d_{1}+d_{2}+d_{3}}{n} & \leq 0 \\
f_{1}^{n}=d_{1} d_{2}+d_{1} d_{3}+d_{2} d_{3}+\frac{3}{n+2} & >0
\end{array} \\
& f_{2}^{n}=\frac{1-n}{n}\left(d_{1}+d_{2}+d_{3}\right) \quad \leq 0 \\
& f_{3}^{n}=\frac{n-1}{n+2} \\
& >0 \\
& G_{3}^{n}(x)=\frac{x}{n-1}\left(n x^{2}+2 x^{2}-3\right) \\
& |\boldsymbol{X}| \leq \sum_{k: f_{k}^{n}>0} h_{k}^{n} \\
& =h_{1}^{n}+h_{3}^{n} \\
& =23+2277 \\
& =\mathbf{2 3 0 0}
\end{aligned}
$$

## Outline

-Introduction \& history
previous method

- Harmonic absolute bound
- •Linear programming (LP)
${ }^{\text {our. . Sethod }}$.
experiment technique Discrete sampling points with Nozaki theorem
$\because$-Rigorous proof with sum of squares method (SOS)


## Linear programming (LP)

$\operatorname{maximize} \sum_{j=1}^{n} c_{j} x_{j}$
subject to

$$
\begin{aligned}
\sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \text { for } i=1,2, \ldots, m \\
x_{j} & \geq 0 \quad \text { for } j=1,2, \ldots, n
\end{aligned}
$$

## Upper bound of spherical 3-distance set (LP)

Theorem (Delsarte's inequality)
For any finite set of points $X \subset S^{n-1}$

$$
\sum_{(x, y) \in X^{2}} G_{k}^{n}(x \cdot y) \geq 0, k=1,2,3, \cdots
$$

## Upper bound of spherical 3-distance set (LP)

Theorem (Delsarte's inequality)
For any finite set of points $X \subset S^{n-1}$

$$
\sum_{(x, y) \in X^{2}} G_{k}^{n}(x \cdot y) \geq 0, k=1,2,3, \cdots
$$

Theorem (Delsarte's linear programming bound)
Let $X \in S^{n-1}$ be a finite set and assume that for any $x, y \in X, \tau(x, y) \in$ $\left\{d_{1}, d_{2}, d_{3}\right\}$. Then the cardinality of $|X|$ is bounded above by the solution of the following linear programming problem:
maximize

$$
1+x_{1}+x_{2}+x_{3}
$$

subject to

$$
\begin{aligned}
& 1+x_{1} G_{k}^{n}\left(d_{1}\right)+x_{2} G_{k}^{n}\left(d_{2}\right)+x_{3} G_{k}^{n}\left(d_{3}\right) \geq 0, k=1,2,3, \ldots \\
& x_{j} \geq 0, j=1,2,3
\end{aligned}
$$

## Semıdetinıte Programmıng (SDP)

$$
\begin{array}{ll}
\operatorname{minimize} & c^{T} x \quad\left(x \in \mathbb{R}^{m}\right) \\
\text { subject to } & F(x) \succcurlyeq 0
\end{array}
$$

where

$$
F(x) \triangleq F_{0}+\sum_{i=1}^{m} x_{i} F_{i}
$$

and vector $c \in \mathbb{R}^{m} . F_{0}, \cdots, F_{m}$ are symmetric matrices in $\mathbb{R}^{n \times n}$. The inequality sign in $F(x) \succcurlyeq 0$ means that $F(x)$ is positive semidefinite, i.e.,

$$
z^{T} F z \geq 0, \forall z \in \mathbb{R}^{n}
$$

## Upper bound (SDP)

Schoenberg (1942)
maximize $1+\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)$

$S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0$
subject to

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)+\frac{1}{3}\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(x_{1}+x_{2}+x_{3}\right)+\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \sum_{i=4}^{13} x_{i} \succcurlyeq 0 \\
& 3+x_{1} G_{k}^{n}\left(d_{1}\right)+x_{2} G_{k}^{n}\left(d_{2}\right)+x_{3} G_{k}^{n}\left(d_{3}\right) \geq 0, k=1,2, \cdots, p_{L P} \\
& S_{k}^{n}(1,1,1)+x_{1} S_{k}^{n}\left(d_{1}, d_{1}, 1\right)+x_{2} S_{k}^{n}\left(d_{2}, d_{2}, 1\right)+x_{3} S_{k}^{n}\left(d_{3}, d_{3}, 1\right) \\
& +x_{4} S_{k}^{n}\left(d_{1}, d_{1}, d_{1}\right)+x_{5} S_{k}^{n}\left(d_{2}, d_{2}, d_{2}\right)+x_{6} S_{k}^{n}\left(d_{3}, d_{3}, d_{3}\right) \\
& +x_{7} S_{k}^{n}\left(d_{1}, d_{1}, d_{2}\right)+x_{8} S_{k}^{n}\left(d_{1}, d_{1}, d_{3}\right)+x_{9} S_{k}^{n}\left(d_{2}, d_{2}, d_{1}\right) \\
& +x_{10} S_{k}^{n}\left(d_{2}, d_{2}, d_{3}\right)+x_{11} S_{k}^{n}\left(d_{3}, d_{3}, d_{1}\right)+x_{12} S_{k}^{n}\left(d_{3}, d_{3}, d_{2}\right) \\
& +x_{13} S_{k}^{n}\left(d_{1}, d_{2}, d_{3}\right) \succcurlyeq 0, k=0,1,2, \cdots, p_{S D P} \\
& x_{j} \geq 0, j=1,2, \cdots, 13
\end{aligned}
$$

## Upper bound (SDP)

maximize $1+\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)$

Schoenberg (1942)

$$
\sum_{(x, y, z) \in X^{3}} S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0
$$

subject to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\frac{1}{3}\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\left(x_{1}+x_{2}+x_{3}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \sum_{i=4}^{13} x_{i} \succcurlyeq 0$

$$
\mathbf{L} \mathbf{Y}_{\}^{\prime} 3+x_{1} G_{k}^{n}\left(d_{1}\right)+x_{2} G_{k}^{n}\left(d_{2}\right)+x_{3} G_{k}^{n}\left(d_{3}\right) \geq 0, k=1,2, \cdots, p_{L P}
$$

$$
\begin{aligned}
& S_{k}^{n}(1,1,1)+x_{1} S_{k}^{n}\left(d_{1}, d_{1}, 1\right)+x_{2} S_{k}^{n}\left(d_{2}, d_{2}, 1\right)+x_{3} S_{k}^{n}\left(d_{3}, d_{3}, 1\right) \\
& +x_{4} S_{k}^{n}\left(d_{1}, d_{1}, d_{1}\right)+x_{5} S_{k}^{n}\left(d_{2}, d_{2}, d_{2}\right)+x_{6} S_{k}^{n}\left(d_{3}, d_{3}, d_{3}\right) \\
& +x_{7} S_{k}^{n}\left(d_{1}, d_{1}, d_{2}\right)+x_{8} S_{k}^{n}\left(d_{1}, d_{1}, d_{3}\right)+x_{9} S_{k}^{n}\left(d_{2}, d_{2}, d_{1}\right) \\
& +x_{10} S_{k}^{n}\left(d_{2}, d_{2}, d_{3}\right)+x_{11} S_{k}^{n}\left(d_{3}, d_{3}, d_{1}\right)+x_{12} S_{k}^{n}\left(d_{3}, d_{3}, d_{2}\right) \\
& +x_{13} S_{k}^{n}\left(d_{1}, d_{2}, d_{3}\right) \succcurlyeq 0, k=0,1,2, \cdots, p_{S D P} \\
& x_{j} \geq 0, j=1,2, \cdots, 13
\end{aligned}
$$

## Upper bound (SDP)

maximize $1+\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)$

Schoenberg (1942)

$$
\sum_{(x, y, z) \in X^{3}} S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0
$$

subject to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\frac{1}{3}\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\left(x_{1}+x_{2}+x_{3}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \sum_{i=4}^{13} x_{i} \succcurlyeq 0$

$$
\mathbf{L P}_{1}^{\prime} 3+x_{1} G_{k}^{n}\left(d_{1}\right)+x_{2} G_{k}^{n}\left(d_{2}\right)+x_{3} G_{k}^{n}\left(d_{3}\right) \geq 0, k=1,2, \cdots, p_{L P}
$$

Schoenberg $S_{k}^{n}(1,1,1)+x_{1} S_{k}^{n}\left(d_{1}, d_{1}, 1\right)+x_{2} S_{k}^{n}\left(d_{2}, d_{2}, 1\right)+x_{3} S_{k}^{n}\left(d_{3}, d_{3}, 1\right)$

$$
\begin{aligned}
& \text { / }+x_{4} S_{k}^{n}\left(d_{1}, d_{1}, d_{1}\right)+x_{5} S_{k}^{n}\left(d_{2}, d_{2}, d_{2}\right)+x_{6} S_{k}^{n}\left(d_{3}, d_{3}, d_{3}\right) \\
& +x_{7} S_{k}^{n}\left(d_{1}, d_{1}, d_{2}\right)+x_{8} S_{k}^{n}\left(d_{1}, d_{1}, d_{3}\right)+x_{9} S_{k}^{n}\left(d_{2}, d_{2}, d_{1}\right) \\
& +x_{10} S_{k}^{n}\left(d_{2}, d_{2}, d_{3}\right)+x_{11} S_{k}^{n}\left(d_{3}, d_{3}, d_{1}\right)+x_{12} S_{k}^{n}\left(d_{3}, d_{3}, d_{2}\right) \\
& \text { । }+x_{13} S_{k}^{n}\left(d_{1}, d_{2}, d_{3}\right) \succcurlyeq 0, k=0,1,2, \cdots, p_{S D P} \\
& x_{j} \geq 0, j=1,2, \cdots, 13
\end{aligned}
$$

## Upper bound (SDP)

maximize $1+\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)$

Schoenberg (1942)

$$
\sum_{(x, y, z) \in X^{3}} S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0
$$

subject to $\quad\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\frac{1}{3}\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\left(x_{1}+x_{2}+x_{3}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \sum_{i=4}^{13} x_{i} \succcurlyeq 0 \quad$, Bachoc \& Vallentin

$$
\mathbf{L P}{ }_{\mathbf{\prime}}^{\prime} 3+x_{1} G_{k}^{n}\left(d_{1}\right)+x_{2} G_{k}^{n}\left(d_{2}\right)+x_{3} G_{k}^{n}\left(d_{3}\right) \geq 0, k=1,2, \cdots, p_{L P}
$$

$\operatorname{Schoenberg}_{S_{k}^{n}}(1,1,1)+x_{1} S_{k}^{n}\left(d_{1}, d_{1}, 1\right)+x_{2} S_{k}^{n}\left(d_{2}, d_{2}, 1\right)+x_{3} S_{k}^{n}\left(d_{3}, d_{3}, 1\right)$

$$
\begin{aligned}
& \text { ৷ }+x_{4} S_{k}^{n}\left(d_{1}, d_{1}, d_{1}\right)+x_{5} S_{k}^{n}\left(d_{2}, d_{2}, d_{2}\right)+x_{6} S_{k}^{n}\left(d_{3}, d_{3}, d_{3}\right) \\
& \text { I }+x_{7} S_{k}^{n}\left(d_{1}, d_{1}, d_{2}\right)+x_{8} S_{k}^{n}\left(d_{1}, d_{1}, d_{3}\right)+x_{9} S_{k}^{n}\left(d_{2}, d_{2}, d_{1}\right) \\
& \text { । }+x_{10} S_{k}^{n}\left(d_{2}, d_{2}, d_{3}\right)+x_{11} S_{k}^{n}\left(d_{3}, d_{3}, d_{1}\right)+x_{12} S_{k}^{n}\left(d_{3}, d_{3}, d_{2}\right) \\
& \text { । }+x_{13} S_{k}^{n}\left(d_{1}, d_{2}, d_{3}\right) \succcurlyeq 0, k=0,1,2, \cdots, p_{S D P} \\
& x_{j} \geq 0, j=1,2, \cdots, 13
\end{aligned}
$$

## Schoenberg (1942) <br> $$
S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0
$$ <br> $(x, y, z) \in X^{3}$

$S_{k}^{n}(u, v, t)=\frac{1}{6} \sum_{\sigma \in S_{3}} Y_{k}^{n}(\sigma(u, v, t))$
$\left(Y_{k}^{n}(u, v, t)\right)_{i j}=u^{i} v^{j}\left(\left(1-u^{2}\right)\left(1-v^{2}\right)\right)^{\frac{k}{2}} G_{k}^{n-1}\left(\frac{t-u v}{\sqrt{\left(1-u^{2}\right)\left(1-v^{2}\right)}}\right)$

$$
\begin{aligned}
& \sum_{(x, y) \in C^{2}} G_{k}^{n}(x \cdot y) \geq 0 \quad \mathrm{LP} \\
& \sum_{(x, y, z) \in C^{3}} S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0 \quad \mathrm{SDP}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{(x, y) \in C^{2}} G_{k}^{n}(x \cdot y) \geq 0 \quad \mathrm{LP} \\
& \sum_{(x, y, z) \in C^{3}} S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0 \quad \text { SDP } \\
& \mathrm{D}(\mathrm{x})=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{(x, y) \in C^{2}} G_{k}^{n}(x \cdot y) \geq 0 \quad \mathrm{LP} \\
& \sum_{(x, y, z) \in C^{3}} S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \succcurlyeq 0 \quad \text { SDP } \\
& \mathrm{D}(\mathrm{x})=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}\right\} \Rightarrow \mathrm{D}(\mathrm{x})=\left\{\mathrm{F}_{1}\left(\mathbf{d}_{3}\right), \mathrm{F}_{2}\left(\mathbf{d}_{3}\right), \mathrm{d}_{3}\right\}
\end{aligned}
$$

## Outline

-Introduction \& history
-Harmonic absolute bound
-Linear programming (LP)
-Semidefinite programming (SDP)

- Discrete sampling points with Nozaki theorem

Generalization of Larman-Rogers-Seidel's theorem
-Rigorous proof with sum of squares method (SOS)

Generalization of Larmen-Rogers-Seidel's theorem Definition $K_{i}:=\prod_{j \neq i} \frac{d_{j}-1}{d_{j}-d_{i}}$
$K_{1}=\frac{d_{2}-1}{d_{2}-d_{1}} \cdot \frac{d_{3}-1}{d_{3}-d_{1}}, K_{2}=\frac{d_{1}-1}{d_{1}-d_{2}} \cdot \frac{d_{3}-1}{d_{3}-d_{2}}, K_{3}=\frac{d_{1}-1}{d_{1}-d_{3}} \cdot \frac{d_{2}-1}{d_{2}-d_{3}}$

## Theorem (Nozaki).

Let $X$ be an 3-distance set in $S^{n-1}$ with $\mathrm{D}(\mathrm{X})=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}\right\}$ If $|X| \geq 2 N\left(\mathrm{~S}^{\mathrm{n}-1}, 3\right)$
then $K_{i}$ is an integer for each $i=1,2,3$.
Also $\left|K_{i}\right| \leq\left\lfloor 1 / 2+\sqrt{N\left(S^{n-1}, 3\right)^{2} /\left(2 N\left(S^{n-1}, 3\right)-2+1 / 4\right)}\right]$.

Generalization of Larmen-Rogers-Seidel's theorem


Let $X$ be an 3-distance set in $S^{n-1}$ with $\mathrm{D}(\mathrm{X})=\left\{\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}\right\}$ If $|X| \geq 2 N\left(\mathrm{~S}^{\mathbf{n - 1}}, 3\right)$
then $K_{i}$ is an integer for each $i=1,2,3$.
Also $\left|K_{i}\right| \leq\left\lfloor 1 / 2+\sqrt{N\left(S^{n-1}, 3\right)^{2} /\left(2 N\left(S^{n-1}, 3\right)-2+1 / 4\right)}\right]$.

Generalization of Larmen-Rogers-Seidel's theorem Theorem. (Musin \& Nozaki)
$\sum_{i=1}^{3} d_{i}{ }^{j} K_{i}=1(j=0,1,2)$

Generalization of Larmen-Rogers-Seidel's theorem Theorem. (Musin \& Nozaki)
$\sum_{i=1}^{3} d_{i}{ }^{j} K_{i}=1(j=0,1,2)$

- $K_{1}+K_{2}+K_{3}=1$
- $d_{1} K_{1}+d_{2} K_{2}+d_{3} K_{3}=1$
- $d_{1}{ }^{2} K_{1}+d_{2}^{2} K_{2}+d_{3}^{2} K_{3}=1$

Generalization of Larmen-Rogers-Seidel's theorem Theorem. (Musin \& Nozaki)
$\sum_{i=1}^{3} d_{i}{ }^{j} K_{i}=1(j=0,1,2)$

- $K_{1}+K_{2}+K_{3}=1$
- $d_{1} K_{1}+d_{2} K_{2}+d_{3} K_{3}=1$
- $d_{1}^{2} K_{1}+d_{2}{ }^{2} K_{2}+d_{3}^{2} K_{3}=1$
- $d_{1}<d_{2}$

Generalization of Larmen-Rogers-Seidel's theorem Theorem. (Musin \& Nozaki)
$\sum_{i=1}^{3} d_{i}^{j} K_{i}=1(j=0,1,2)$

- $K_{1}+K_{2}+K_{3}=1$
- $d_{1} K_{1}+d_{2} K_{2}+d_{3} K_{3}=1$
- $d_{1}^{2} K_{1}+d_{2}^{2} K_{2}+d_{3}{ }^{2} K_{3}=1$
- $d_{1}<d_{2}$

$$
\begin{aligned}
& d_{1}=\frac{K_{1}-d_{3} K_{1} K_{3}-\left(d_{3}-1\right) \sqrt{-K_{1} K_{2} K_{3}}}{K_{1}\left(K_{1}+K_{2}\right)} \\
& d_{2}=\frac{K_{2}-d_{3} K_{2} K_{3}+\left(d_{3}-1\right) \sqrt{-K_{1} K_{2} K_{3}}}{K_{2}\left(K_{1}+K_{2}\right)}
\end{aligned}
$$

Generalization of Larmen-Rogers-Seidel's theorem Theorem. (Musin \& Nozaki)
$\sum_{i=1}^{3} d_{i}^{j} K_{i}=1(j=0,1,2)$

- $K_{1}+K_{2}+K_{3}=1$
- $d_{1} K_{1}+d_{2} K_{2}+d_{3} K_{3}=1$

Given $K_{1}, K_{2}, K_{3}$

- $d_{1}^{2} K_{1}+d_{2}^{2} K_{2}+d_{3}{ }^{2} K_{3}=1$
$\mathrm{d}_{1}, \mathrm{~d}_{2}$ are function of $\mathrm{d}_{3}$
- $d_{1}<d_{2}$

$$
\begin{aligned}
& d_{1}=\frac{K_{1}-d_{3} K_{1} K_{3}-\left(d_{3}-1\right) \sqrt{-K_{1} K_{2} K_{3}}}{K_{1}\left(K_{1}+K_{2}\right)} \\
& d_{2}=\frac{K_{2}-d_{3} K_{2} K_{3}+\left(d_{3}-1\right) \sqrt{-K_{1} K_{2} K_{3}}}{K_{2}\left(K_{1}+K_{2}\right)}
\end{aligned}
$$

## Upper bound of spherical 3-distance set (LP)

-Object: $\max \left(x_{1}+x_{2}+x_{3}+1\right)$

- Subject to:
$\cdot \boldsymbol{x}_{1} G_{k}^{n}\left(\boldsymbol{d}_{1}\right)+\boldsymbol{x}_{\mathbf{2}} G_{k}^{n}\left(\boldsymbol{d}_{2}\right)+\boldsymbol{x}_{\mathbf{3}} G_{k}^{n}\left(\boldsymbol{d}_{3}\right)+\mathbf{1} \geq 0$ $\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\} 3$ variables


## Upper bound of spherical 3-distance set (LP)

- Object: $\max \left(x_{1}+x_{2}+x_{3}+1\right)$
- Subject to:
$\cdot \boldsymbol{x}_{1} G_{k}^{n}\left(\boldsymbol{F}_{1}\left(\boldsymbol{d}_{3}\right)\right)+\boldsymbol{x}_{\mathbf{2}} G_{k}^{n}\left(\boldsymbol{F}_{2}\left(\boldsymbol{d}_{3}\right)\right)+\boldsymbol{x}_{\mathbf{3}} G_{k}^{n}\left(\boldsymbol{d}_{3}\right)+\mathbf{1} \geq 0$ uni-variate $\mathbf{d}_{3}$


## Upper bound of spherical 3-distance set (LP)

- Object: $\max \left(x_{1}+x_{2}+x_{3}+1\right)$
- Subject to:
$\cdot \boldsymbol{x}_{1} G_{k}^{n}\left(\boldsymbol{F}_{1}\left(\boldsymbol{d}_{\mathbf{3}}\right)\right)+\boldsymbol{x}_{\mathbf{2}} G_{k}^{n}\left(\boldsymbol{F}_{2}\left(\boldsymbol{d}_{\mathbf{3}}\right)\right)+\boldsymbol{x}_{\mathbf{3}} G_{k}^{n}\left(\boldsymbol{d}_{\mathbf{3}}\right)+\mathbf{1} \geq 0$ uni-variate $\mathbf{d}_{3}$



## Upper bound of spherical 3-distance set (LP)

- Object: $\max \left(x_{1}+x_{2}+x_{3}+1\right)$
- Subject to:
$\cdot \boldsymbol{x}_{\mathbf{1}} G_{k}^{n}\left(\boldsymbol{F}_{1}\left(\boldsymbol{d}_{\mathbf{3}}\right)\right)+\boldsymbol{x}_{\mathbf{2}} G_{k}^{n}\left(\boldsymbol{F}_{2}\left(\boldsymbol{d}_{\mathbf{3}}\right)\right)+\boldsymbol{x}_{\mathbf{3}} G_{k}^{n}\left(\boldsymbol{d}_{\mathbf{3}}\right)+\mathbf{1} \geq 0$ uni-variate $\mathbf{d}_{3}$


Lots of discrete sampling points

## SDP vs LP (sampling on $\mathbb{R}^{7}$ )

('[K,I]', [1, -3, 3], [a, 3*a - 2, 2*a - 1]) $(a=d 3)$


## SDP vs LP

$A\left(S^{6}, 3\right) \leq 91$
('[K,I]', [1, -3, 31/ $1 a, 3 * a-2,2 * a-1])$


## SDP vs LP

$A\left(S^{6}, 3\right) \leq 91$
('[K,I]', [1, -3, 31/ $1 a, 3 * a-2,2 * a-1])$


## Outline

-Introduction \& history
previous method

- Harmonic absolute bound
- •Linear programming (LP)
${ }^{\text {our. }}$-Semidhod .
experiment technique Discrete sampling points with Nozaki theorem
$\because$ Rigorous proof with sum of squares method (SOS)





## SDP primal form

maximize $1+\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)$
subject to $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)+\frac{1}{3}\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\left(x_{1}+x_{2}+x_{3}\right)+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) \sum_{i=4}^{13} x_{i} \succcurlyeq 0$
$3+x_{1} G_{k}^{n}\left(d_{1}\right)+x_{2} G_{k}^{n}\left(d_{2}\right)+x_{3} G_{k}^{n}\left(d_{3}\right) \geq 0, k=1,2, \cdots, p_{L P}$

$$
\begin{aligned}
& S_{k}^{n}(1,1,1)+x_{1} S_{k}^{n}\left(d_{1}, d_{1}, 1\right)+x_{2} S_{k}^{n}\left(d_{2}, d_{2}, 1\right)+x_{3} S_{k}^{n}\left(d_{3}, d_{3}, 1\right) \\
& +x_{4} S_{k}^{n}\left(d_{1}, d_{1}, d_{1}\right)+x_{5} S_{k}^{n}\left(d_{2}, d_{2}, d_{2}\right)+x_{6} S_{k}^{n}\left(d_{3}, d_{3}, d_{3}\right) \\
& +x_{7} S_{k}^{n}\left(d_{1}, d_{1}, d_{2}\right)+x_{8} S_{k}^{n}\left(d_{1}, d_{1}, d_{3}\right)+x_{9} S_{k}^{n}\left(d_{2}, d_{2}, d_{1}\right) \\
& +x_{10} S_{k}^{n}\left(d_{2}, d_{2}, d_{3}\right)+x_{11} S_{k}^{n}\left(d_{3}, d_{3}, d_{1}\right)+x_{12} S_{k}^{n}\left(d_{3}, d_{3}, d_{2}\right) \\
& +x_{13} S_{k}^{n}\left(d_{1}, d_{2}, d_{3}\right) \succcurlyeq 0, k=0,1,2, \cdots, p_{S D P} \\
& x_{j} \geq 0, j=1,2, \cdots, 13
\end{aligned}
$$

-Object: $1+\min \left\{\sum_{i=1}^{p_{L P}} \alpha_{i}+\beta_{11}+\left\langle F_{0}, S_{0}^{n}(1,1,1)\right\rangle\right\}$

## SDP dual form

- Subject to: $\left(\begin{array}{ll}\beta_{11} & \beta_{12} \\ \beta_{12} & \beta_{22}\end{array}\right) \succcurlyeq 0$

$$
\begin{aligned}
& \alpha_{i} \geq 0, i=1, \cdots, p_{L P} \\
& F_{i} \succcurlyeq 0, i=0, \cdots, p_{S D P}
\end{aligned}
$$

$$
2 \beta_{12}+\beta_{22}+\sum_{\substack{i=1 \\ 0}}^{p_{L P}}\left(\alpha_{i} G_{i}^{n}\left(d_{1}\right)\right)+\sum_{\substack{i=0 \\ v=0}}^{p_{S D P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{1}, d_{1}, 1\right)\right\rangle\right) \leq-1
$$

$$
2 \beta_{12}+\beta_{22}+\sum_{i=1}^{p_{L P}}\left(\alpha_{i} G_{i}^{n}\left(d_{2}\right)\right)+\sum_{i=0}^{p_{S D P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{2}, d_{2}, 1\right)\right\rangle\right) \leq-1
$$

$$
2 \beta_{12}+\beta_{22}+\sum_{i=1}^{p_{L P}}\left(\alpha_{i} G_{i}^{n}\left(d_{3}\right)\right)+\sum_{i=0}^{p_{S D P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{3}, d_{3}, 1\right)\right\rangle\right) \leq-1
$$

$$
\beta_{22}+\sum_{i=0}^{p_{S D P}}\left\langle F_{i}, S_{i}^{n}\left(y_{1}, y_{2}, y_{3}\right)\right\rangle \leq 0
$$

$$
\left(\mathrm{y}_{1}, y_{2}, y_{3}\right) \in\left\{\left(d_{1}, d_{1}, d_{1}\right),\left(d_{2}, d_{2}, d_{2}\right),\left(d_{3}, d_{3}, d_{3}\right),\left(d_{1}, d_{1}, d_{2}\right),\left(d_{1}, d_{1}, d_{3}\right),\right.
$$

$$
\left.\left(d_{2}, d_{2}, d_{1}\right),\left(d_{2}, d_{2}, d_{3}\right),\left(d_{3}, d_{3}, d_{1}\right),\left(d_{3}, d_{3}, d_{2}\right),\left(d_{1}, d_{2}, d_{3}\right)\right\}
$$

-Object: $1+\min \left\{\sum_{i=1}^{p_{L P}} \alpha_{i}+\beta_{11}+\left\langle F_{0}, S_{0}^{n}(1,1,1)\right\rangle\right\}$

## SDP dual form

- Subject to: $\left(\begin{array}{cc}\beta_{11} & \beta_{12} \\ \beta_{12}\end{array}\right) \succcurlyeq 0 \quad \alpha_{i} \geq 0, i=1, \cdots, p_{L P}$
$\left(\begin{array}{cc}\beta_{12} & \beta_{22}\end{array}\right) \succcurlyeq 0 \quad F_{i} \succcurlyeq 0, i=0, \cdots, p_{S D P}$
$2 \beta_{12}+\beta_{22}+\sum_{\substack{i=1 \\ p_{L P}}}\left(\alpha_{i} G_{i}^{n}\left(d_{1}\right)\right)+\sum_{\substack{i=0 \\ p_{L P}}}^{p_{S S D P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{1}, d_{1}, 1\right)\right\rangle\right) \leq-1$
$2 \beta_{12}+\beta_{22}+\sum_{\substack{i=1 \\ p_{L P}}}\left(\alpha_{i} G_{i}^{n}\left(d_{2}\right)\right)+\sum_{\substack{i=0 \\ p_{L P}}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{2}, d_{2}, 1\right)\right\rangle\right) \leq-1$
$2 \beta_{12}+\beta_{22}+\sum_{i=1}\left(\alpha_{i} G_{i}^{n}\left(d_{3}\right)\right)+\sum_{i=0}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{3}, d_{3}, 1\right)\right\rangle\right) \leq-1$
$\beta_{22}+\sum_{i=0}^{p_{S D P}}\left\langle F_{i}, S_{i}^{n}\left(y_{1}, y_{2}, y_{3}\right)\right\rangle \leq 0$
$\left(\mathrm{y}_{1}, y_{2}, y_{3}\right) \in\left\{\left(d_{1}, d_{1}, d_{1}\right),\left(d_{2}, d_{2}, d_{2}\right),\left(d_{3}, d_{3}, d_{3}\right),\left(d_{1}, d_{1}, d_{2}\right),\left(d_{1}, d_{1}, d_{3}\right)\right.$,
$\left.\left(d_{2}, d_{2}, d_{1}\right),\left(d_{2}, d_{2}, d_{3}\right),\left(d_{3}, d_{3}, d_{1}\right),\left(d_{3}, d_{3}, d_{2}\right),\left(d_{1}, d_{2}, d_{3}\right)\right\}$
-Object: $1+\min \left\{\sum_{i=1}^{p_{L P}} \alpha_{i}+\beta_{11}+\left\langle F_{0}, S_{0}^{n}(1,1,1)\right\rangle\right\}$


## SDP dual form

- Subject to: $\left(\begin{array}{ll}\beta_{11} & \beta_{12} \\ \beta_{12} & \beta_{22}\end{array}\right) \succcurlyeq 0 \quad \begin{array}{ll}\alpha_{i} \geq 0, i=1, \cdots, p_{L P} \\ F_{i} \succcurlyeq 0, i=0, \cdots, p_{S D P}\end{array}$

$$
\begin{aligned}
& -\left(2 \beta_{12}+\beta_{22}+\sum_{i=1}^{p_{L P}}\left(\alpha_{i} G_{i}^{n}\left(d_{1}\right)\right)+\sum_{\substack{i=0 \\
p_{L P}}}^{p_{S S P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{1}, d_{1}, 1\right)\right\rangle\right)\right)-1 \geq 0 \\
& -\left(2 \beta_{12}+\beta_{22}+\sum_{i=1}^{\substack{i=1}}\left(\alpha_{i} G_{i}^{n}\left(d_{2}\right)\right)+\sum_{i=0}^{p_{S D P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{2}, d_{2}, 1\right)\right\rangle\right)\right)-1 \geq 0 \\
& -\left(2 \beta_{12}+\beta_{22}+\sum_{i=1}^{p_{L P}}\left(\alpha_{i} G_{i}^{n}\left(d_{3}\right)\right)+\sum_{i=0}^{p_{S D P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{3}, d_{3}, 1\right)\right\rangle\right)\right)-1 \geq 0 \\
& -\left(\beta_{22}+\sum_{i=0}^{p_{S D P}}\left\langle F_{i}, S_{i}^{n}\left(y_{1}, y_{2}, y_{3}\right)\right\rangle\right)-1 \geq 0
\end{aligned}
$$

$\left(\mathrm{y}_{1}, y_{2}, y_{3}\right) \in\left\{\left(d_{1}, d_{1}, d_{1}\right),\left(d_{2}, d_{2}, d_{2}\right),\left(d_{3}, d_{3}, d_{3}\right),\left(d_{1}, d_{1}, d_{2}\right),\left(d_{1}, d_{1}, d_{3}\right)\right.$, $\left.\left(d_{2}, d_{2}, d_{1}\right),\left(d_{2}, d_{2}, d_{3}\right),\left(d_{3}, d_{3}, d_{1}\right),\left(d_{3}, d_{3}, d_{2}\right),\left(d_{1}, d_{2}, d_{3}\right)\right\}$
$\left.\bullet \underset{a}{\bullet}:=\mathrm{d} 3 \mathrm{C}, a_{1}, a_{2}\right], \quad f(a) \geq 0$


## $\cdot \forall a \in\left[a_{1}, a_{2}\right], f(a) \geq 0$ $\pi$



- $\forall x \in R, f^{+}(x)=\left(1+x^{2}\right)^{m} f\left(\frac{a_{1}+a_{2} x^{2}}{1+x^{2}}\right) \geq 0$ $m=\operatorname{degree}(f(a))$
$\cdot \forall a \in\left[a_{1}, a_{2}\right], f(a) \geq 0$
- $\forall x \in R, f^{+}(x)=\left(1+x^{2}\right)^{m} f\left(\frac{a_{1}+a_{2} x^{2}}{1+x^{2}}\right) \geq 0$ $m=\operatorname{degree}(f(a))$

I Hilbert

- $f^{+}(x)$ can be written as Sum Of Square (SOS) $f^{+}(x)=\sum_{i} r_{i}^{2}(x), r_{i}$ are polynomials
- $f^{+}(x)$ can be written as Sum Of Square (SOS)
(1) Nesterov
- $\exists Q$ (positive semidefinite matrix)

$$
\text { s.t. } f^{+}=X Q X^{t}, X=\left(1, x, x^{2}, \ldots, x^{m}\right)
$$



- $f^{+}(x)$ can be written as Sum Of Square (SOS) (1) Nesterov
- $\exists Q$ (positive semidefinite matrix)

$$
\begin{aligned}
& \text { s.t. } f^{+}=X Q X^{t}, X=\left(1, x, x^{2}, \ldots, x^{m}\right) \\
& \Rightarrow \text { Semidefinite Matrix Condition! }
\end{aligned}
$$


-Object: $1+\min \left\{\sum_{i=1}^{p_{L P}} \alpha_{i}+\beta_{11}+\left\langle F_{0}, S_{0}^{n}(1,1,1)\right\rangle\right\}$

## SDP dual form

- Subject to: $\left(\begin{array}{ll}\beta_{11} & \beta_{12} \\ \beta_{12} & \beta_{22}\end{array}\right) \succcurlyeq 0 \quad \begin{array}{ll} & \alpha_{i} \geq 0, i=1, \cdots, p_{L P} \\ F_{i} \succcurlyeq 0, i=0, \cdots, p_{S D P}\end{array}$
$\xrightarrow{\mathrm{f}(\mathrm{a})} \begin{aligned} & -\left(2 \beta_{12}+\beta_{22}+\sum_{\substack{i=1 \\ p_{L P}}}\left(\alpha_{i} G_{i}^{n}\left(d_{1}\right)\right)+\sum_{\substack{i=0 \\ p_{L P}}}^{p_{S S D P}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{1}, d_{1}, 1\right)\right\rangle\right)\right)-1 \geq 0 \\ & -\left(2 \beta_{12}+\beta_{22}+\sum_{\substack{i=1 \\ p_{L P}}}\left(\alpha_{i} G_{i}^{n}\left(d_{2}\right)\right)+\sum_{\substack{i=0 \\ p_{L P}}}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{2}, d_{2}, 1\right)\right\rangle\right)\right)-1 \geq 0 \\ & -\left(2 \beta_{12}+\beta_{22}+\sum_{i=1}\left(\alpha_{i} G_{i}^{n}\left(d_{3}\right)\right)+\sum_{i=0}^{p D P}\left(3\left\langle F_{i}, S_{i}^{n}\left(d_{3}, d_{3}, 1\right)\right\rangle\right)\right)-1 \geq 0 \\ & -\left(\beta_{22}+\sum_{i=0}^{p_{S D P}}\left\langle F_{i}, S_{i}^{n}\left(y_{1}, y_{2}, y_{3}\right)\right\rangle\right)-1 \geq 0 \\ & \text { Semidefinite Matrix Condition! }\end{aligned}$
$\left(\mathrm{y}_{1}, y_{2}, y_{3}\right) \in\left\{\left(d_{1}, d_{1}, d_{1}\right),\left(d_{2}, d_{2}, d_{2}\right),\left(d_{3}, d_{3}, d_{3}\right),\left(d_{1}, d_{1}, d_{2}\right),\left(d_{1}, d_{1}, d_{3}\right)\right.$, $\left.\left(d_{2}, d_{2}, d_{1}\right),\left(d_{2}, d_{2}, d_{3}\right),\left(d_{3}, d_{3}, d_{1}\right),\left(d_{3}, d_{3}, d_{2}\right),\left(d_{1}, d_{2}, d_{3}\right)\right\}$


## Discrete vs Continuous



\section*{$\underbrace{}_{\text {range of } a} \underset{\text { sos bound }}{ } \underset{\text { range of a }}{ }$ <br> [0.45, 0.451] [0.451, 0.452] [0.452, 0.453] [0.453, 0.454] [0.454, 0.455] <br> [0.455, 0.456] <br> [0.456, 0.457] <br> [0.457, 0.458] <br> [0.458, 0.459] <br> [0.459, 0.46] <br> [0.46, 0.461] <br> [0.461, 0.462] <br> [0.462, 0.463] <br> [0.463, 0.464] <br> [0.464, 0.465] <br> [0.465, 0.466] <br> [0.466, 0.467] 67.61 67.75 <br> 67.89 <br> 68.01 <br> 68.14 <br> 68.3 <br> 68.51 <br> 68.79 <br> 69.14 <br> 69.55 <br> 70.02 <br> 70.55 <br> 71.15 <br> 71.81 <br> 72.55 <br> 73.37 <br> 74.07 <br> | range of a | sos bound |
| :---: | :---: |
| $[0.467,0.468]$ | 74.59 |
| $[0.468,0.469]$ | 75.24 |
| $[0.469,0.47]$ | 76.01 |
| $[0.47,0.471]$ | 76.85 |
| $[0.471,0.472]$ | 77.71 |
| $[0.472,0.473]$ | 78.58 |
| $[0.473,0.474]$ | 79.45 |
| $[0.474,0.475]$ | 80.25 |
| $[0.475,0.476]$ | 80.99 |
| $[0.476,0.477]$ | 81.59 |
| $[0.477,0.478]$ | 81.96 |
| $[0.478,0.479]$ | 82.1 |
| $[0.479,0.48]$ | 82.06 |
| $[0.48,0.481]$ | 81.82 |
| $[0.481,0.482]$ | 81.37 |
| $[0.482,0.483]$ | 80.59 |
| $[0.483,0.484]$ | 79.49 | <br> | range of a | sos bound |
| :---: | :---: |
| $[0.484,0.485]$ | 78.33 |
| $[0.485,0.486]$ | 77.18 |
| $[0.486,0.487]$ | 76.07 |
| $[0.487,0.488]$ | 75 |
| $[0.488,0.489]$ | 73.96 |
| $[0.489,0.49]$ | 72.94 |
| $[0.49,0.491]$ | 71.96 |
| $[0.491,0.492]$ | 71 |
| $[0.492,0.493]$ | 70.08 |
| $[0.493,0.494]$ | 69.17 |
| $[0.494,0.495]$ | 68.3 |
| $[0.495,0.496]$ | 67.42 |
| $[0.496,0.497]$ | 66.56 |
| $[0.497,0.498]$ | 65.72 |
| $[0.498,0.499]$ | 64.9 |
| $[0.499,0.5]$ | 64.1 |
|  |  |}


\section*{$\underbrace{}_{\text {range of } a} \underset{\text { sos bound }}{ } \underset{\text { range of a }}{ }$ <br> [0.45, 0.451] [0.451, 0.452] [0.452, 0.453] [0.453, 0.454] [0.454, 0.455] <br> [0.455, 0.456] <br> [0.456, 0.457] <br> [0.457, 0.458] <br> [0.458, 0.459] <br> [0.459, 0.46] <br> [0.46, 0.461] <br> [0.461, 0.462] <br> [0.462, 0.463] <br> [0.463, 0.464] <br> [0.464, 0.465] <br> [0.465, 0.466] <br> [0.466, 0.467] 67.61 67.75 <br> 67.89 <br> 68.01 <br> 68.14 <br> 68.3 <br> 68.51 <br> 68.79 <br> 69.14 <br> 69.55 <br> 70.02 <br> 70.55 <br> 71.15 <br> 71.81 <br> 72.55 <br> 73.37 <br> 74.07 <br> | range of a | sos bound |
| :---: | :---: |
| $[0.467,0.468]$ | 74.59 |
| $[0.468,0.469]$ | 75.24 |
| $[0.469,0.47]$ | 76.01 |
| $[0.47,0.471]$ | 76.85 |
| $[0.471,0.472]$ | 77.71 |
| $[0.472,0.473]$ | 78.58 |
| $[0.473,0.474]$ | 79.45 |
| $[0.474,0.475]$ | 80.25 |
| $[0.475,0.476]$ | 80.99 |
| $[0.476,0.477]$ | 81.59 |
| $[0.477,0.478]$ | 81.96 |
| $[0.478,0.479]$ | 82.1 |
| $[0.479,0.48]$ | 82.06 |
| $[0.48,0.481]$ | 81.82 |
| $[0.481,0.482]$ | 81.37 |
| $[0.482,0.483]$ | 80.59 |
| $[0.483,0.484]$ | 79.49 | <br> | range of a | sos bound |
| :---: | :---: |
| $[0.484,0.485]$ | 78.33 |
| $[0.485,0.486]$ | 77.18 |
| $[0.486,0.487]$ | 76.07 |
| $[0.487,0.488]$ | 75 |
| $[0.488,0.489]$ | 73.96 |
| $[0.489,0.49]$ | 72.94 |
| $[0.49,0.491]$ | 71.96 |
| $[0.491,0.492]$ | 71 |
| $[0.492,0.493]$ | 70.08 |
| $[0.493,0.494]$ | 69.17 |
| $[0.494,0.495]$ | 68.3 |
| $[0.495,0.496]$ | 67.42 |
| $[0.496,0.497]$ | 66.56 |
| $[0.497,0.498]$ | 65.72 |
| $[0.498,0.499]$ | 64.9 |
| $[0.499,0.5]$ | 64.1 |
|  |  |}

## SOS Experiment <br> range of a <br> [0.45, 0.451] [0.451, 0.452] [0.452, 0.453] [0.453, 0.454] [0.454, 0.455] [0.455, 0.456] [0.456, 0.457] <br> [0.457, 0.458] <br> [0.458, 0.459] <br> [0.459, 0.46] <br> [0.46, 0.461] <br> [0.461, 0.462] <br> [0.462, 0.463] <br> [0.463, 0.464] <br> [0.464, 0.465] <br> [0.465, 0.466] <br> [0.466, 0.467] <br> sos bound 67.61 67.75 <br> 67.89 <br> 68.01 <br> 68.14 <br> 68.3 <br> 68.51 <br> 68.79 <br> 69.14 <br> 69.55 <br> 70.02 <br> 70.55 <br> 71.15 <br> 71.81 <br> 72.55 <br> 73.37 <br> 74.07 <br> range of a $[0.467,0.468]$ $[0.468,0.469]$ $[0.469,0.47]$ $[0.47,0.471]$ $[0.471,0.472]$ $[0.472,0.473]$ $[0.473,0.474]$ $[0.474,0.475]$ $[0.475,0.476]$ $[0.476,0.477]$ $[0.477,0.478]$ $[0.478,0.479]$ $[0.479,0.48]$ $[0.48,0.481]$ $[0.481,0.482]$ $[0.482,0.483]$ $[0.483,0.484]$ <br> sos bound 74.59 <br> 75.24 <br> 76.01 <br> 76.85 <br> 77.71 <br> 78.58 <br> 79.45 <br> 80.25 <br> 80.99 <br> 81.59 <br> 81.96 <br> 82.1 <br> 82.06 <br> 81.82 <br> 81.37 <br> 80.59 <br> 79.49 <br> | range of a | sos bound |
| :---: | :---: |
| $[0.484,0.485]$ | 78.33 |
| $[0.485,0.486]$ | 77.18 |
| $[0.486,0.487]$ | 76.07 |
| $[0.487,0.488]$ | 75 |
| $[0.488,0.489]$ | 73.96 |
| $[0.489,0.49]$ | 72.94 |
| $[0.49,0.491]$ | 71.96 |
| $[0.491,0.492]$ | 71 |
| $[0.492,0.493]$ | 70.08 |
| $[0.493,0.494]$ | 69.17 |
| $[0.494,0.495]$ | 68.3 |
| $[0.495,0.496]$ | 67.42 |
| $[0.496,0.497]$ | 66.56 |
| $[0.497,0.498]$ | 65.72 |
| $[0.498,0.499]$ | 64.9 |
| $[0.499,0.5]$ | 64.1 |

## $\mathbb{R}^{7}: \mathrm{A}\left(\mathrm{S}^{6}, 3\right) \leq 84$





## Summary

- Spherical 3-distance set



## Summary

- Spherical 3-distance set
-LP, SDP

$$
\begin{aligned}
& \sum_{(x, y) \in C^{2}} G_{k}^{n}(x \cdot y) \underset{\substack{\text { Delsarte } \\
\text { (LP) }}}{\geq} \\
& \sum_{(x, y, z) \in C^{3}} S_{k}^{n}(x \cdot y, x \cdot z, y \cdot z) \underset{\substack{\text { Schoenberg } \\
\text { (SDP) }}}{\gtrless}
\end{aligned}
$$

## Summary

- Spherical 3-distance set


## -LP, SDP

- Nozaki theorem


Generalization of Larman-Rogers-Seidel's theorem

$$
\begin{equation*}
\left(\mathrm{d}_{1}, \mathrm{~d}_{2}, \mathrm{~d}_{3}\right) \rightarrow\left(\mathrm{F}_{1}\left(\mathrm{~d}_{3}\right), \mathrm{F}_{2}\left(\mathrm{~d}_{3}\right), \mathrm{d}_{3}\right) \tag{a}
\end{equation*}
$$




0 (Lots of discrete sampling points)

## Summary

- Spherical 3-distance set
-LP, SDP
- Nozaki theorem
- Sum of squares



## Summary

- Spherical 3-distance set
-LP, SDP
- Nozaki theorem
- Sum of squares


Max Spherical 3-distance set in $R^{7}$ : upper bound $91 \rightarrow \mathbf{8 4}$ (discrete \&rigorous proof) Max Spherical 3-distance set in $R^{23}: \mathbf{2 3 0 0}$, a half of tight spherical 7-design

Thanks for your listening $\odot$

