Clustered coloring for old graph coloring conjectures

Chun-Hung Liu

Texas A&M University

August 20, 2019

Chun-Hung Liu (Texas A&M) Clustered coloring for old graph coloring conj€

A graph G is *properly k-colorable* if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.

A graph G is *properly k-colorable* if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.

G is properly *t*-colorable \Rightarrow *G* has no K_{t+1} subgraph.

A graph G is *properly k-colorable* if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.

G is properly *t*-colorable \Rightarrow *G* has no K_{t+1} subgraph.

Question: Is G properly t-colorable if G has no K_{t+1} subgraph?

A graph G is *properly k-colorable* if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.

G is properly *t*-colorable \Rightarrow *G* has no K_{t+1} subgraph.

Question: Is G properly *t*-colorable if G has no K_{t+1} subgraph? **Answer:** No!

Theorem: (Erdős) For every graph H that contains a cycle and every $t \in \mathbb{N}$, there exists a non-properly *t*-colorable graph with no H subgraph.

A graph G is *properly k-colorable* if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.

G is properly *t*-colorable \Rightarrow *G* has no K_{t+1} subgraph.

Question: Is G properly *t*-colorable if G has no K_{t+1} subgraph? **Answer:** No!

Theorem: (Erdős) For every graph H that contains a cycle and every $t \in \mathbb{N}$, there exists a non-properly *t*-colorable graph with no H subgraph.

More structures?

A graph is a *planar graph* if it can be drawn in the plane without edge-crossing.

Four Color Theorem: Every planar graph is properly 4-colorable.

A graph G contains another graph H as a *minor* if H can be obtained from a subgraph of G by repeatedly contracting edges.

Hadwiger's conjecture: Every K_{t+1} -minor free graph is properly *t*-colorable.

A graph G contains another graph H as a *minor* if H can be obtained from a subgraph of G by repeatedly contracting edges.

Hadwiger's conjecture: Every K_{t+1} -minor free graph is properly *t*-colorable.

- (Hadwiger): True for $t \leq 3$.
- (Wagner): Equivalent with the Four Color Theorem for t = 4.
- (Robertson, Seymour, Thomas): True for t = 5.
- Open for $t \geq 6$.
- (Kostochka; Thomason:) $O(t\sqrt{\log t})$ colors suffice.

A graph G contains another graph H as a *topological minor* if H can be obtained from a subgraph of G by repeatedly contracting edges incident with vertices of degree two.

Hajós' conjecture: Every K_{t+1} -topological minor free graph is properly *t*-colorable.

A graph G contains another graph H as a *topological minor* if H can be obtained from a subgraph of G by repeatedly contracting edges incident with vertices of degree two.

Hajós' conjecture: Every K_{t+1} -topological minor free graph is properly *t*-colorable.

- (Dirac): True for $t \leq 3$.
- (Catlin): False for $t \ge 6$.
- Open for $t \in \{4, 5\}$.
- (Erdős, Fajtlowicz): Need $\Omega(t^2/\log t)$ colors.
- (Bollobás, Thomason; Komlós, Szemerédi): $O(t^2)$ colors suffice.

A graph G contains another graph H as an *odd minor* if H can be obtained from a subgraph of G by contracting all edges in an edge-cut.

Gerards-Seymour Conjecture: Every odd K_{t+1} -minor free graph is properly *t*-colorable.

A graph G contains another graph H as an *odd minor* if H can be obtained from a subgraph of G by contracting all edges in an edge-cut.

Gerards-Seymour Conjecture: Every odd K_{t+1} -minor free graph is properly *t*-colorable.

- (Catlin): True for $t \leq 3$.
- (Guenin): True for $t \leq 4$.
- Open for $t \geq 5$.
- (Geelen, Gerards, Reed, Seymour, Vetta): $O(t\sqrt{\log t})$ colors suffice.

A graph G is properly k-colorable if and only if the vertices of G can be colored with k colors such that every monochromatic component contains only 1 vertex.

A graph G is properly k-colorable if and only if the vertices of G can be colored with k colors such that every monochromatic component contains only 1 vertex.

A class \mathcal{F} of graphs is *clustered k-colorable* if there exists an integer N such that for every $G \in \mathcal{F}$, the vertices of G can be colored with k colors such that every monochromatic component contains at most N vertices.

Let $\mathcal{F}_{k,N}$ be the set of graphs such that every *k*-coloring leads to a monochromatic component on more than *N* vertices.

A class \mathcal{F} of graph is clustered *k*-colorable \Leftrightarrow there exists *N* such that $\mathcal{F} \cap \mathcal{F}_{k,n} = \emptyset$ for every $n \ge N$.

Let $\mathcal{F}_{k,N}$ be the set of graphs such that every *k*-coloring leads to a monochromatic component on more than *N* vertices.

A class \mathcal{F} of graph is clustered *k*-colorable \Leftrightarrow there exists *N* such that $\mathcal{F} \cap \mathcal{F}_{k,n} = \emptyset$ for every $n \ge N$.

 $\mathcal{F}_{1,\textit{N}}$ is the set of graphs that contain a component on at least N+1 vertices.

Let $\mathcal{F}_{k,N}$ be the set of graphs such that every *k*-coloring leads to a monochromatic component on more than *N* vertices.

A class \mathcal{F} of graph is clustered *k*-colorable \Leftrightarrow there exists *N* such that $\mathcal{F} \cap \mathcal{F}_{k,n} = \emptyset$ for every $n \ge N$.

 $\mathcal{F}_{1,\textit{N}}$ is the set of graphs that contain a component on at least N+1 vertices.

Standard construction:

- Let $H \in \mathcal{F}_{k,N}$.
- Let G be the graph obtained from a union of N disjoint copies of H by adding a new vertex v adjacent to all other vertices.
- Then $G \in \mathcal{F}_{k+1,N}$.

Hex Lemma: Any 2-coloring of the $N \times N$ triangular grid leads to a monochromatic path on N vertices.

Hex Lemma: Any 2-coloring of the $N \times N$ triangular grid leads to a monochromatic path on N vertices.

Corollary: Let $q \ge 6$. If \mathcal{F} is a set of graphs of maximum degree at most q and contains all planar graphs, then \mathcal{F} is not clustered 2-colorable.

Hex Lemma: Any 2-coloring of the $N \times N$ triangular grid leads to a monochromatic path on N vertices.

Corollary: Let $q \ge 6$. If \mathcal{F} is a set of graphs of maximum degree at most q and contains all planar graphs, then \mathcal{F} is not clustered 2-colorable.

Theorem: (Alon, Ding, Oporowski, Vertigan) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

Minor closed families of bounded maximum degree graphs

Theorem:

(Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

- (Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.
- (Alon, Ding, Oporowski, Vertigan): For any q and any graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 4-colorable.

- (Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.
- (Alon, Ding, Oporowski, Vertigan): For any q and any graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 4-colorable.
- (Esperet, Joret): For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

- (Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.
- (Alon, Ding, Oporowski, Vertigan): For any q and any graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 4-colorable.
- (Esperet, Joret): For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.
- (L., Oum): For any q and any graph H, the class of odd H-minor-free graphs of maximum degree at most q is clustered 3-colorable.

Theorem: (Alon, Ding, Oporowski, Vertigan) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

Theorem: (Alon, Ding, Oporowski, Vertigan) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

A class \mathcal{F} of graphs is clustered *k*-choosable if there exists an integer *N* such that for every list-assignment $L = (L_v : v \in V(G))$ of any graph $G \in \mathcal{F}$ with $|L(v)| \ge k$ for every $v \in V(G)$, there exists a coloring *f* such that $f(v) \in L_v$ for every $v \in V(G)$ such that every monochromatic component contains at most *N* vertices.

Theorem: (L.) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-choosable.

イロト 不得下 イヨト イヨト

Tree-decomposition

 (T, \mathcal{X}) is a *tree-decomposition* of G if the following hold.

- T is a tree, and $\mathcal{X} = \{X_t : t \in V(T)\}$, where each X_t is a subset of V(G) and $\bigcup_{t \in V(T)} X_t = V(G)$.
- For every edge of G, its both ends are in some X_t .
- For every vertex v of G, the subgraph of T induced by $\{t \in V(T) : v \in X_t\}$ is connected.

The *width* of (T, \mathcal{X}) is $\max_{t \in V(T)} |X_t| - 1$.

The *tree-width* of a graph is the minimum width of its tree-decompositions.

Tree-decomposition

 (T, \mathcal{X}) is a *tree-decomposition* of G if the following hold.

- T is a tree, and $\mathcal{X} = \{X_t : t \in V(T)\}$, where each X_t is a subset of V(G) and $\bigcup_{t \in V(T)} X_t = V(G)$.
- For every edge of G, its both ends are in some X_t .
- For every vertex v of G, the subgraph of T induced by $\{t \in V(T) : v \in X_t\}$ is connected.

The *width* of (T, \mathcal{X}) is $\max_{t \in V(T)} |X_t| - 1$.

The *tree-width* of a graph is the minimum width of its tree-decompositions.

Theorem (L.): For any q, w, the class of graphs of maximum degree at most q and tree-width most w is clustered 2-choosable.

・ 同 ト ・ 三 ト ・ 三 ト

11 / 25

Theorem: (Esperet, Joret) For any q and any surface Σ , the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

Theorem: (Esperet, Joret) For any q and any surface Σ , the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

A *layering* of a graph G is an ordered partition $(V_1, V_2, ...)$ of V(G) such that for every edge e of G, there exists i such that either both ends of e are contained in V_i , or e is between V_i and V_{i+1} .

Theorem: (Esperet, Joret) For any q and any surface Σ , the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

A *layering* of a graph G is an ordered partition $(V_1, V_2, ...)$ of V(G) such that for every edge e of G, there exists i such that either both ends of e are contained in V_i , or e is between V_i and V_{i+1} .

The *layered tree-width* of *G* is the minimum *w* such that there exist a layering $(V_1, V_2, ...)$ and a tree-decomposition (T, \mathcal{X}) such that $\max_{i \in \mathbb{N}, t \in V(T)} |V_i \cap X_t| = w$.

Theorem: (Esperet, Joret) For any g and any surface Σ , the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

A *layering* of a graph G is an ordered partition $(V_1, V_2, ...)$ of V(G) such that for every edge e of G, there exists i such that either both ends of eare contained in V_i , or *e* is between V_i and V_{i+1} .

The *layered tree-width* of G is the minimum w such that there exist a layering $(V_1, V_2, ...)$ and a tree-decomposition (T, \mathcal{X}) such that $\max_{i \in \mathbb{N}, t \in V(T)} |V_i \cap X_t| = w.$

Theorem: (Dujmović, Morin, Wood) Every graph embeddable in a surface of Euler genus g has layered tree-width at most 2g + 3.

- 4 回 ト 4 ヨ ト - 4 ヨ ト -

Theorem: (Esperet, Joret) For any q and any surface Σ , the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable such that every monochromatic component contains $O(q^{32q2^g})$ vertices.

Theorem (L., Wood)

For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable such that every monochromatic component contains $O(w^{22}q^{43})$ vertices.

Theorem: (Esperet, Joret) For any q and any surface Σ , the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable such that every monochromatic component contains $O(q^{32q2^g})$ vertices.

Theorem (L., Wood)

For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable such that every monochromatic component contains $O(w^{22}q^{43})$ vertices.

- Classes of graphs of bounded layered treewidth are not minor closed.
- K_6 -minor-free graphs can have arbitrarily large layered treewidth.
- Graphs of layered treewidth 2 can contain arbitrarily large graph as a minor.

イロト 不得下 イヨト イヨト

- (L.): For any q, w, the class of graphs of maximum degree at most q and tree-width at most w is clustered 2-choosable.
- (L., Wood): For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable.
- (L., Oum): For any q and graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 3-colorable.
- (L., Oum): For any q and graph H, the class of odd H-minor-free graphs of maximum degree at most q is clustered 3-colorable.

- (L.): For any q, w, the class of graphs of maximum degree at most q and tree-width at most w is clustered 2-choosable.
- (L., Wood): For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable.
- (L., Oum): For any q and graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 3-colorable.
- (L., Oum): For any q and graph H, the class of odd H-minor-free graphs of maximum degree at most q is clustered 3-colorable.

Maximum degree at most $q \Leftrightarrow$ no $K_{1,q+1}$ -subgraph.

Theorem (L., Wood)

- For any p, q, w, the class of graphs of tree-width at most w with no K_{p,q}-subgraph is clustered p + 1-choosable.
- So For any p, q, w, the class of graphs of layered tree-width at most w with no $K_{p,q}$ -subgraph is clustered p + 2-colorable.
- For any p, q and graph H, the class of H-minor-free graphs with no K_{p,q}-subgraph is clustered p + 2-colorable.
- For any p, q and graph H, the class of odd H-minor-free graphs with no K_{p,q}-subgraph is clustered 2p + 1-colorable.
- For any p, q, d with p + 3d ≥ 7 and graph H of maximum degree d, the class of H-topological minor free graphs with no K_{p,q}-subgraph is clustered (p + 3d - 4)-colorable.

Statements 1 and 3 are tight for every p.

イロト イ押ト イヨト イヨト

Question: For every t, what is the minimum f(t) such that the class of K_{t+1} -minor-free graphs is clustered f(t)-colorable?

Question: For every t, what is the minimum f(t) such that the class of K_{t+1} -minor-free graphs is clustered f(t)-colorable?

- (Edwards, Kang, Kim, Oum, Seymour) $t \le f(t) \le 4t$.
- (Kawarabayashi, Mohar) $f(t) \leq \lceil \frac{31}{2}(t+1) \rceil$.
- (Wood) $f(t) \leq \lceil \frac{7}{2}t + 2 \rceil$.
- (L., Oum) $f(t) \le 3t$.
- (Norin; van den Heuval, Wood) $f(t) \leq 2t$.

Question: For every t, what is the minimum f(t) such that the class of K_{t+1} -minor-free graphs is clustered f(t)-colorable?

Theorem:

- (Edwards, Kang, Kim, Oum, Seymour) $t \le f(t) \le 4t$.
- (Kawarabayashi, Mohar) $f(t) \leq \lceil \frac{31}{2}(t+1) \rceil$.
- (Wood) $f(t) \leq \lceil \frac{7}{2}t + 2 \rceil$.
- (L., Oum) $f(t) \le 3t$.
- (Norin; van den Heuval, Wood) $f(t) \leq 2t$.

No K_{t+1} -minor \Rightarrow no $K_{t,t}$ -subgraph.

Theorem (L., Wood) f(t) < t + 2.

Question: For every t, what is the minimum f(t) such that the class of K_{t+1} -minor-free graphs is clustered f(t)-colorable?

Theorem:

- (Edwards, Kang, Kim, Oum, Seymour) $t \le f(t) \le 4t$.
- (Kawarabayashi, Mohar) $f(t) \leq \lceil \frac{31}{2}(t+1) \rceil$.
- (Wood) $f(t) \leq \lceil \frac{7}{2}t + 2 \rceil$.
- (L., Oum) $f(t) \le 3t$.
- (Norin; van den Heuval, Wood) $f(t) \leq 2t$.

No K_{t+1} -minor \Rightarrow no $K_{t,t}$ -subgraph.

Theorem (L., Wood)

 $f(t) \leq t+2.$

Theorem: (Dvořák, Norin) f(t) = t.

Chun-Hung Liu (Texas A&M) Clustered coloring for old graph coloring conje

3

16 / 25

August 20, 2019

Question: For every t, what is the minimum f(t) such that the class of odd K_{t+1} -minor-free graphs is clustered f(t)-colorable?

Question: For every t, what is the minimum f(t) such that the class of odd K_{t+1} -minor-free graphs is clustered f(t)-colorable?

Theorem:

- (Edwards, Kang, Kim, Oum, Seymour) $f(t) \ge t$.
- (Kawarabayashi) $f(t) \leq 496t$.
- (Kang, Oum) $f(t) \le 10t 13$.

Theorem (L., Wood) f(t) < 8t - 4.

Question: For every t, what is the minimum f(t) such that the class of K_{t+1} -topological minor free graphs is clustered f(t)-colorable?

Question: For every t, what is the minimum f(t) such that the class of K_{t+1} -topological minor free graphs is clustered f(t)-colorable?

 $t\leq f(t)=O(t^2).$

Question: For every t, what is the minimum f(t) such that the class of K_{t+1} -topological minor free graphs is clustered f(t)-colorable?

 $t\leq f(t)=O(t^2).$

Theorem (L., Wood) $f(t) \le 4t - 5$ if $t \ge 2$. No K_{t+1} -topological minor \Rightarrow no $K_{t,\binom{t}{2}+1}$ -subgraph.

Theorem (L., Wood)

- For any t, w, the class of K_{t+1}-topological minor free graphs of tree-width at most w is clustered t + 1-choosable.
- For any t, w, the class of K_{t+1}-topological minor free graphs of layered tree-width at most w is clustered t + 2-colorable.
- So For any t and graph H, the class of K_{t+1} -topological minor and H-minor free graphs is clustered t + 2-colorable.
- For any t and graph H, the class of K_{t+1} -topological minor and odd H-minor free graphs is clustered 2t + 1-colorable.
- For any t, d and graph H of maximum degree d, the class of K_{t+1}-topological minor and H-topological minor free graphs is clustered (t + 3d - 4)-colorable.

3

< ロト < 同ト < ヨト < ヨト

Theorem (L., Wood)

- For any t, w, the class of K_{t+1}-topological minor free graphs of tree-width at most w is clustered t-choosable.
- For any t, w, the class of K_{t+1}-topological minor free graphs of layered tree-width at most w is clustered t + 2-colorable.
- So For any t and graph H, the class of K_{t+1} -topological minor and H-minor free graphs is clustered t + 1-colorable.
- For any t and graph H, the class of K_{t+1}-topological minor and odd H-minor free graphs is clustered 2t + 1-colorable.
- So For any t, d and graph H of maximum degree d, the class of K_{t+1}-topological minor and H-topological minor free graphs is clustered (t + 3d 5)-colorable.

イロト イ押ト イヨト イヨト

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

- (Esperet, Ochem) The class of (g, 0)-planar graphs is clustered 5-colorable.
- **(Wood)** The class of (g, k)-planar graphs is clustered 12-colorable.

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

- (Esperet, Ochem) The class of (g, 0)-planar graphs is clustered 5-colorable.
- **(Wood)** The class of (g, k)-planar graphs is clustered 12-colorable.
- Oujmović, Eppstein, Wood) Every (g, k)-planar graph has layered tree-width at most O(gk).
- (Ossona de Mendez, Oum, Wood) Every (g, k)-planar graph has no K_{3,t} subgraph for some large t ≤ O(kg²).
- (L., Wood) For any p, q, w, the class of graphs of layered tree-width at most w with no $K_{p,q}$ -subgraph is clustered p + 2-colorable.

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

Theorem:

- (Esperet, Ochem) The class of (g, 0)-planar graphs is clustered 5-colorable.
- **(Wood)** The class of (g, k)-planar graphs is clustered 12-colorable.
- Oujmović, Eppstein, Wood) Every (g, k)-planar graph has layered tree-width at most O(gk).
- (Ossona de Mendez, Oum, Wood) Every (g, k)-planar graph has no K_{3,t} subgraph for some large t ≤ O(kg²).
- (L., Wood) For any p, q, w, the class of graphs of layered tree-width at most w with no $K_{p,q}$ -subgraph is clustered p + 2-colorable.

Corollary (L., Wood)

The class of (g, k)-planar graph is clustered 5-colorable.

Application to geometric graphs

A graph G is a (g, d)-map graph if there exist a graph G_0 embedded in a surface of Euler genus at most g with no edge-crossing and a partition of $F(G_0)$ into two parts X_1, X_2 such that

- every vertex of G_0 is incident with at most d faces in X_1 , and
- $V(G) = X_1$, and two vertices in G are adjacent if and only if they share a vertex of G_0 .

Application to geometric graphs

A graph G is a (g, d)-map graph if there exist a graph G_0 embedded in a surface of Euler genus at most g with no edge-crossing and a partition of $F(G_0)$ into two parts X_1, X_2 such that

- every vertex of G_0 is incident with at most d faces in X_1 , and
- $V(G) = X_1$, and two vertices in G are adjacent if and only if they share a vertex of G_0 .

The class of (g, 3)-map graphs equals the class of graphs of Euler genus at most g.

Theorem: (Dujmović, Eppstein, Wood) Every (g, d)-map graph is $(g, O(d^2))$ -planar.

Corollary (L., Wood) The class of (g, d)-map graphs is clustered 5-colorable. A (g, k)-string graph is the intersection graph of a set of curves on a surface of Euler genus at most g, where every curve intersects at most k other curves.

Theorem: (Dujmović, Joret, Morin, Norin, Wood) Every (g, k)-string graph has layered treewidth at most O(gk).

Corollary (L., Wood)

The class of (g, k)-string graphs is clustered 3-colorable.

Future work

Question:

- Is the class of K_{t+1}-topological minor free graphs clustered t-colorable?
- **2** Is the class of odd K_{t+1} -minor free graphs clustered *t*-colorable?
- Is the class of K_{t+1}-topological minor free graphs clustered t-choosable?

Future work

Question:

- Is the class of K_{t+1}-topological minor free graphs clustered t-colorable?
- **2** Is the class of odd K_{t+1} -minor free graphs clustered *t*-colorable?
- Is the class of K_{t+1}-topological minor free graphs clustered t-choosable?
- What is the minimum f(d) such that the class of graphs of maximum degree at most d is clustered f(d)-colorable?
 - (Alon, Ding, Oporowski, Vertigan; Haxell, Szabó, Tardos) $\lfloor \frac{d+6}{4} \rfloor \leq f(d) \leq \lceil \frac{d+1}{3} \rceil$.

Future work

Question:

- Is the class of K_{t+1}-topological minor free graphs clustered t-colorable?
- **2** Is the class of odd K_{t+1} -minor free graphs clustered *t*-colorable?
- Is the class of K_{t+1}-topological minor free graphs clustered t-choosable?
- What is the minimum f(d) such that the class of graphs of maximum degree at most d is clustered f(d)-colorable?
 - (Alon, Ding, Oporowski, Vertigan; Haxell, Szabó, Tardos) $\lfloor \frac{d+6}{4} \rfloor \leq f(d) \leq \lceil \frac{d+1}{3} \rceil$.

The *connected tree-depth* of a graph H is the minimum depth of a rooted tree T such that H is a subgraph of the closure of T.

Conjecture: (Norin, Scott, Seymour, Wood) If the connected tree-depth of H is at most t, then the class of H-minor free graphs is clustered (2t - 2)-colorable.

THANK YOU!

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・