Hamiltonicity of edge-chromatic critical graphs

Huiqing Liu

Joint work with Y Cao, GT Chen, SY Jiang, FL Lu

Hubei University

Aug 19, 2019

Let G = (V(G), E(G)) be a graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$.

Let G = (V(G), E(G)) be a graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$.

An edge-k-coloring of a graph G is a mapping $\varphi : E(G) \to \{1, 2, \dots, k\}$ such that $\varphi(e) \neq \varphi(f)$ for any two adjacent edges e and f.

Let G = (V(G), E(G)) be a graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$.

An edge-k-coloring of a graph G is a mapping $\varphi : E(G) \to \{1, 2, \dots, k\}$ such that $\varphi(e) \neq \varphi(f)$ for any two adjacent edges e and f.

- The codomain $\{1, 2, \cdots, k\}$ is called the color set of φ .
- Denote by $\mathcal{C}^k(G)$ the set of all edge-k-colorings of G.

Let G = (V(G), E(G)) be a graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$.

An edge-k-coloring of a graph G is a mapping $\varphi : E(G) \to \{1, 2, \dots, k\}$ such that $\varphi(e) \neq \varphi(f)$ for any two adjacent edges e and f.

- The codomain $\{1, 2, \cdots, k\}$ is called the color set of φ .
- Denote by $\mathcal{C}^k(G)$ the set of all edge-k-colorings of G.

The chromatic index $\chi'(G)$ is the least integer $k \ge 0$ such that $\mathcal{C}^k(G) \neq \emptyset$.

Let G = (V(G), E(G)) be a graph with maximum degree $\Delta(G)$ and minimum degree $\delta(G)$.

An edge-k-coloring of a graph G is a mapping $\varphi : E(G) \to \{1, 2, \dots, k\}$ such that $\varphi(e) \neq \varphi(f)$ for any two adjacent edges e and f.

- The codomain $\{1, 2, \cdots, k\}$ is called the color set of φ .
- Denote by $\mathcal{C}^k(G)$ the set of all edge-k-colorings of G.

The chromatic index $\chi'(G)$ is the least integer $k \ge 0$ such that $\mathcal{C}^k(G) \neq \emptyset$.

χ'(G) ≥ Δ & equality holds for many graphs.

φ(v) = {φ(e) : e ∈ E(G) and e is incident to v}, the set of colors present at v

A 3 b

- φ(v) = {φ(e) : e ∈ E(G) and e is incident to v}, the set of colors present at v
- $\overline{\varphi}(v) = \{1, 2, \cdots, k\} \varphi(v)$, the set of *colors missing* at v.

伺 ト イ ヨ ト イ ヨ ト

φ(v) = {φ(e) : e ∈ E(G) and e is incident to v}, the set of colors present at v

• $\overline{\varphi}(v) = \{1, 2, \cdots, k\} - \varphi(v)$, the set of *colors missing* at v.

For a graph G and $S \subseteq V(G)$, if for any two distinct vertices $u, v \in S, \overline{\varphi}(u) \cap \overline{\varphi}(v) = \emptyset$, then S is *elementary* with respect to φ , where φ is an edge coloring of G.

Classification

Theorem (Vizing [1])

If G is a graph with maximum degree Δ , then $\chi'(G) \leq \Delta + 1$.

伺 ト イヨト イヨト

3

Classification

Theorem (Vizing [1])

If G is a graph with maximum degree Δ , then $\chi'(G) \leq \Delta + 1$.

- $\chi'(G) \ge \Delta$ & equality holds for many graphs.
- This leads to a classification of graphs into two classes:
 - A graph G is Class I if $\chi'(G) = \Delta$;
 - Class II if $\chi'(G) = \Delta + 1$.

伺 ト イヨト イヨト

Classification

Theorem (Vizing [1])

If G is a graph with maximum degree Δ , then $\chi'(G) \leq \Delta + 1$.

- $\chi'(G) \ge \Delta$ & equality holds for many graphs.
- This leads to a classification of graphs into two classes:

A fairly long-standing problem has been the attempt to classify which graphs are Class I, and which ones are Class II.

Theorem (Vizing [1])

If G is a graph with maximum degree Δ , then $\chi'(G) \leq \Delta + 1$.

- $\chi'(G) \ge \Delta$ & equality holds for many graphs.
- This leads to a classification of graphs into two classes:

A fairly long-standing problem has been the attempt to classify which graphs are Class I, and which ones are Class II.

[Holyer 1981] It is NP-complete to determine whether a graph is Class I or Class II.

[1]. V. G. Vizing. Critical graphs with a given chromatic index (in russian). Diskret. Analiz No., 5:9-17, 1965.

A graph G is called *edge*- Δ -*critical* if $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ holds for any proper subgraph H of G.

A graph G is called *edge*- Δ -*critical* if $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ holds for any proper subgraph H of G.

An edge *e* is called *critical* if $\chi'(G - e) < \chi'(G)$, where G - e is the subgraph obtained from *G* by removing the edge *e*.

伺 ト イ ヨ ト イ ヨ ト

A graph G is called *edge*- Δ -*critical* if $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ holds for any proper subgraph H of G.

An edge e is called *critical* if $\chi'(G - e) < \chi'(G)$, where G - e is the subgraph obtained from G by removing the edge e.

• If G is edge- Δ -critical, then

• G is connected and $\chi'(G - e) = \Delta$ for any $e \in E(G)$;

A graph G is called *edge*- Δ -*critical* if $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ holds for any proper subgraph H of G.

An edge e is called *critical* if $\chi'(G - e) < \chi'(G)$, where G - e is the subgraph obtained from G by removing the edge e.

• If G is edge- Δ -critical, then

- G is connected and $\chi'(G e) = \Delta$ for any $e \in E(G)$;
- d(x) ≥ 2 for x ∈ V(G);

くほし くほし くほし

A graph G is called *edge-* Δ *-critical* if $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ holds for any proper subgraph H of G.

An edge e is called *critical* if $\chi'(G - e) < \chi'(G)$, where G - e is the subgraph obtained from G by removing the edge e.

• If G is edge- Δ -critical, then

• G is connected and $\chi'(G - e) = \Delta$ for any $e \in E(G)$;

•
$$d(x) \ge 2$$
 for $x \in V(G)$;

• $d(x) + d(y) \ge \Delta + 2$ for $xy \in E(G)$;

伺 ト イ ヨ ト イ ヨ ト

A graph G is called *edge*- Δ -*critical* if $\chi'(G) = \Delta + 1$ and $\chi'(H) \leq \Delta$ holds for any proper subgraph H of G.

An edge e is called *critical* if $\chi'(G - e) < \chi'(G)$, where G - e is the subgraph obtained from G by removing the edge e.

• If G is edge- Δ -critical, then

- G is connected and $\chi'(G e) = \Delta$ for any $e \in E(G)$;
- d(x) ≥ 2 for x ∈ V(G);
- $d(x) + d(y) \ge \Delta + 2$ for $xy \in E(G)$;
- if d(x) + d(y) = Δ + 2, then every neighbor of x and y, other than (possibly) x and y themselves, has degree Δ.

イロト イポト イラト イラト 一戸

In 1965, Vizing [1] proposed the following conjecture about the structure of edge- Δ -critical graphs.

In 1965, Vizing [1] proposed the following conjecture about the structure of edge- Δ -critical graphs.

Conjecture (Vizing's 2-Factor Conjecture)

Every edge- Δ -critical graph with chromatic index at least 3 contains a 2-factor.

In 1965, Vizing [1] proposed the following conjecture about the structure of edge- Δ -critical graphs.

Conjecture (Vizing's 2-Factor Conjecture)

Every edge- Δ -critical graph with chromatic index at least 3 contains a 2-factor.

Vizing's 2-Factor Conj. is true for 2-critical graphs (odd cycles).

In 1965, Vizing [1] proposed the following conjecture about the structure of edge- Δ -critical graphs.

Conjecture (Vizing's 2-Factor Conjecture)

Every edge- Δ -critical graph with chromatic index at least 3 contains a 2-factor.

Vizing's 2-Factor Conj. is true for 2-critical graphs (odd cycles). Grünewald and Steffen [3] show that every overfull critical graph has a 2-factor.

In 1965, Vizing [1] proposed the following conjecture about the structure of edge- Δ -critical graphs.

Conjecture (Vizing's 2-Factor Conjecture)

Every edge- Δ -critical graph with chromatic index at least 3 contains a 2-factor.

Vizing's 2-Factor Conj. is true for 2-critical graphs (odd cycles).

Grünewald and Steffen [3] show that every overfull critical graph has a 2-factor.

Chen and Shan [4] verified Vizing's 2-Factor Conjecture for edge- Δ -critical graphs of order *n* with $\Delta \geq \frac{n}{2}$.

In 1965, Vizing [1] proposed the following conjecture about the structure of edge- Δ -critical graphs.

Conjecture (Vizing's 2-Factor Conjecture)

Every edge- Δ -critical graph with chromatic index at least 3 contains a 2-factor.

Vizing's 2-Factor Conj. is true for 2-critical graphs (odd cycles).

Grünewald and Steffen [3] show that every overfull critical graph has a 2-factor.

Chen and Shan [4] verified Vizing's 2-Factor Conjecture for edge- Δ -critical graphs of order *n* with $\Delta \geq \frac{n}{2}$.

[3] Grünewald and Steffen, Independent sets and 2-factors in edge-chromatic- critical graphs. J. Graph Theory, 45(2): 113-118, 2004.

[4] G. Chen and S. Shan. Vizing's 2-factor conjecture involving large maximum degree. J. Graph Theory, 00:1-17, 2017.

Theorem (*Luo and Zhao, 2013*)

An edge- Δ -critical graph with at most 10 vertices is Hamiltonian.

Theorem (Luo and Zhao, 2013)

An edge- Δ -critical graph with at most 10 vertices is Hamiltonian.

Theorem (Luo and Zhao, 2013)

An edge- Δ -critical graph G of order n with $\Delta \geq \frac{6n}{7}$ is Hamiltonian.

Theorem (Luo and Zhao, 2013)

An edge- Δ -critical graph with at most 10 vertices is Hamiltonian.

Theorem (Luo and Zhao, 2013)

An edge- Δ -critical graph G of order n with $\Delta \geq \frac{6n}{7}$ is Hamiltonian.

[7] R. Luo and Y. Zhao. A sufficient condition for edge chromatic critical graphs to be Hamiltonian. J. Graph Theory, 73(4): 469-482, 2013.

(日) (同) (三) (三)

It is interesting to determine the minimum positive real number β such that

every Δ -critical graph of order *n* with $\Delta \geq \beta n$ is Hamiltonian.

It is interesting to determine the minimum positive real number β such that

every Δ -critical graph of order *n* with $\Delta \geq \beta n$ is Hamiltonian.

• Luo, Miao and Zhao [8] showed that an edge- Δ -critical graph G of order n with $\Delta \geq \frac{4n}{5}$ is Hamiltonian.

It is interesting to determine the minimum positive real number β such that

every Δ -critical graph of order *n* with $\Delta \geq \beta n$ is Hamiltonian.

- Luo, Miao and Zhao [8] showed that an edge- Δ -critical graph *G* of order *n* with $\Delta \geq \frac{4n}{5}$ is Hamiltonian.
- Chen, Chen and Zhao [9] showed that an edge- Δ -critical graph G of order n with $\Delta \geq \frac{3n}{4}$ is Hamiltonian.

It is interesting to determine the minimum positive real number β such that

every Δ -critical graph of order *n* with $\Delta \geq \beta n$ is Hamiltonian.

- Luo, Miao and Zhao [8] showed that an edge- Δ -critical graph *G* of order *n* with $\Delta \geq \frac{4n}{5}$ is Hamiltonian.
- Chen, Chen and Zhao [9] showed that an edge- Δ -critical graph G of order n with $\Delta \geq \frac{3n}{4}$ is Hamiltonian.
- We show that an edge- Δ -critical graph G of order n with $\Delta \geq \frac{2n}{3} + 12$ is Hamiltonian.

[8] R. Luo, Z. Miao, and Y. Zhao. Hamiltonian cycles in critical graphs with large maximum degree. Graphs Combin., 32(5): 2019-2028, 2016.

[9] G. Chen, X. Chen, and Y. Zhao. Hamiltonianicity of edge chromatic critical graph. Discrete Math. 340: 3011-3015, 2017.

Vizing Fan

Let G be a graph, let e be an edge, and let $\varphi \in C^k(G - e)$ be a coloring for some integer k > 0.

伺 ト く ヨ ト く ヨ ト

э

Vizing Fan

Let G be a graph, let e be an edge, and let $\varphi \in C^k(G - e)$ be a coloring for some integer k > 0.

A multi-fan at x with respect to e and φ is a sequence $F = (e_1, y_1, ..., e_p, y_p)$ with p > 1 consisting of edges $e_1, ..., e_p$ and vertices $y_1, ..., y_p$ satisfying the following two conditions:

•
$$e_1, ..., e_p$$
 are distinct, $e_i = e_i$ and $e_i = xy_i$ for $i = 1, ..., p_i$.

•
$$\forall e_i, 2 \leq i \leq p, \exists y_j \text{ with } 1 \leq j < i \text{ s.t. } \varphi(e_i) \in \overline{\varphi}(y_j).$$

伺 ト イ ヨ ト イ ヨ ト
Vizing Fan

Let G be a graph, let e be an edge, and let $\varphi \in C^k(G - e)$ be a coloring for some integer k > 0.

A multi-fan at x with respect to e and φ is a sequence $F = (e_1, y_1, ..., e_p, y_p)$ with p > 1 consisting of edges $e_1, ..., e_p$ and vertices $y_1, ..., y_p$ satisfying the following two conditions:

•
$$e_1, ..., e_p$$
 are distinct, $e_i = e$, and $e_i = xy_i$ for $i = 1, ..., p$.

•
$$\forall e_i, 2 \leq i \leq p, \exists y_j \text{ with } 1 \leq j < i \text{ s.t. } \varphi(e_i) \in \overline{\varphi}(y_j).$$

Theorem

V(F) is elementary with respect to φ .

伺 ト イ ヨ ト イ ヨ ト

Kierstead Path

For a graph G with an edge e and a coloring $\varphi \in C^k(G - e)$.

伺 ト く ヨ ト く ヨ ト

3

Kierstead Path

For a graph G with an edge e and a coloring $\varphi \in C^k(G - e)$. A *Kierstead path* with respect to e and φ is defined to be a sequence $K = (y_0, e_1, y_1, \dots, e_p, y_p)$ with $p \ge 1$ consisting of edges e_1, \dots, e_p and vertices y_0, \dots, y_p satisfying the following:

• y_0, \dots, y_p are distinct, $e_1 = e$ and $e_i = y_{i-1}y_i$ for $1 \le i \le p$;

•
$$\forall e_i, 2 \leq i \leq p, \exists y_j \ (0 \leq j < i) \text{ s.t. } \varphi(e_i) \in \overline{\varphi}(y_j).$$

Kierstead Path

For a graph G with an edge e and a coloring $\varphi \in C^k(G - e)$. A *Kierstead path* with respect to e and φ is defined to be a sequence $K = (y_0, e_1, y_1, \dots, e_p, y_p)$ with $p \ge 1$ consisting of edges e_1, \dots, e_p and vertices y_0, \dots, y_p satisfying the following:

• y_0, \dots, y_p are distinct, $e_1 = e$ and $e_i = y_{i-1}y_i$ for $1 \le i \le p$;

•
$$\forall e_i, 2 \leq i \leq p, \exists y_j \ (0 \leq j < i) \text{ s.t. } \varphi(e_i) \in \overline{\varphi}(y_j).$$

Theorem (Kierstead, JCTB, 1984)

If $d(y_i) < \Delta$ for i = 2, ..., p, then V(K) is elementary w.r.t. ϕ .

Conjecture (G Chen)

Let K be a Kierstead path, then there are at most $f(n, \Delta)$ pairs of missing colors repeated.

< 日 > < 同 > < 三 > < 三 >

3

Kierstead Paths with Four Vertices

Kostochka and Stiebitz [11] considered elementary property of Kierstead paths with four vertices and showed the following:

Lemma (Kostochka, Stiebitz [11])

Let G be a graph with maximum degree Δ and $\chi'(G) = \Delta + 1$. Let $e_1 \in E(G)$ be a critical edge and $\varphi \in C^{\Delta}(G - e_1)$. If $K = (y_0, e_1, y_1, e_2, y_2, e_3, y_3)$ is a Kierstead path with respect to e_1 and φ , then the following statements hold:

2 if $d(y_2) < \Delta$, then V(K) is elementary with respect to φ ;

3 if $d(y_1) < \Delta$, then V(K) is elementary with respect to φ ;

• if
$$\Gamma = \bar{\varphi}(y_0) \cup \bar{\varphi}(y_1)$$
, then $|\bar{\varphi}(y_3) \cap \Gamma| \leq 1$.

[11] M. Stiebitz, D. Scheide, B. Toft, and L. M. Favrholdt. Graph edge-coloring: Vizing's theorem and Goldberg's conjecture. Wiley, 2012.

For a simple graph G with respect to a critical edge e_1 and a coloring $\varphi \in C^{\triangle}(G - e_1)$.

- - E + - E +

э

Broom

For a simple graph G with respect to a critical edge e_1 and a coloring $\varphi \in C^{\triangle}(G - e_1)$.

We call $B = \{y_0, y_1, y_2\} \cup Z$ is a *broom* if for every vertex $z \in Z$, $(y_0, e_1, y_1, e_2, y_2, e_3, z)$ is a Kierstead path with respect to e_1 and φ .

Broom

For a simple graph G with respect to a critical edge e_1 and a coloring $\varphi \in C^{\triangle}(G - e_1)$.

We call $B = \{y_0, y_1, y_2\} \cup Z$ is a *broom* if for every vertex $z \in Z$, $(y_0, e_1, y_1, e_2, y_2, e_3, z)$ is a Kierstead path with respect to e_1 and φ .

Chen, Chen and Zhao [8] considered the elementary property of brooms and gave the following

For a simple graph G with respect to a critical edge e_1 and a coloring $\varphi \in C^{\triangle}(G - e_1)$.

We call $B = \{y_0, y_1, y_2\} \cup Z$ is a *broom* if for every vertex $z \in Z$, $(y_0, e_1, y_1, e_2, y_2, e_3, z)$ is a Kierstead path with respect to e_1 and φ .

Chen, Chen and Zhao [8] considered the elementary property of brooms and gave the following

Theorem (Chen, Chen and Zhao [8])

Let G be an edge- Δ -critical graph, $e_1 = y_0y_1 \in E(G)$ and $\varphi \in C^{\Delta}(G - e_1)$ and $B = \{y_0, y_1, y_2\} \cup Z$ be a broom. If $|\bar{\varphi}(y_0) \cup \bar{\varphi}(y_1)| \ge 4$ and $\min\{d(y_1), d(y_2)\} < \Delta$, then V(B) is elementary with respect to φ .

For each $y \in N(x)$, let $\sigma_q(x, y) = |\{z \in N(y) \setminus \{x\} : d(z) \ge q\}|$, the number of neighbors of y (except x) with degree at least q.

For each $y \in N(x)$, let $\sigma_q(x, y) = |\{z \in N(y) \setminus \{x\} : d(z) \ge q\}|$, the number of neighbors of y (except x) with degree at least q.

Vizing studied the case $q = \Delta$ and obtained the following

For each $y \in N(x)$, let $\sigma_q(x, y) = |\{z \in N(y) \setminus \{x\} : d(z) \ge q\}|$, the number of neighbors of y (except x) with degree at least q.

Vizing studied the case $q = \Delta$ and obtained the following

Lemma (Vizing's Adjacency Lemma)

Let G be an edge- Δ -critical graph. Then $\sigma_{\Delta}(x, y) \ge \Delta - d(x) + 1$ holds for every $xy \in E(G)$.

Woodall's result I

Woodall [12] studied $\sigma_q(x, y)$ for the case $q = 2\Delta - d(x) - d(y) + 2$.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Woodall's result I

Woodall [12] studied
$$\sigma_q(x, y)$$
 for the case $q = 2\Delta - d(x) - d(y) + 2$.

For convention, we let $\sigma(x, y) = \sigma_q(x, y)$ when $q = 2\Delta - d(x) - d(y) + 2$.

伺 ト く ヨ ト く ヨ ト

э

Woodall's result I

Woodall [12] studied $\sigma_q(x, y)$ for the case $q = 2\Delta - d(x) - d(y) + 2$.

For convention, we let $\sigma(x, y) = \sigma_q(x, y)$ when $q = 2\Delta - d(x) - d(y) + 2$.

Theorem (Woodall, 2007)

Let *xy* be an edge in an edge- Δ -critical graph *G*. Then there are at least $\Delta - \sigma(x, y) \ge \Delta - d(y) + 1$ vertices $z \in N(x) \setminus \{y\}$ such that

$$\sigma(x,z) + \sigma(x,y) \ge 2\Delta - d(x).$$

[12] D. R. Woodall. The average degree of an edge-chromatic critical graph II. J. Graph Theory, 56(3):194-218, 2007.

- 4 同 6 4 日 6 4 日 6

Woodall's result II

Furthermore, Woodall defined the following two parameters.

$$p_{min}(x) := \min_{y \in \mathcal{N}(x)} \sigma(x, y) - \Delta + d(x) - 1$$
 and
 $p(x) := \min\{ p_{min}(x), \left\lfloor \frac{d(x)}{2}
ight
floor - 1 \}.$

Woodall's result II

Furthermore, Woodall defined the following two parameters.

$$egin{aligned} & p_{min}(x) & := & \min_{y \in \mathcal{N}(x)} \sigma(x,y) - \Delta + d(x) - 1 & ext{ and } \ & p(x) & := & \min\{ \ p_{min}(x), \left\lfloor rac{d(x)}{2}
ight
floor - 1 \ \}. \end{aligned}$$

Theorem (Woodall, 2007)

Every vertex x in an edge- Δ -critical graph has at least d(x) - p(x) - 1 neighbors y for which $\sigma(x, y) \ge \Delta - p(x) - 1$.

Woodall's result II

Furthermore, Woodall defined the following two parameters.

$$egin{aligned} & p_{min}(x) & := & \min_{y \in \mathcal{N}(x)} \sigma(x,y) - \Delta + d(x) - 1 & ext{ and } \ & p(x) & := & \min\{ & p_{min}(x), \left\lfloor rac{d(x)}{2}
ight
floor - 1 & \}. \end{aligned}$$

Theorem (Woodall, 2007)

Every vertex x in an edge- Δ -critical graph has at least d(x) - p(x) - 1 neighbors y for which $\sigma(x, y) \ge \Delta - p(x) - 1$.

•
$$p(x) < d(x)/2 - 1$$
.

• \exists about d(x)/2 neighbors y of x s.t. $\sigma(x, y)$ is at least $\Delta/2$.

We only need one neighbor y of x such that $\sigma_q(x, y)$ is large. By allowing q to take various values.

We only need one neighbor y of x such that $\sigma_q(x, y)$ is large. By allowing q to take various values.

Roughly speaking, we can count the number of edges more flexibility.

We only need one neighbor y of x such that $\sigma_q(x, y)$ is large. By allowing q to take various values.

Roughly speaking, we can count the number of edges more flexibility.

Lemma

Let xy be an edge in a Δ -critical graph G and q be a positive number. If $d(x) < \frac{\Delta(G)}{2}$ and $q \leq \Delta(G) - 10$, then there exists a vertex $z \in N(x) \setminus \{y\}$ such that

$$\sigma_q(x,y) + \sigma_q(x,z)$$

$$> 2\Delta(G) - d(x) - \frac{2d(x) - 2}{\Delta(G) - q} - \left\lceil \frac{4d(x) - 4}{\Delta(G) - q} + \frac{8(d(x) - 1)}{(\Delta(G) - q)^2} \right\rceil.$$

Lemma

Let x_1x_2 be an edge in a Δ -critical graph G and q be a positive number. If $t = d(x_1) + d(x_2) \le \frac{3}{2}\Delta(G) - 2$, $q \le \Delta(G) - 10$ and $\delta(G) > \frac{\Delta(G)}{2} - 2$, then there exists a pair of vertices $\{z, y\}$ with $z \in N(x_1) \setminus \{x_2\}$ and $y \in N(x_2) \setminus \{x_1, z\}$ such that

$$\sigma_q(x_1, z) + \sigma_q(x_2, y)$$

$$> 3\Delta(G) - t - \frac{2(t - \Delta(G) - 2)}{\Delta(G) - q} - 2$$

$$- \left[\frac{4(t - \Delta(G) + 2)}{\Delta(G) - q} + \frac{8(t - \Delta(G) - 2)}{(\Delta(G) - q)^2}\right].$$

Theorem

If G is an edge- Δ -critical graph of order n with $\Delta \geq \frac{2n}{3} + 12$, then G is Hamiltonian.

A B > A B >

Lemma (Chen, Chen, Zhao [9], 2017)

Let G be an edge- Δ -critical graph of order n. If $d(x) + d(y) \ge n$ for any edge xy of G, then G is Hamiltonian.

Lemma (Chen, Chen, Zhao [9], 2017)

Let G be an edge- Δ -critical graph of order n. If $d(x) + d(y) \ge n$ for any edge xy of G, then G is Hamiltonian.

The Bondy-Chvátal closure C(G) is well-defined.

Lemma (Chen, Chen, Zhao [9], 2017)

Let G be an edge- Δ -critical graph of order n. If $d(x) + d(y) \ge n$ for any edge xy of G, then G is Hamiltonian.

The Bondy-Chvátal closure C(G) is well-defined.

C(G) is Hamiltonian if and only if G is Hamiltonian.

Lemma (Chen, Chen, Zhao [9], 2017)

Let G be an edge- Δ -critical graph of order n. If $d(x) + d(y) \ge n$ for any edge xy of G, then G is Hamiltonian.

The Bondy-Chvátal closure C(G) is well-defined.

C(G) is Hamiltonian if and only if G is Hamiltonian.

Brandt and Veldman gave the following result about the circumference of a graph G and its closure C(G).

Lemma

A graph G has the same circumference as its closure C(G).

・ 戸 ト ・ ヨ ト ・ ヨ

Suppose, on the contrary, there exists a non-Hamiltonian Δ -critical graph G of order n with $\Delta \geq \frac{2}{3}n + 12$, which implies $\Delta(G) > 36$.

• Divide V(G) into two subsets, $V_{< r}(G)$ and $V_{\ge r}(G)$

- Divide V(G) into two subsets, $V_{< r}(G)$ and $V_{\ge r}(G)$
- Prove that $V_{\geq r}(G)$ is a clique in C(G)

- Divide V(G) into two subsets, $V_{< r}(G)$ and $V_{\ge r}(G)$
- Prove that $V_{\geq r}(G)$ is a clique in C(G)
- Prove that $\delta(G) \ge r$, so that $V_{\le r}(G) = \emptyset$.

- Divide V(G) into two subsets, $V_{< r}(G)$ and $V_{\ge r}(G)$
- Prove that $V_{\geq r}(G)$ is a clique in C(G)
- Prove that $\delta(G) \ge r$, so that $V_{\le r}(G) = \emptyset$.
- In Claims 3.1, 3.3 and 3.4 we need the inequalities $n < \frac{3}{2}\Delta 1$, $r + \Delta \ge n 1$, and $r < \frac{\Delta}{2} + 1$, respectively. Thus we need $\Delta \ge \frac{2}{3}n + k$, for some k.

- Divide V(G) into two subsets, $V_{< r}(G)$ and $V_{\ge r}(G)$
- Prove that $V_{\geq r}(G)$ is a clique in C(G)
- Prove that $\delta(G) \ge r$, so that $V_{\le r}(G) = \emptyset$.
- In Claims 3.1, 3.3 and 3.4 we need the inequalities $n < \frac{3}{2}\Delta 1$, $r + \Delta \ge n 1$, and $r < \frac{\Delta}{2} + 1$, respectively. Thus we need $\Delta \ge \frac{2}{3}n + k$, for some k.
- For convenience we will choose r = ^A/₂ − 2, and the proof (specifically, Claim 3.2) works with k = 12.

- Divide V(G) into two subsets, $V_{< r}(G)$ and $V_{\ge r}(G)$
- Prove that $V_{\geq r}(G)$ is a clique in C(G)
- Prove that $\delta(G) \ge r$, so that $V_{\le r}(G) = \emptyset$.
- In Claims 3.1, 3.3 and 3.4 we need the inequalities $n < \frac{3}{2}\Delta 1$, $r + \Delta \ge n 1$, and $r < \frac{\Delta}{2} + 1$, respectively. Thus we need $\Delta \ge \frac{2}{3}n + k$, for some k.
- For convenience we will choose r = [∆]/₂ 2, and the proof (specifically, Claim 3.2) works with k = 12.
- The numbers appearing in Claim 3.2 are related to k by $18 = \frac{3}{2}k$, $\frac{757}{1156} = \frac{3}{4} \frac{1}{k} \frac{8}{9k^2}$, and $\frac{179}{1156} = \frac{757}{1156} \frac{1}{2}$; this last equation is used in Claim 3.3.

Claim (3.1)

Suppose q is a positive number and $q \leq \Delta - 10$. Then

$$|V_{\geq q}(G)| > rac{3\Delta}{4} - rac{3\Delta}{2(\Delta - q)} - rac{2\Delta}{(\Delta - q)^2};$$
 (1)

if
$$\delta(G) \leq \frac{\Delta}{2} - 2$$
, then

$$|V_{\geq q}(G)| > \frac{3\Delta}{4} - \frac{3\Delta - 18}{2(\Delta - q)} - \frac{2\Delta - 12}{(\Delta - q)^2} + \frac{1}{2};$$
 (2)

and if $\delta(G) > \frac{\Delta}{2} - 2$, then

$$|V_{\geq q}(G)| > \frac{3\Delta}{4} - \frac{3\Delta - 110}{2(\Delta - q)} - \frac{2\Delta - 84}{(\Delta - q)^2} + 8.$$
 (3)

▲ 伊 ▶ ▲ 三 ▶

э
Sketch of Proof III

Claim (3.2)

The following inequalities hold:

a.
$$|V_{\geq \Delta - 17}(G)| > \frac{757}{1156}\Delta;$$

b. $|V_{\geq \Delta - 17}(G)| > \frac{n}{2}$ provided $\Delta \le 94;$
c. $|V_{\geq (1 - \frac{179}{1156})\Delta}(G)| \ge \frac{n}{2}$ provided $\Delta \ge 95$

Claim (3.3)

In C(G), $V_{\geq \frac{\Delta}{2}}(G)$ is a clique.

So C(G) is Hamiltonian, and G is Hamiltonian, a contradiction.

Thank You For Your Attention!

ъ

э