Semidefinite programming bounds for spherical three-distance sets

Wei-Hsuan Yu (俞韋亘) National Central University Joint work with Feng-Yuan Liu (劉豐源)

2019海峽兩岸圖論與組合數學研討會

- •Introduction & history
- •Harmonic absolute bound
- •Linear programming (LP)
- •Semidefinite programming (SDP)
- •Discrete sampling points with Nozaki theorem
- •Rigorous proof with <u>sum of squares</u> method (SOS)

```
•Introduction & history
```

```
•Harmonic absolute bound
\ •Linear programming (LP)
•Semidefinite programming (SDP)
•<u>Discrete sampling</u> points with Nozaki theorem
•Rigorous proof with <u>sum of squares</u> method (SOS)
```

Introduction & history

```
•Harmonic absolute bound
•Linear programming (LP)
•Semidefinite programming (SDP)
```

•<u>Discrete sampling</u> points with Nozaki theorem •Rigorous proof with <u>sum of squares</u> method (SOS)

s-distance set

$$X = \{x_1, x_2, x_3, \dots, x_k\}, X \subset S^{n-1}$$
$$\|x_i - x_j\|_2 = \{l_1, l_2, l_3, \dots, l_s\} \forall i \neq j$$

Max s-distance set

$$\begin{split} & X = \{x_1, x_2, x_3, \dots, x_k\}, X \subset S^{n-1} \\ & Object: max |X| \\ & Subject \ to: \|x_i - x_j\|_2 = \{l_1, l_2, l_3, \dots, l_s\} \ \forall i \neq j \end{split}$$

Max 2-distance set

$$\begin{split} X &= \{x_1, x_2, x_3, \dots, x_k\}, X \subset S^{n-1} \\ Object: max |X| \\ Subject to: ||x_i - x_j||_2 = \{l_1, l_2\} \forall i \neq j \end{split}$$

Max spherical 2-distance set in \mathbb{R}^n

(n)	bound	
2	5	(Pentagon)
3	6	(Pentagon) (Octahedron)
4	10	(Petersen graph)
5	16	
6	27	

Max spherical 2-distance set in \mathbb{R}^n

(n)	bound	
2	5	(Pentagon)
3	6	(Octahedron)
4	10	(Petersen graph)
5	16	
6	27	

- 6 < n ≤ 22, 23 < n < 40: O. R. Musin, 2008, LP
- $n = 23, 40 \le n \le 93$, (except n = 46, 78): A. Barg & W. H. Yu, 2013, SDP
- n ≤ 417: W. H. Yu, 2016
- for all n, except n=(2k+1)²-3 : A. Glazyrin, W. H. Yu, 2018 (Adv. in math)

Max 3-distance set

$$\begin{split} X &= \{x_1, x_2, x_3, \dots, x_k\}, X \subset S^{n-1} \\ Object: max |X| \\ Subject to: ||x_i - x_j||_2 = \{l_1, l_2, l_3\} \forall i \neq j \end{split}$$

Regular Heptagon

Semidefinite Programming Bounds For Spherical Three-Distance Sets

Regular icosahedron

Semidefinite Programming Bounds For Spherical Three-Distance Sets

Regular icosahedron

Semidefinite Programming Bounds For Spherical Three-Distance Sets

Regular icosahedron

Semidefinite Programming Bounds For Spherical Three-Distance Sets

Regular icosahedron

Semidefinite Programming Bounds For Spherical Three-Distance Sets

Regular icosahedron

Semidefinite Programming Bounds For Spherical Three-Distance Sets

• Regular icosahedron is the unique max spherical 3-dis set in R³

Uniqueness of maximum three-distance sets in the three-dimensional Euclidean space

> Masashi Shinohara Faculty of Education, Shiga University, Hiratsu 2-5-1, Shiga, 520-0862, Japan, shino@edu.shiga-u.ac.jp

Abstract

A subset X in the d-dimensional Euclidean space is called a k-distance set if there are exactly k distances between two distinct points in X. Einhorn and Schoenberg conjectured that the vertices of the regular icosahedron is the only 12-point three-distance set in \mathbb{R}^3 up to isomorphism. In this paper, we prove the uniqueness of 12-point three-distance sets in \mathbb{R}^3 .

Max Spherical 3-distance set in \mathbb{R}^n

(n)	bound	
2	7	
3	12	
4	13]

(Heptagon)

(Icosahedron), M. Shinohara, 2013

F. Szöllősi & P. R. J. Östergård, 2018

Max Spherical 3-distance set in \mathbb{R}^n

(n)	bound	
2	7	(Heptagon)
3	12	(Icosahedron), M. Shinohara, 2013
4	13	F. Szöllősi & P. R. J. Östergård, 2018
5	≤ 3 9	(LP) Musin & Nozaki, 2010
6	≤ 56	(LP) Musin & Nozaki, 2010
7	≤91	(LP) Musin & Nozaki, 2010
8	120	(Subset of E_8 root system), (LP) Musin & Nozaki, 2010
22	2025	(Subset of Leech lattice), (LP) Musin & Nozaki, 2010
23	≤ 2301	(LP) Musin & Nozaki, 2010

Max Spherical 3-distance set in \mathbb{R}^n

(n)	bound	
2	7	(Heptagon)
3	12	(Icosahedron), M. Shinohara, 2013
4	13	F. Szöllősi & P. R. J. Östergård, 2018
5	≤ 3 9	(LP) Musin & Nozaki, 2010
6	≤ 56	(LP) Musin & Nozaki, 2010
7	≤91	(LP) Musin & Nozaki, 2010
	≤84	(SDP) F. Y. Liu & W. H. Yu, 2019+
8	120	(Subset of E_8 root system), (LP) Musin & Nozaki, 2010
22	2025	(Subset of Leech lattice), (LP) Musin & Nozaki, 2010
23	≤2301	(LP) Musin & Nozaki, 2010
	2300	(A half of Tight spherical 7-design), (SDP) F. Y. Liu & W. H. Yu, 2019+

•Introduction & history

```
•Harmonic absolute bound
Linear programming (LP)
•Semidefinite programming (SDP)
•<u>Discrete sampling</u> points with Nozaki theorem
 •Rigorous proof with <u>sum of squares</u> method (SOS)
```

method

Upper bound of spherical 3-distance set

Harmonic absolute bound

- Proved by Delsarte
- Nozaki improved this bound

Delsarte's linear programming bound

Upper bound of spherical 3-distance set

Harmonic absolute bound

- Proved by Delsarte
- Nozaki improved this bound

Delsarte's linear programming bound

+ Semidefinite programming bound

Max 3-distance set

$$X = \{x_1, x_2, x_3, \dots, x_k\}, X \subset S^{n-1}$$

Object: max |X|
Subject to: $||x_i - x_j||_2 = \{l_1, l_2, l_3\}$
 $(x_i, x_j) = \{d_1, d_2, d_3\}$

Max 3-distance set

```
•Introduction & history
```

```
previous method
•Harmonic absolute bound
\ •Linear programming (LP)
•Semidefinite programming (SDP)
•<u>Discrete sampling</u> points with Nozaki theorem
```

•Rigorous proof with <u>sum of squares</u> method (SOS)

Gegenbauer polynomials

Definition (Gegenbauer polynomials)

Denote the Gegenbauer polynomials of degree k in \mathbb{R}^n by $G_k^n(t)$. They are defined with the following recursive relationship:

$$\begin{split} G_0^n(t) &\equiv 1, G_1^n(t) = t \\ G_k^n(t) &= \frac{(2k+n-4) \, t \, G_{k-1}^n(t) - (k-1) G_{k-2}^n(t)}{k+n-3}, k \geq 2 \end{split}$$

•Theorem (Nozaki)

Let X be an 3-distance set in S^{n-1} with $D(X) = \{ d_1, d_2, d_3 \}$. Consider the polynomial $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$

•Theorem (Nozaki)

Let X be an 3-distance set in S^{n-1} with $D(X) = \{d_1, d_2, d_3\}$. Consider the polynomial $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$ and suppose that its expansion in the basis $\{G_k^n\}$ has the form $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x)$.

•Theorem (Nozaki)

Let X be an 3-distance set in S^{n-1} with $D(X) = \{d_1, d_2, d_3\}$. Consider the polynomial $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$ and suppose that its expansion in the basis $\{G_k^n\}$ has the form $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x)$. Then $|X| \le \sum_{k:f_k^n > 0} h_k^n$. Harmonic bound

•Theorem (Nozaki)

Let X be an 3-distance set in S^{n-1} with $D(X) = \{d_1, d_2, d_3\}$. Consider the polynomial $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$ and suppose that its expansion in the basis $\{G_k^n\}$ has the form $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x)$. Then $|X| \le \sum_{k:f_k^n > 0} h_k^n$. Harmonic bound

• $h_k^n \coloneqq \dim(\operatorname{Harm}_k(\mathbb{R}^n)) = \binom{n+k-1}{k} - \binom{n+k-3}{k-2}$ dimension of linear space on all real harmonic homogeneous polynomials of degree k in \mathbb{R}^n

Example:
$$\mathbf{n} = 23$$
, $(\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3) = (-1/3, 0, 1/3)$
 $\mathbf{f}(\mathbf{x}) = (d_1 - \mathbf{x})(d_2 - \mathbf{x})(d_3 - \mathbf{x}).$
 $\mathbf{f}(\mathbf{x}) = \sum_{k=0}^{3} f_k^n \mathbf{G}_k^n (\mathbf{x}).$

Example:
$$n = 23$$
, $(d_1, d_2, d_3) = (-1/3, 0, 1/3)$
 $f(x) = (d_1 - x)(d_2 - x)(d_3 - x).$
 $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x).$

$$G_0^n(x) = 1$$

$$G_1^n(x) = x$$

$$G_2^n(x) = \frac{nx^2 - 1}{n - 1}$$

$$G_3^n(x) = \frac{x}{n - 1}(nx^2 + 2x^2 - 3)$$

Semidefinite Programming Bounds For Spherical Three-Distance Sets

Example:
$$n = 23$$
, $(d_{1}, d_{2}, d_{3}) = (-1/3, 0, 1/3)$
 $f(x) = (d_{1} - x)(d_{2} - x)(d_{3} - x).$
 $f(x) = \sum_{k=0}^{3} f_{k}^{n} G_{k}^{n}(x).$
 $f_{0}^{n} = -d_{1}d_{2}d_{3} - \frac{d_{1} + d_{2} + d_{3}}{n}$
 $f_{1}^{n} = d_{1}d_{2} + d_{1}d_{3} + d_{2}d_{3} + \frac{3}{n+2}$
 $f_{2}^{n} = \frac{1 - n}{n}(d_{1} + d_{2} + d_{3})$
 $f_{3}^{n} = \frac{n - 1}{n+2}$

36/105

Example:
$$n = 23$$
, $(d_1, d_2, d_3) = (-1/3, 0, 1/3)$
 $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$.
 $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x)$.
 $f_0^n = -d_1 d_2 d_3 - \frac{d_1 + d_2 + d_3}{n} \leq \mathbf{0}$
 $f_1^n = d_1 d_2 + d_1 d_3 + d_2 d_3 + \frac{3}{n+2} > \mathbf{0}$
 $f_2^n = \frac{1 - n}{n} (d_1 + d_2 + d_3) \leq \mathbf{0}$
 $f_3^n = \frac{n-1}{n+2} > \mathbf{0}$

Example:
$$n = 23$$
, $(d_1, d_2, d_3) = (-1/3, 0, 1/3)$
 $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$.
 $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x)$.
 $f_0^n = -d_1 d_2 d_3 - \frac{d_1 + d_2 + d_3}{n} \leq \mathbf{0}$
 $f_1^n = d_1 d_2 + d_1 d_3 + d_2 d_3 + \frac{3}{n+2} > \mathbf{0}$
 $f_2^n = \frac{1 - n}{n}(d_1 + d_2 + d_3) \leq \mathbf{0}$
 $f_3^n = \frac{n-1}{n+2} > \mathbf{0}$
 $|X| \leq \sum_{k:f_k^n > \mathbf{0}} h_k^n$

Example:
$$n = 23$$
, $(d_1, d_2, d_3) = (-1/3, 0, 1/3)$
 $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$.
 $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x)$.
 $f_0^n = -d_1 d_2 d_3 - \frac{d_1 + d_2 + d_3}{n} \leq \mathbf{0}$
 $f_1^n = d_1 d_2 + d_1 d_3 + d_2 d_3 + \frac{3}{n+2} > \mathbf{0}$
 $f_2^n = \frac{1 - n}{n}(d_1 + d_2 + d_3) \leq \mathbf{0}$
 $f_3^n = \frac{n-1}{n+2} > \mathbf{0}$
 $|X| \leq \sum_{k:f_k^n > \mathbf{0}} h_k^n$
 $= h_1^n + h_3^n$

Example:
$$n = 23$$
, $(d_1, d_2, d_3) = (-1/3, 0, 1/3)$
 $f(x) = (d_1 - x)(d_2 - x)(d_3 - x)$.
 $f(x) = \sum_{k=0}^{3} f_k^n G_k^n(x)$.
 $f_0^n = -d_1 d_2 d_3 - \frac{d_1 + d_2 + d_3}{n} \leq \mathbf{0}$
 $f_1^n = d_1 d_2 + d_1 d_3 + d_2 d_3 + \frac{3}{n+2} > \mathbf{0}$
 $f_2^n = \frac{1 - n}{n} (d_1 + d_2 + d_3) \leq \mathbf{0}$
 $f_3^n = \frac{n-1}{n+2} > \mathbf{0}$
 $k = h_1^n + h_3^n$
 $= 23 + 2277$
 $= 2300^{h_k^n = \binom{n+k-3}{k-2} - \binom{n+k-3}{k-2}}$

Outline

```
•Introduction & history
```

```
•Harmonic absolute bound
•Linear programming (LP)
•Semidefinite programming (SDP)
•<u>Discrete sampling</u> points with Nozaki theorem
•Rigorous proof with <u>sum of squares</u> method (SOS)
```

Linear programming (LP)

Theorem (Delsarte's inequality)

For any finite set of points $X \subset S^{n-1}$

$$\sum_{(x,y)\in X^2} G_k^n(x \cdot y) \ge 0, k = 1, 2, 3, \cdots$$

Theorem (Delsarte's inequality)

For any finite set of points $X \subset S^{n-1}$

$$\sum_{(x,y)\in X^2} G_k^n(x \cdot y) \ge 0, k = 1, 2, 3, \cdots$$

Theorem (Delsarte's linear programming bound) Let $X \in S^{n-1}$ be a finite set and assume that for any $x, y \in X$, $\tau(x, y) \in \{d_1, d_2, d_3\}$. Then the cardinality of |X| is bounded above by the solution of the following linear programming problem:

maximize
$$1 + x_1 + x_2 + x_3$$

subject to $1 + x_1 G_k^n(d_1) + x_2 G_k^n(d_2) + x_3 G_k^n(d_3) \ge 0, k = 1, 2, 3, ...$ $x_j \ge 0, j = 1, 2, 3.$

Semidefinite Programming (SDP)

minimize $c^T x$ $(x \in \mathbb{R}^m)$

subject to $F(x) \geq 0$

where

$$F(x) \triangleq F_0 + \sum_{i=1}^m x_i F_i$$

and vector $c \in \mathbb{R}^m$. F_0, \dots, F_m are symmetric matrices in $\mathbb{R}^{n \times n}$. The inequality sign in $F(x) \succeq 0$ means that F(x) is positive semidefinite, i.e.,

 $z^T F z \ge 0, \forall z \in \mathbb{R}^n$

$$\begin{aligned} & \text{Upper bound (SDP)} \\ & \text{maximize} \quad 1 + \frac{1}{3}(x_1 + x_2 + x_3) \\ & \text{subject to} \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} (x_1 + x_2 + x_3) + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \sum_{i=4}^{13} x_i \geq 0 \\ & 3 + x_1 G_k^n(d_1) + x_2 G_k^n(d_2) + x_3 G_k^n(d_3) \geq 0, \ k = 1, 2, \cdots, p_{LP} \\ & S_k^n(1, 1, 1) + x_1 S_k^n(d_1, d_1, 1) + x_2 S_k^n(d_2, d_2, 1) + x_3 S_k^n(d_3, d_3, 1) \\ & + x_4 S_k^n(d_1, d_1, 1) + x_5 S_k^n(d_2, d_2, d_2) + x_6 S_k^n(d_3, d_3, d_3) \\ & + x_7 S_k^n(d_1, d_1, d_2) + x_8 S_k^n(d_1, d_1, d_3) + x_9 S_k^n(d_2, d_2, d_1) \\ & + x_{10} S_k^n(d_2, d_2, d_3) + x_{11} S_k^n(d_3, d_3, d_1) + x_{12} S_k^n(d_3, d_3, d_2) \\ & + x_{13} S_k^n(d_1, d_2, d_3) \geq 0, \ k = 0, 1, 2, \cdots, p_{SDP} \\ & x_j \geq 0, \ j = 1, 2, \cdots, 13 \end{aligned}$$

$$\begin{aligned} & \text{Upper bound (SDP)} \\ \text{maximize } 1 + \frac{1}{3}(x_1 + x_2 + x_3) \\ \text{subject to } \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} (x_1 + x_2 + x_3) + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \sum_{i=4}^{13} x_i \geq 0 \\ \text{LP } & 3 + x_1 G_k^n(d_1) + x_2 G_k^n(d_2) + x_3 G_k^n(d_3) \geq 0, \ k = 1, 2, \cdots, p_{LP} \\ \text{Schoenberg } S_k^n(1, 1, 1) + x_1 S_k^n(d_1, d_1, 1) + x_2 S_k^n(d_2, d_2, 1) + x_3 S_k^n(d_3, d_3, 1) \\ & + x_4 S_k^n(d_1, d_1, d_1) + x_5 S_k^n(d_2, d_2, d_2) + x_6 S_k^n(d_3, d_3, d_3) \\ & + x_7 S_k^n(d_1, d_1, d_2) + x_8 S_k^n(d_1, d_1, d_3) + x_9 S_k^n(d_2, d_2, d_1) \\ & + x_{10} S_k^n(d_2, d_2, d_3) + x_{11} S_k^n(d_3, d_3, d_1) + x_{12} S_k^n(d_3, d_3, d_2) \\ & + x_{13} S_k^n(d_1, d_2, d_3) \geq 0, \ k = 0, 1, 2, \cdots, p_{SDP} \end{aligned}$$

$$x_j \ge 0, \ j = 1, 2, \cdots, 13$$
 48

$$\begin{aligned} & \text{Upper bound (SDP)} \\ \text{maximize} \quad 1 + \frac{1}{3}(x_1 + x_2 + x_3) \\ \text{subject to} \quad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} (x_1 + x_2 + x_3) + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \sum_{i=4}^{13} x_i \geq 0 \\ (x, y, z) \in X^3 \end{aligned} \\ & \text{Bachoc & Vallentin} \\ \text{(kissing number)} \\ & \text{LP (} 3 + x_1 G_k^n(d_1) + x_2 G_k^n(d_2) + x_3 G_k^n(d_3) \geq 0, \ k = 1, 2, \cdots, p_{LP} \end{aligned}$$

Schoenberg $S_k^n(1, 1, 1) + x_1 S_k^n(d_1, d_1, 1) + x_2 S_k^n(d_2, d_2, 1) + x_3 S_k^n(d_3, d_3, 1) \\ & \quad + x_4 S_k^n(d_1, d_1, d_1) + x_5 S_k^n(d_2, d_2, d_2) + x_6 S_k^n(d_3, d_3, d_3) \\ & \quad + x_7 S_k^n(d_1, d_1, d_2) + x_8 S_k^n(d_1, d_1, d_3) + x_9 S_k^n(d_2, d_2, d_1) \\ & \quad + x_{10} S_k^n(d_2, d_2, d_3) + x_{11} S_k^n(d_3, d_3, d_1) + x_{12} S_k^n(d_3, d_3, d_2) \\ & \quad + x_{13} S_k^n(d_1, d_2, d_3) \geq 0, \ k = 0, 1, 2, \cdots, p_{SDP} \\ & \quad x_j \geq 0, \ j = 1, 2, \cdots, 13 \end{aligned}$

Schoenberg (1942)

$$\sum_{(x,y,z)\in X^3} S_k^n(x\cdot y, x\cdot z, y\cdot z) \succcurlyeq 0$$

$$S_k^n(u, v, t) = \frac{1}{6} \sum_{\sigma \in S_3} Y_k^n(\sigma(u, v, t))$$

$$(Y_k^n(u,v,t))_{ij} = u^i v^j ((1-u^2)(1-v^2))^{\frac{k}{2}} G_k^{n-1} (\frac{t-uv}{\sqrt{(1-u^2)(1-v^2)}})^{\frac{k}{2}} (\frac{t-uv}{\sqrt{(1-uv}\sqrt{(1-uv)(1-v^2)}})^{\frac{k}{2}} (\frac{t-uv}{\sqrt{(1-uv}\sqrt{(1-$$

50/105

 $\sum \quad G_k^n(x \cdot y) \ge 0$ LP $(x, \overline{y}) \in C^2$

 $\sum_{(x,y,z)\in C^3} S^n_k(x\cdot y,x\cdot z,y\cdot z) \succcurlyeq 0 \quad \text{SDP}$

 $\sum \quad G_k^n(x \cdot y) \ge 0$ LP $(x,y) \in C^2$

 $\sum_{(x,y,z)\in C^3} S_k^n(x\cdot y,x\cdot z,y\cdot z) \succcurlyeq 0$ **SDP**

 $D(x) = \{d_1, d_2, d_3\}$

 $\sum G_k^n(x \cdot y) \ge 0$ LP $(x,y) \in C^2$

 $\sum_{(x,y,z)\in C^3} S_k^n(x\cdot y,x\cdot z,y\cdot z) \succcurlyeq 0$ **SDP**

 $\mathbf{D}(\mathbf{x}) = \{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\} \Rightarrow \mathbf{D}(\mathbf{x}) = \{\mathbf{F}_1(\mathbf{d}_3), \mathbf{F}_2(\mathbf{d}_3), \mathbf{d}_3\}$

Outline

- •Introduction & history
- •Harmonic absolute bound
- •Linear programming (LP)
- •Semidefinite programming (SDP)

•<u>Discrete sampling points with Nozaki theorem</u> Generalization of Larman-Rogers-Seidel's theorem •Rigorous proof with <u>sum of squares</u> method (SOS)

Generalization of Larmen-Rogers-Seidel's theorem **Definition** $K_i \coloneqq \prod_{j \neq i} \frac{d_j - 1}{d_j - d_i}$ $K = \frac{d_2 - 1}{d_2 - 1} \cdot \frac{d_3 - 1}{d_3 - 1} \cdot K = \frac{d_1 - 1}{d_3 - 1} \cdot \frac{d_3 - 1}{d_2 - 1}$

 $K_1 = \frac{d_2 - 1}{d_2 - d_1} \cdot \frac{d_3 - 1}{d_3 - d_1}, \quad K_2 = \frac{d_1 - 1}{d_1 - d_2} \cdot \frac{d_3 - 1}{d_3 - d_2}, \quad K_3 = \frac{d_1 - 1}{d_1 - d_3} \cdot \frac{d_2 - 1}{d_2 - d_3}$

Theorem (Nozaki).

Let X be an 3-distance set in S^{n-1} with D(X)= $\{d_1, d_2, d_3\}$ If $|X| \ge 2N(S^{n-1}, 3)$

then K_i is an integer for each i=1,2,3.

Also $|K_i| \le \lfloor 1/2 + \sqrt{N(S^{n-1}, 3)^2/(2N(S^{n-1}, 3) - 2 + 1/4)} \rfloor$.

Generalization of Larmen-Rogers-Seidel's theorem

Theorem (Nozaki).

Let X be an 3-distance set in S^{n-1} with $D(X) = \{d_1, d_2, d_3\}$ If $|X| \ge 2N(S^{n-1}, 3)$ then K_i is an integer for each i=1,2,3.

Also $|K_i| \le \lfloor 1/2 + \sqrt{N(S^{n-1}, 3)^2/(2N(S^{n-1}, 3) - 2 + 1/4)} \rfloor$.

•
$$K_1 + K_2 + K_3 = 1$$

•
$$d_1K_1 + d_2K_2 + d_3K_3 = 1$$

•
$$d_1^2 K_1 + d_2^2 K_2 + d_3^2 K_3 = 1$$

•
$$K_1 + K_2 + K_3 = 1$$

•
$$d_1 K_1 + d_2 K_2 + d_3 K_3 = 1$$

•
$$d_1^2 K_1 + d_2^2 K_2 + d_3^2 K_3 = 1$$

• $d_1 < d_2$

 $d_2 = \frac{K_2 - d_3 K_2 K_3 + (d_3 - 1)\sqrt{-K_1 K_2 K_3}}{K_2 (K_1 + K_2)}$

•
$$K_1 + K_2 + K_3 = 1$$

•
$$d_1 K_1 + d_2 K_2 + d_3 K_3 = 1$$

•
$$d_1^2 K_1 + d_2^2 K_2 + d_3^2 K_3 = 1$$

• $d_1 < d_2$
 $d_1 = \frac{K_1 - d_3 K_1 K_3 - (d_3 - 1)\sqrt{-K_1 K_2 K_3}}{K_1 (K_1 + K_2)}$

•
$$d_1 < d_2$$

•
$$K_1 + K_2 + K_3 = 1$$

•
$$d_1K_1 + d_2K_2 + d_3K_3 = 1$$
 Given K_1, K_2, K_3
• $d_1^2K_1 + d_2^2K_2 + d_3^2K_3 = 1$ d_1, d_2 are function of d_3
• $d_1 < d_2$ $d_1 = \frac{K_1 - d_3K_1K_3 - (d_3 - 1)\sqrt{-K_1K_2K_3}}{K_1(K_1 + K_2)}$
 $d_2 = \frac{K_2 - d_3K_2K_3 + (d_3 - 1)\sqrt{-K_1K_2K_3}}{K_2(K_1 + K_2)}$

- •Object: $max(x_1 + x_2 + x_3 + 1)$
- Subject to:
 - $x_1 G_k^n(d_1) + x_2 G_k^n(d_2) + x_3 G_k^n(d_3) + 1 \ge 0$

 $\{\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3\}$ 3 variables

- •Object: $max(x_1 + x_2 + x_3 + 1)$
- Subject to:
 - $x_1 G_k^n(F_1(d_3)) + x_2 G_k^n(F_2(d_3)) + x_3 G_k^n(d_3) + 1 \ge 0$

uni-variate d_3

- •Object: $max(x_1 + x_2 + x_3 + 1)$
- Subject to:
 - $x_1 G_k^n(F_1(d_3)) + x_2 G_k^n(F_2(d_3)) + x_3 G_k^n(d_3) + 1 \ge 0$

uni-variate d_3

- •Object: $max(x_1 + x_2 + x_3 + 1)$
- Subject to:
 - $x_1 G_k^n(F_1(d_3)) + x_2 G_k^n(F_2(d_3)) + x_3 G_k^n(d_3) + 1 \ge 0$

uni-variate d_3

Semidefinite Programming Bounds For Spherical Three-Distance Sets

66/105

67/105

Outline

```
•Introduction & history
```

```
•Harmonic absolute bound
\ •Linear programming (LP)
•Semidefinite programming (SDP)
•<u>Discrete sampling</u> points with Nozaki theorem
 •Rigorous proof with <u>sum of squares</u> method (SOS)
```


SDP primal form

maximize 1

subject to

$$\begin{aligned} & \left(1 \quad 0 \\ 0 \quad 0\right) + \frac{1}{3} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} (x_1 + x_2 + x_3) + \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \sum_{i=4}^{13} x_i \succeq 0 \\ & 3 + x_1 G_k^n(d_1) + x_2 G_k^n(d_2) + x_3 G_k^n(d_3) \ge 0, \ k = 1, 2, \cdots, p_{LP} \\ & S_k^n(1, 1, 1) + x_1 S_k^n(d_1, d_1, 1) + x_2 S_k^n(d_2, d_2, 1) + x_3 S_k^n(d_3, d_3, 1) \\ & + x_4 S_k^n(d_1, d_1, d_1) + x_5 S_k^n(d_2, d_2, d_2) + x_6 S_k^n(d_3, d_3, d_3) \\ & + x_7 S_k^n(d_1, d_1, d_2) + x_8 S_k^n(d_1, d_1, d_3) + x_9 S_k^n(d_2, d_2, d_1) \\ & + x_{10} S_k^n(d_2, d_2, d_3) + x_{11} S_k^n(d_3, d_3, d_1) + x_{12} S_k^n(d_3, d_3, d_2) \\ & + x_{13} S_k^n(d_1, d_2, d_3) \succeq 0, \ k = 0, 1, 2, \cdots, p_{SDP} \\ & x_j \ge 0, \ j = 1, 2, \cdots, 13 \end{aligned}$$

$$\begin{array}{ll} \bullet \text{Object:} & 1 + \min\{\sum_{i=1}^{p_{LP}} \alpha_i + \beta_{11} + \langle F_0, S_0^n(1, 1, 1) \rangle\} \end{array} \text{ SDP dual form} \\ \bullet \text{Subject to:} & \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{12} & \beta_{22} \end{pmatrix} \succcurlyeq 0 & \alpha_i \ge 0, i = 1, \cdots, p_{LP} \\ F_i \succcurlyeq 0, i = 0, \cdots, p_{SDP} \\ 2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_1)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_1, d_1, 1) \rangle) \le -1 \\ 2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_2)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_2, d_2, 1) \rangle) \le -1 \\ 2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_3)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_3, d_3, 1) \rangle) \le -1 \\ \beta_{22} + \sum_{i=0}^{p_{SDP}} \langle F_i, S_i^n(y_1, y_2, y_3) \rangle \le 0 \\ (y_1, y_2, y_3) \in \{(d_1, d_1, d_1), (d_2, d_2, d_2), (d_3, d_3, d_3), (d_1, d_1, d_2), (d_1, d_1, d_3), \\ (d_2, d_2, d_1), (d_2, d_2, d_3), (d_3, d_3, d_1), (d_3, d_3, d_2), (d_1, d_2, d_3)\} \end{array}$$

$$\begin{array}{ll} \bullet \text{Object:} & 1 + \min\{\sum_{i=1}^{p_{LP}} \alpha_i + \beta_{11} + \langle F_0, S_0^n(1, 1, 1) \rangle\} \end{array} \text{ SDP dual form} \\ \bullet \text{Subject to:} & \begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{12} & \beta_{22} \end{pmatrix} \succcurlyeq 0 & \alpha_i \ge 0, i = 1, \cdots, p_{LP} \\ F_i \succcurlyeq 0, i = 0, \cdots, p_{SDP} \end{array} \\ \hline & - \left(2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_1)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_1, d_1, 1) \rangle) \right) - 1 \ge 0 \\ & - \left(2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_2)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_2, d_2, 1) \rangle) \right) - 1 \ge 0 \\ & - \left(2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_3)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_3, d_3, 1) \rangle) \right) - 1 \ge 0 \\ & - \left(\beta_{22} + \sum_{i=1}^{p_{SDP}} \langle F_i, S_i^n(y_1, y_2, y_3) \rangle \right) - 1 \ge 0 \\ & - \left(\beta_{22} + \sum_{i=0}^{p_{SDP}} \langle F_i, S_i^n(y_1, y_2, y_3) \rangle \right) - 1 \ge 0 \\ & (y_1, y_2, y_3) \in \{(d_1, d_1, d_1), (d_2, d_2, d_3), (d_3, d_3, d_1), (d_3, d_3, d_2), (d_1, d_2, d_2), (d_1, d_2, d_3)\} \end{aligned}$$

• $\forall a \in [a_1, a_2], f(a) \ge 0$ a := d3

Semidefinite Programming Bounds For Spherical Three-Distance Sets

• $f^+(x)$ can be written as Sum Of Square (SOS) \$\$ \$\$ \$\$ \$\$ Nesterov\$

• $\exists Q \text{ (positive semidefinite matrix)}$ s.t. $f^+ = XQX^t, X = (1, x, x^2, ..., x^m)$

Hans Frenk, Kees Roos, Tamás Terlaky and Shuzhong Zhang (Eds.) HIGH PERFORMANCE OPTIMIZATION

• $f^+(x)$ can be written as Sum Of Square (SOS) $\widehat{}$ Nesterov

• $\exists Q \text{ (positive semidefinite matrix)}$ s.t. $f^+ = XQX^t, X = (1, x, x^2, ..., x^m)$ \Rightarrow Semidefinite Matrix Condition!

Hans Frenk, Kees Roos, Tamás Terlaky ad Shuzhong Zhang (Eds.) HIGH PERFORMANCE OPTIMIZATION Springer Science+Business Media, B.V.

•Object:
$$1 + min\{\sum_{i=1}^{p_{LP}} \alpha_i + \beta_{11} + \langle F_0, S_0^n(1, 1, 1) \rangle\}$$
 SDP dual form
•Subject to: $\begin{pmatrix} \beta_{11} & \beta_{12} \\ \beta_{12} & \beta_{22} \end{pmatrix} \geq 0$ $\alpha_i \geq 0, i = 1, \cdots, p_{LP} \\ F_i \geq 0, i = 0, \cdots, p_{SDP} \end{pmatrix}$
f(a)
- $(2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_1)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_1, d_1, 1) \rangle)) - 1 \geq 0$
- $(2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_2)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_2, d_2, 1) \rangle)) - 1 \geq 0$
- $(2\beta_{12} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_3)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_3, d_3, 1) \rangle)) - 1 \geq 0$
- $(\beta_{22} + \beta_{22} + \sum_{i=1}^{p_{LP}} (\alpha_i G_i^n(d_3)) + \sum_{i=0}^{p_{SDP}} (3\langle F_i, S_i^n(d_3, d_3, 1) \rangle)) - 1 \geq 0$
- $(\beta_{22} + \sum_{i=0}^{p_{SDP}} \langle F_i, S_i^n(y_1, y_2, y_3) \rangle) - 1 \geq 0$
Semidefinite Matrix Condition!
(y_1, y_2, y_3) \in \{(d_1, d_1, d_1), (d_2, d_2, d_2), (d_3, d_3, d_3), (d_1, d_2), (d_1, d_2, d_3), (d_3, d_3, d_3), (d_1, d_3, d_3, d_3), (d_1, d_3, d_3, d_3), (d_1, d_3, d_3, d_3), (d_3, d_3, d_3), (d_3, d_3, d_3), (d_1, d_3, d_3, d_3), (d_3, d_3, d

Discrete vs Continuous

SOS Experiment

range of a	sos bound	range of a	sos bound	range of a	sos bound
[0.45, 0.451]	67.61	[0.467, 0.468]	74.59	[0.484, 0.485]	78.33
[0.451, 0.452]	67.75	[0.468, 0.469]	75.24	[0.485, 0.486]	77.18
[0.452, 0.453]	67.89	[0.469, 0.47]	76.01	[0.486, 0.487]	76.07
[0.453, 0.454]	68.01	[0.47, 0.471]	76.85	[0.487, 0.488]	75
[0.454, 0.455]	68.14	[0.471, 0.472]	77.71	[0.488, 0.489]	73.96
[0.455, 0.456]	68.3	[0.472, 0.473]	78.58	[0.489, 0.49]	72.94
[0.456, 0.457]	68.51	[0.473, 0.474]	79.45	[0.49, 0.491]	71.96
[0.457, 0.458]	68.79	[0.474, 0.475]	80.25	[0.491, 0.492]	71
[0.458, 0.459]	69.14	[0.475, 0.476]	80.99	[0.492, 0.493]	70.08
[0.459, 0.46]	69.55	[0.476, 0.477]	81.59	[0.493, 0.494]	69.17
[0.46, 0.461]	70.02	[0.477, 0.478]	81.96	[0.494, 0.495]	68.3
[0.461, 0.462]	70.55	[0.478, 0.479]	82.1	[0.495, 0.496]	67.42
[0.462, 0.463]	71.15	[0.479, 0.48]	82.06	[0.496, 0.497]	66.56
[0.463, 0.464]	71.81	[0.48, 0.481]	81.82	[0.497, 0.498]	65.72
[0.464, 0.465]	72.55	[0.481, 0.482]	81.37	[0.498, 0.499]	64.9
[0.465, 0.466]	73.37	[0.482, 0.483]	80.59	[0.499, 0.5]	64.1
[0.466, 0.467]	74.07	[0.483, 0.484]	79.49		

SOS Experiment

range of a	sos bound	range of a	sos bound	range of a	sos bound
[0.45, 0.451]	67.61	[0.467, 0.468]	74.59	[0.484, 0.485]	78.33
[0.451, 0.452]	67.75	[0.468, 0.469]	75.24	[0.485, 0.486]	77.18
[0.452, 0.453]	67.89	[0.469, 0.47]	76.01	[0.486, 0.487]	76.07
[0.453, 0.454]	68.01	[0.47, 0.471]	76.85	[0.487, 0.488]	75
[0.454, 0.455]	68.14	[0.471, 0.472]	77.71	[0.488, 0.489]	73.96
[0.455, 0.456]	68.3	[0.472, 0.473]	78.58	[0.489, 0.49]	72.94
[0.456, 0.457]	68.51	[0.473, 0.474]	79.45	[0.49, 0.491]	71.96
[0.457, 0.458]	68.79	[0.474, 0.475]	80.25	[0.491, 0.492]	71
[0.458, 0.459]	69.14	[0.475, 0.476]	80.99	[0.492, 0.493]	70.08
[0.459, 0.46]	69.55	[0.476, 0.477]	81.59	[0.493, 0.494]	69.17
[0.46, 0.461]	70.02	[0.477, 0.478]	81.96	[0.494, 0.495]	68.3
[0.461, 0.462]	70.55	[0.478, 0.479]	82.1	[0.495, 0.496]	67.42
[0.462, 0.463]	71.15	[0.479, 0.48]	82.06	[0.496, 0.497]	66.56
[0.463, 0.464]	71.81	[0.48, 0.481]	81.82	[0.497, 0.498]	65.72
[0.464, 0.465]	72.55	[0.481, 0.482]	81.37	[0.498, 0.499]	64.9
[0.465, 0.466]	73.37	[0.482, 0.483]	80.59	[0.499, 0.5]	64.1
[0.466, 0.467]	74.07	[0.483, 0.484]	79.49		

SOS Experiment

range of a	sos bound	range of a	sos bound	range of a	sos bound
[0.45, 0.451]	67.61	[0.467, 0.468]	74.59	[0.484, 0.485]	78.33
[0.451, 0.452]	67.75	[0.468, 0.469]	75.24	[0.485, 0.486]	77.18
[0.452, 0.453]	67.89	[0.469, 0.47]	76.01	[0.486, 0.487]	76.07
[0.453, 0.454]	68.01	[0.47, 0.471]	76.85	[0.487, 0.488]	75
[0.454, 0.455]	68.14	[0.471, 0.472]	77.71	[0.488, 0.489]	73.96
[0.455, 0.456]	68.3	[0.472, 0.473]	78.58	[0.489, 0.49]	72.94
[0.456, 0.457]	68.51	[0.473, 0.474]	79.45	[0.49, 0.491]	71.96
[0.457, 0.458]	68.79	[0.474, 0.475]	80.25	[0.491, 0.492]	71
[0.458, 0.459]	69.14	[0.475, 0.476]	80.99	[0.492, 0.493]	70.08
[0.459, 0.46]	69.55	[0.476, 0.477]	81.59	[0.493, 0.494]	69.17
[0.46, 0.461]	70.02	[0.477, 0.478]	81.96	[0.494, 0.495]	68.3
[0.461, 0.462]	70.55	[0.478, 0.479]	82.1	[0.495, 0.496]	67.42
[0.462, 0.463]	71.15	[0.479, 0.48]	82.06	[0.496, 0.497]	66.56
[0.463, 0.464]	71.81	[0.48, 0.481]	81.82	[0.497, 0.498]	65.72
[0.464, 0.465]	72.55	[0.481, 0.482]	81.37	[0.498, 0.499]	64.9
[0.465, 0.466]	73.37	[0.482, 0.483]	80.59	[0.499, 0.5]	64.1
[0.466, 0.467]	74.07	[0.483, 0.484]	79.49	82.1 < harm	onic bound =

Semidefinite Programming Bounds For Spherical Three-Distance Sets

86/105

= 84

 \mathbb{R}^{23} : A(S²², 3) = 2300

•Spherical 3-distance set

Semidefinite Programming Bounds For Spherical Three-Distance Sets

- •Spherical 3-distance set
- •LP, SDP

$$\sum_{\substack{(x,y)\in C^2 \\ (x,y,z)\in C^3}} G_k^n(x \cdot y) \geq 0$$

$$\sum_{\substack{(LP) \\ Schoenberg \\ (SDP)}} S_k^n(x \cdot y, x \cdot z, y \cdot z) \succeq 0$$

•Spherical 3-distance set

•LP, SDP

•Nozaki theorem

- •Spherical 3-distance set
- •LP, SDP
- •Nozaki theorem

•Sum of squares a₁ a₂

Max Spherical 3-distance set in R^7 : upper bound 91 \rightarrow 84 (discrete & rigorous proof) Max Spherical 3-distance set in R^{23} : 2300, a half of tight spherical 7-design Semidefinite Programming Bounds For Spherical Three-Distance Sets 94/105

Thanks for your listening ③