Ra nbow Graph Designs

Hung－Lin Fu（傅 恒 霖）
Department of Applied Mathematics
National Chiao Tung University
Hsin Chu，Taiwan 30010

Taipei City with two rainbows

Preliminaries

- A (proper) \boldsymbol{k}-edge-coloring of a graph G is a mapping from $E(G)$ into $\{1, \ldots, k\}$ such that incident edges of G receive (distinct) colors.
- The chromatic index of G , denoted by $\chi^{\prime}(\mathrm{G})$, is the minimum number k such that G has a k-edge-coloring.
- In this talk, all colorings we mention are proper.

A proper 3-edge-coloring of K_{4}

Rainbow subgraph

- A subgraph H in an edge-colored graph G is a rainbow subgraph of G if no two edges in H have the same color.

A rainbow 5-cycle

Monochromatic Subgraphs

- A subgraph of an edge-colored graph is a monochromatic subgraph if all its edges are of the same color.
- Clearly, if the edge-coloring is proper, then all monochromatic subgraphs are matchings.
- But, if the edge-coloring is not a proper coloring, then "many things" could happen!

Graph Decomposition

- An H-packing of a graph G is a collection of edge-disjoint subgraphs of G such that each of them is isomorphic to H .
■ G is an H-decomposition of G if G has an H-packing such that all edges of G have been used in the packing.
- We use $\mathrm{H} \mid \mathrm{G}$ to denote the decomposition.
- If G is the complete graph of order n , then $\mathrm{H} \mid \mathrm{G}$ is known as an H -design of order n.

Rainbow Graph Designs

- We are looking for as many isomorphic rainbow subgraphs inside an edge-colored graph as possible.
- So, given a graph G with an edge-coloring either prescribed or arbitrarily given, we try to pack the graph G with rainbow subgraphs which are isomorphic to H .
- If we can use up all the edges of the graph G such that each edge of G occurs in exactly one H , then we have a rainbow H -design of G .

Weak and Strong Designs

- If we can find a $\chi^{\prime}(G)$-edge-coloring of G and then decompose G into rainbow subgraphs H, then we have a weak rainbow H design of G, denoted by $\mathrm{H} \mid{ }_{\mathrm{r}} \mathrm{G}$.
- On the other hand, if for any proper edgecoloring of G, we can decompose the G into rainbow subgraphs H , then we have a strong rainbow H design of G, denoted by $\left.H\right|_{R} G$.
- If G is the complete graph of order n, then the designs will be referred to as rainbow design of order n respectively (weak or strong).

Motivation: Ra nbow Is Beautiful!

More works are on mono-chromatic subgraphs!

Rainbow 1-factor

- Theorem (Woolbright and Fu, 1998)

In any ($2 m-1$)-edge-colored $K_{2 m}$ where $m>2$, there exists a rainbow 1-factor.

- Open problem

Find two or more edge-disjoint rainbow 1-factors in any ($2 m-1$)-edge-colored $K_{2 m}$ where $m>2$?

- Note that there exists a $(2 m-1)$-edge-coloring of
$\mathrm{K}_{2 \mathrm{~m}}$ such that there are $2 \mathrm{~m}-1$ rainbow 1-factors in
$K_{2 m}$ for $m \geq 8$. (?)

Room Squares

- A Room square of side $2 m-1$ provides a (2m-1)-edge-coloring of $\mathrm{K}_{2 \mathrm{~m}}$ such that $2 \mathrm{~m}-1$ edgedisjoint multicolored 1-factors exist.

			35	17	28	46
	26	48			15	37
	13	57	68	24		
47		16		38		25
58		23	14		67	
12	78			56	34	
36	45		27			18

$$
m=4
$$

Rainbow 1-factor Design of order 2m

- Such weak rainbow 1-factor design of order $2 m$ exists following the construction of a Room squares of order 2 m .
- It was proved (combined all the early works) by W . Wallis that except for $\mathrm{m}=2$, 3 , a Room square of order 2 m exists.
- But, it is going to be very hard to show that a strong rainbow 1-factor design of order 2 m does exist.

How about graphs with more edges?

- Since the edge-colorings we consider are proper, the cases of triangle and stars are trivial as long as we have a design of feasible orders.
- From the conjecture mentioned in next slide, we first consider the spanning tree case.

Isomorphic Rainbow trees in K_{6}

$$
\begin{array}{lll}
T_{1} & T_{2} & T_{3}
\end{array}
$$

Color $1 x_{3} x_{5} \quad x_{4} x_{6} \quad x_{1} x_{2}$
Color $2 x_{2} x_{4} \quad x_{1} x_{5} \quad x_{3} x_{6}$
Color $3 \begin{array}{llll}x_{2} x_{5} & x_{3} x_{4} & x_{1} x_{6}\end{array}$
Color $4 \begin{array}{llll}x_{2} x_{6} & x_{1} x_{3} & x_{4} x_{5}\end{array}$
Color $5 x_{1} x_{4} \quad x_{2} x_{3} \quad x_{5} x_{6}$

T_{1}

Spanning Trees

- Constantine's Weak Conjecture (2002)

For any $m>2, K_{2 m}$ can be ($2 m-1$)-edge-colored in such a way that the edges can be partitioned into m isomorphic rainbow spanning trees.

- This conjecture was verified later. So, we do have a weak rainbow spanning-tree design of order 2 m for each $\mathrm{m} \geq 3$ for "certain spanning tree", see next slide for an example of $m=5$.
- How about the other spanning trees?
(*) S. Akbari, A. Alipour, H. L. Fu and Y. H. Lo, Multicolored parallelisms of isomorphic spanning trees, SIAM J. Discrete Math. 20 (2006), No. 3, 564-567 ${ }_{15}$

An example: $m=5$

Impossible Mission

- Constantine's Strong Conjecture (2002)

If $m>2$, then in any proper ($2 m-1$)-edge-coloring of
$K_{2 m}$, all edges can be partitioned into m isomorphic rainbow spanning trees.

- Brualdi-Hollingsworth's Conjecture (1996)

If $m>2$, then in any proper ($2 m-1$)-edge-coloring of $K_{2 m}$, all edges can be partitioned into m rainbow spanning trees.
${ }^{*}$) R. A. Brualdi and S. Hollingsworth, Multicolored trees in complete graphs, J. Combin. Theory Ser. B 68 (1996), No. 2, 310-313.

Weak Rainbow Hamilton-cycle Design

- Conjecture: there exists a proper ($2 m+1$)-edge-coloring of $K_{2 m+1}$ for which all edges can be partitioned into m isomorphic rainbow spanning unicyclic subgraphs.
- Yes, there exists one such edge-coloring and proper subgraphs (Hamiltonian cycles). See an example of m = 4 in next slide.
(*) H. L. Fu and Y. H. Lo, Multicolored parallelisms of Hamiltonian cycles, Discrete Math. 309 (2009), No. 14, 4871-4876.

Rainbow Hamilton cycles

\longleftarrow Bipartite difference $=0$

Strong Rainbow Designs

Constantine's Strong Conjecture on odd order (2005)

In any proper ($2 m+1$)-edge-coloring of $K_{2 m+1}$, all edges can be partitioned into m rainbow isomorphic spanning unicyclic subgraphs.

- If arbitrary coloring is considered, then finding one rainbow Hamilton cycle (or Hamilton path) is already a very difficult job!

Rainbow Cycle Designs

- We expect the following result:

If $C_{k} \mid K_{n}$, then there exists an n-edge-
coloring of K_{n} such that $\left.C_{k}\right|_{r} K_{n}$.

- The cases $k=3$ and $k=n$ (odd) are true.
- The following idea shows that for $k=2^{t}$, we also have $\left.\mathrm{C}_{\mathrm{k}}\right|_{\mathrm{r}} \mathrm{K}_{\mathrm{n}}$.

Edge-colorings to Use

- Let $\mathrm{V}\left(\mathrm{K}_{2 \mathrm{~m}+1}\right)=\left\{v_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{Z}_{2 \mathrm{~m}+1}\right\}$.
- Let $\varphi\left(v_{i} v_{j}\right) \equiv \mathrm{i}+\mathrm{j}(\bmod 2 m+1)$. Then φ is a proper $(2 m+1)$-edge-coloring of $\mathrm{K}_{2 m+1}$. Note that the chromatic index of $\mathrm{K}_{2 \mathrm{~m}+1}$ is $2 m+1$.
- Let $\mathrm{V}\left(\mathrm{K}_{\mathrm{m}, \mathrm{m}}\right)=\mathrm{A} \cup \mathrm{B}$ where $\mathrm{A}=\left\{\mathrm{a}_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{Z}_{\mathrm{m}}\right\}$ and $B=\left\{b_{i} \mid i \in Z_{m}\right\}$.
- Let $\pi\left(a_{i} b_{j}\right) \equiv j-i(\bmod m)$. Then π is a proper m-edge-coloring of $\mathrm{K}_{\mathrm{m}, \mathrm{m}}$.

Graph Decomposition

■ We shall decompose the graph cyclically by using the so-called difference method.

- This idea was introduced by A. Rosa in early 60's.
- The difference of v_{i} and v_{j} in $V\left(\mathrm{~K}_{2 m+1}\right)$ is defined as $\min \{|j-i|,(2 m+1)-|j-i|\}$. (It is also known as the half difference.)
A. Rosa, on cyclic decompositions of complete graph into polygons with an odd number of edges, Casopis Pest. Math. 91 (1966), $53-63$.

Labeling

- A vertex labeling Ψ of G is an assignment of $V(G)$ by using the labels in $\{0,1,2, \ldots, k\}$ such that each label occurs at most once. For convenience, it is called a k -vertex labeling.
- The weight of an edge in a graph with k-vertex labeling is defined as the (positive) difference of its two end vertices.
- A k-vertex labeling of a graph G is a graceful (β) labeling if k is the size of the graph and all the weights obtained are distinct.

Labeling-Continued

- If k is $2|E(G)|+1$ and the weights obtained are $1,2, \ldots,|E(G)|$, then we have a ρ-labeling.
- A ρ-labeling is a bipartite ρ-labeling if there exists a λ such that for each edge exactly one of the two vertices receives a labels at most λ.
- For example, let G be a 4 -cycle and $(0,4,2,3)$ is a 4 -vertex labeling of G . Then this labeling is a graceful labeling. If G is a subgraph of K_{9}, then we may label G with $\mathrm{k}=9$, say $(2,6,4,5)$. Again, all weights are distinct. So, it is a ρ-labeling, in fact it is a bipartite ρ-labeling by letting $\lambda=4$.

Beautiful Decomposition

- Theorem (A. Rosa)

Let H be a graph of size k and H has a ρ-labeling using colors $0,1,2, \ldots, 2 k$. Then $H \mid \mathrm{K}_{2 k+1}$. Moreover, if ρ is a bipartite labeling, then H $\mid K_{2 t k+1}$.
Example
$\mathrm{C}_{4} \mid \mathrm{K}_{9}$ and also $\mathrm{C}_{4} \mid \mathrm{K}_{8 t+1} \cdot(0,4,2,3)$ is a bipartite ρ-labeling.
A. Rosa, on cyclic decompositions of complete graph into polygons with an odd number of edges, Casopis Pest. Math. 91 (1966), $53-63$.

Weak Rainbow C_{4} Designs

- Consider K_{9} defined on $\left\{v_{\mathrm{i}} \mid \mathrm{i} \in \mathrm{Z}_{9}\right\}$ is edgecolored by using the edge-coloring mentioned earlier: $\varphi\left(v_{i} v_{j}\right) \equiv i+j(\bmod 2 m+1), m=4$.
- The edges of $\left(v_{0}, v_{4}, v_{2}, v_{3}\right)$ are of colors $4,6,5$ and 3 respectively.
- Now, we can decompose K_{9} by difference method, shift $\left(v_{0}, v_{4}, v_{2}, v_{3}\right)$ to obtain a weak rainbow 4-cycle design. (v_{i} to $\left.\mathrm{v}_{\mathrm{i}+1(\bmod 9)}\right)$
- Subsequently, we also have $\left.\mathrm{C}_{4}\right|_{{ }^{\prime}} \mathrm{K}_{8 t+1}$ for each positive integer t .

Another Example

- $\left.\mathrm{K}_{4}\right|_{\mathrm{r}} \mathrm{K}_{13}$.
- Consider K_{13} defined on $\left\{v_{i} \mid i \in Z_{13}\right\}$ is edgecolored by using the edge-coloring mentioned earlier: $\varphi\left(v_{i} v_{j}\right) \equiv i+j(\bmod 2 m+1), m=6$.
- Use the K_{4} induced by $\left\{v_{0}, v_{1}, v_{3}, v_{9}\right\}$ to generate the decomposition.
- Differences are $1,2, \ldots, 6$ and colors on the graph are 1, 3, 4, 9, 10, 12.
- After one shift, colors are changing but the graph remains a rainbow.

General Idea

- If we would like to apply difference method to find a weak rainbow H-design of order $2 \cdot|E(H)|$
+1 , then we need to find a special ρ-labeling such that the sums (of two ends of edges) are also distinct modulo
$2 \cdot|E(H)|+1$.
- Of course, the edge-coloring used here is not the only one, so is the labeling. There are many other choice!
- For example, the one used in obtaining weak rainbow Hamilton cycle design is different.

Weak Rainbow Cycle Designs

- $\left.\mathrm{C}_{4}\right|_{r} \mathrm{~K}_{8 t+1}$ shows that for each admissible order of 4 -cycle design of order $8 t+1$ we can obtain a weak rainbow 4 -cycle design.
- How about the other cycle designs of admissible orders?
- Some works have been done for cycle length $\mathrm{k} \equiv$ 0 or 3.

Rainbow cycle designs, Bulletin of The ICA, Volume 81 (2017), 118 - 130.

Strong Rainbow 4-cycle Designs

- Now, the edge coloring is arbitrarily given, but it is a proper coloring.
- Theorem

For each $m \geq 3$, there exists a strong rainbow 4cycle design of $K_{2 m, 2 m}$.
Proof. First, we show that $\left.C_{4}\right|_{R} K_{2,2 m}$ for $m \geq 3$. Then, the proof follows.

- So, by n to $n+8$ construction of 4-cycle systems and $\left.C_{4}\right|_{R} K_{9}$ we can conclude that $\left.C_{4}\right|_{R} K_{8 t+1}$.

The Missing Piece

- Problem: Show that $\left.\mathrm{C}_{4}\right|_{\mathrm{R}} \mathrm{K}_{\mathrm{g}}$.
- Theorem For each $t \geq 3,\left.C_{4}\right|_{R} K_{8 t+1}$. Proof. By the fact that $\mathrm{K}_{2,2 \mathrm{t}}$ has a bipartite ρ-labeling defined on $Z_{8 t+1}$ we can decompose $\mathrm{K}_{8 t+1}$ into copies of $\mathrm{K}_{2,2 \mathrm{t}}$ and conclude the proof.
- Since $\left.C_{4}\right|_{R} K_{2,2 t}$ for $t \geq 3$, we can not conclude the proof for $t=1$, 2. (Too bad!)

Further Try

- We may use a similar argument to show that $\left.P_{4}\right|_{R} K_{n}$ provided $n \equiv 0$ or $1(\bmod 3)$ and $\mathrm{n} \geq 6$.
- Moreover, if $\mathrm{n} \equiv 2$, then we are able to pack K_{n} with maximum number of rainbow P_{4} 's.
- We believe that more works can be done.
- Strictly rainbow 4-cycle designs (work jointly with Jun-yi Kuo and Zhen-Jun Chen), in preprints.

Don’t Stop!

We Have to Stop!

謝謝聆聽

