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Taipel City with two rainbows




Preliminaries

= A (proper) k-edge-coloring of a graph G is a mapping from
E(G) into {1,...,k } such that incident edges of G receive
(distinct) colors.

= The chromatic index of G, denoted by x'(G), is the
minimum number k such that G has a k-edge-coloring.

= In this talk, all colorings we mention are proper.

A proper 3-edge-coloring of K, 2 :




Rainbow subgraph

= A subgraph H in an edge-colored graph G is a rainbow
subgraph of G if no two edges in H have the same color.

A rainbow 5-cycle




Monochromatic Subgraphs

= A subgraph of an edge-colored graph is a
monochromatic subgraph if all its edges are of
the same color.

m Clearly, Iif the edge-coloring is proper, then all
monochromatic subgraphs are matchings.

= But, if the edge-coloring is not a proper coloring,

then “many things” could happen! ”
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Graph Decomposition

= An H-packing of a graph G Is a collection
of edge-disjoint subgraphs of G such that
each of them Is isomorphic to H.

m G Is an H-decomposition of G If G has an
H-packing such that all edges of G have
been used Iin the packing.

= We use H| G to denote the decomposition.

= If G Is the complete graph of order n, then
H| G is known as an H-design of order n.



Rainbow Graph Designs

= We are looking for as many isomorphic rainbow
subgraphs inside an edge-colored graph as
possible.

®m S0, given a graph G with an edge-coloring either
prescribed or arbitrarily given, we try to pack the
graph G with rainbow subgraphs which are
Isomorphic to H.

= If we can use up all the edges of the graph G
such that each edge of G occurs in exactly one
H, then we have a rainbow H-design of G.



Weak and Strong Designs

= |f we can find a x’(G)-edge-coloring of G and then
decompose G into rainbow subgraphs H, then
we have a weak rainbow H design of G, denoted
by H|,G.

= On the other hand, if for any proper edge-
coloring of G, we can decompose the G Into
rainbow subgraphs H, then we have a strong
rainbow H design of G, denoted by H| ;G.

= If G Is the complete graph of order n, then the
designs will be referred to as rainbow design of

order n respectively (weak or strong).



Motivation: Ra nbow Is Beautiful!

More works are on mono-chromatic subgraphs!




Rainbow 1-factor

= Theorem
In any (2m-1)-edge-colored K., where m > 2, there
exists a rainbow 1-factor.

m  Open problem

Find two or more edge-disjoint rainbow 1-factors In
any (2m-1)-edge-colored K,., where m > 2?

= Note that there exists a (2m — 1)-edge-coloring of
K,,, such that there are 2m — 1 rainbow 1-factors In
eSS oM 8. (7)
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Room Squares

m A Room sg

uare of side 2m-1 provides a (2m-1)-

edge-coloring of K., such that 2m-1 edge-

disjoint mu

ticolored 1-factors exist.
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Rainbow 1-factor Design of order 2m

m Such weak rainbow 1-factor design of
order 2m exists following the construction
of a Room squares of order 2m.

= [t was proved (combined all the early
works) by W. Wallis that except for m = 2,
3, a Room square of order 2m exists.

= But, it Is going to be very hard to show that
a strong rainbow 1-factor design of order
2m does exist.
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How about graphs with more edges?

m Since the edge-colorings we consider are
proper, the cases of triangle and stars are
trivial as long as we have a design of
feasible orders.

= From the conjecture mentioned in next
slide, we flrst conS|der the spanning tree
CaSe - - A Pl g "'-._.5""
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Isomorphic Rainbow trees In K,

Voo B

Color 1 XXz XgXg X%

Color 2 x,x, XXs X3Xg
Color3 XoXz XoX4 XXg

Color4 Xx,Xg XiX3 X4Xs

Color 5 XX, X,X3 XoXg
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Spanning Trees

= Constantine’s Weak Conjecture
For any m > 2, K, can be (2m— 1)-edge-colored in such a way
that the edges can be partitioned into m isomorphic rainbow
spanning trees.

= This conjecture was verified later. So, we do have a weak
rainbow spanning-tree design of order 2m for each m > 3 for
“certain spanning tree”, see next slide for an example of m = 5.

= How about the other spanning trees?

(*) S. Akbari, A. Alipour, H. L. Fuand Y. H. Lo, Multicolored parallelisms of
Isomorphic spanning trees, SIAM J. Discrete Math. 20 (2006), No. 3, 564-567;



An example:m=5

Tree 1




Impossib

m Constanti

le Mission

ne’s Strong Conjecture (2002)

If m > 2, then in any proper (2m— 1)-edge-coloring of

K, all ec

ges can be partitioned into m isomorphic

rainbow spanning trees.

m Brualdi-F

ollingsworth’s Conjecture (1996)

If m > 2, then in any proper (2m— 1)-edge-coloring of
K, all edges can be partitioned into m rainbow
spanning trees.

(*) R. A. Brualdi

J. Combin. Theory Ser. B 68 (1996), No. 2, 310-313.

and S. Hollingsworth, Multicolored trees in complete graphs,
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Weak Rainbow Hamilton-cycle Design

m Conjecture: there exists a proper (2m+1)-edge-coloring
of K., for which all edges can be partitioned into m
Isomorphic rainbow spanning unicyclic subgraphs.

= Yes, there exists one such edge-coloring and proper
subgraphs (Hamiltonian cycles). See an example of m
= 4 In next slide.

(*) H. L. Fuand Y. H. Lo, Multicolored parallelisms of Hamiltonian cycles,
Discrete Math. 309 (2009), No. 14, 4871-4876.



Rainbow Hamilton cycles

9 <—— Bipartite difference = 2

<«—— Bipartite difference = 2

<—— Bipartite difference =0



Strong Rainbow Designs

Constantine’s Strong Conjecture on odd order
(2005)
In any proper (2m+1)-edge-coloring of K, .,, all
edges can be partitioned into m rainbow isomorphic
spanning unicyclic subgraphs.

= |If arbitrary coloring is considered, then finding one
rainbow Hamilton cycle (or Hamilton path) is
already a very difficult job!
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Rainbow Cycle Designs

= We expect the following result:

If C, | K,,, then there exists an n-edge-
coloring of K, such that C, | K..

m The cases k = 3 and k = n (odd) are true.

= The following idea shows that for k = 2t, we

also have C, | K. {

pad



Edge-colorings to Use

m et V(K2m+1) = {Vi ‘ JiE ZZm+1}-

mlLeto(vv)) =i+ (mod2m+1). Then @ Is a
proper (2m+1)-edge-coloring of K, .,.
Note that the chromatic index of K., IS
2m+1.

mLletV(K, ) =AuBwhere A={a | ic Z])
ande = b Z.):

m Let m(ab,) =j—1(mod m). Thenis a
proper m-edge-coloring of K, ...
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Graph Decomposition

= We shall decompose the graph cyclically by
using the so-called difference method.

® This idea was introduced by A. Rosa in early
60’s.
= The difference of v; and v; in V(K,..,;) Is defined

as min{|j-il, ( 2m+1) ‘j -i|}. (It is also known
as the half difference.)

A. Rosa, on cyclic decompositions of complete graph into polygons with
an odd number of edges, Casopis Pest. Math. 91 (1966), 53 — 63.
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Labeling

= A vertex labeling W of G is an assignment of
V(G) by using the labels in {0, 1, 2, ..., k} such
that each label occurs at most once. For
convenience, it is called a k-vertex labeling.

= The weight of an edge in a graph with k-vertex
labeling is defined as the (positive) difference of
Its two end vertices.

= A k-vertex labeling of a graph G is a graceful ([3)
labeling If k Is the size of the graph and all the
weights obtained are distinct.
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Labeling-Continued

= Ifkis 2| E(G)| + 1 and the weights obtained are
1,2, ..., |E(G)|, then we have a p-labeling.

= A p-labeling is a bipartite p-labeling if there exists
a A such that for each edge exactly one of the
two vertices receives a labels at most A.

= For example, let G be a 4-cycle and (0,4,2,3) Is a
4-vertex labeling of G. Then this labeling is a
graceful labeling. If G is a subgraph of Ky, then
we may label G with k =9, say (2,6,4,5). Again,
all weights are distinct. So, it is a p-labeling, In
fact it Is a bipartite p-labeling by letting A = 4.



Beautiful Decomposition

m Theorem (A. Rosa)

Let H be a graph of size k and H has a p-labeling
using colors 0, 1, 2, ..., 2k. Then H| Ky, ;.
Moreover, Iif p Is a bipartite labeling, then H

‘ K2tk+1'
Example

C,| Ky and also C, | Kg,,. (0,4,2,3) is a bipartite
p-labeling.

A. Rosa, on cyclic decompositions of complete graph into polygons with
an odd number of edges, Casopis Pest. Math. 91 (1966), 53 —63.



Weak Rainbow C, Designs

= Consider K, defined on {v;|i € ZJ} is edge-
colored by using the edge-coloring mentioned
earlier: o(vyv;)) =i +j (mod 2m+1), m = 4.

= The edges of (v, V4, V,, V) are of colors 4, 6, 5
and 3 respectively.

= Now, we can decompose K, by difference
method, shift (v,, vy, V,, V3) to obtain a weak
rainbow 4-cycle design. (V; 10 Vi,;mod 9))

= Subsequently, we also have C,| Ks,., for each
positive integer t.
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Another Example

= Ky | K.

= Consider K,; defined on {v;|i € Z,,} is edge-
colored by using the edge-coloring mentioned
earlier: o(vyv;)) =1+ ] (mod 2m+1), m = 6.

= Use the K, induced by {v, v,, V3, Vo} to generate
the decomposition.

m Differences are 1, 2, ..., 6 and colors on the
graph are 1, 3, 4, 9, 10, 12.

m After one shift, colors are changing /
but the graph remains a rainbow.
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General ldea

= If we would like to apply difference method to
find a weak rainbow H-design of order 2 - | E(H)|
+ 1, then we need to find a special p-labeling
such that the sums (of two ends of edges) are
also distinct modulo

2 - (ASERIEE

m Of course, the edge-coloring used here is not the
only one, so is the labeling. There are many
other choice!

= For example, the one used in obtaining weak
rainbow Hamilton cycle design is different.
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Weak Rainbow Cycle Designs

= C,| Kg., shows that for each admissible order of
4-cycle design of order 8t + 1 we can obtain a
weak rainbow 4-cycle design.

= How about the other cycle designs of admissible
orders?

= Some works have been done for cycle length k =
0 ofg=

Rainbow cycle designs, Bulletin of The ICA, Volume 81
(iiler ) 24418 — 130,
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Strong Rainbow 4-cycle Designs

= Now, the edge coloring is arbitrarily given, but it
IS a proper coloring.
m Theorem

For each m = 3, there exists a strong rainbow 4-
cycle design of K, 5.

Proof. First, we show that C, | g K, ,,, for m = 3.
Then, the proof follows.

= S0, by nto n + 8 construction of 4-cycle systems
and C, | r Ky we can conclude that C, | g Kgy. .-

ol



The Missing Piece

= Problem: Show that C, | K.
= Theorem Foreachtz 3, C,|zKg.s.

Proof. By the fact that K, ,, has a
bipartite p-labeling defined on Zg,, we can

decompose Kg,,, Into copies of K, ,, and
conclude the proof.

= Since C,| g K, ,, for t = 3, we can not
conclude the proof fort=1, 2. (Too bad!)

o7



Further Try

= We may use a similar argument to show
that P, | zK,, provided n =0 or 1 (mod 3)
and n = 6.

= Moreover, if n = 2, then we are able to
pack K, with maximum number of rainbow
P, 'S

= We believe that more works can be done.

= Strictly rainbow 4-cycle designs (work jointly with Jun-yi
Kuo and Zhen-Jun Chen), in preprints. 33



Don’t Stop!
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We Have to Stop!
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