Clustered coloring for old graph coloring conjectures

Chun-Hung Liu

Texas A\&M University
August 20, 2019

Graph coloring

A graph G is properly k-colorable if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.

Graph coloring

A graph G is properly k-colorable if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.
G is properly t-colorable $\Rightarrow G$ has no K_{t+1} subgraph.

Graph coloring

A graph G is properly k-colorable if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.
G is properly t-colorable $\Rightarrow G$ has no K_{t+1} subgraph.
Question: Is G properly t-colorable if G has no K_{t+1} subgraph?

Graph coloring

A graph G is properly k-colorable if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.
G is properly t-colorable $\Rightarrow G$ has no K_{t+1} subgraph.
Question: Is G properly t-colorable if G has no K_{t+1} subgraph? Answer: No!

Theorem: (Erdős) For every graph H that contains a cycle and every $t \in \mathbb{N}$, there exists a non-properly t-colorable graph with no H subgraph.

Graph coloring

A graph G is properly k-colorable if the vertices of G can be colored with k colors such that every pair of adjacent vertices receive different colors.
G is properly t-colorable $\Rightarrow G$ has no K_{t+1} subgraph.
Question: Is G properly t-colorable if G has no K_{t+1} subgraph? Answer: No!

Theorem: (Erdős) For every graph H that contains a cycle and every $t \in \mathbb{N}$, there exists a non-properly t-colorable graph with no H subgraph.

More structures?
A graph is a planar graph if it can be drawn in the plane without edge-crossing.

Four Color Theorem: Every planar graph is properly 4-colorable.

Hadwiger's conjecture

A graph G contains another graph H as a minor if H can be obtained from a subgraph of G by repeatedly contracting edges.

Hadwiger's conjecture: Every $K_{t+1}-m i n o r$ free graph is properly t-colorable.

Hadwiger's conjecture

A graph G contains another graph H as a minor if H can be obtained from a subgraph of G by repeatedly contracting edges.

Hadwiger's conjecture: Every $K_{t+1}-m i n o r$ free graph is properly t-colorable.

- (Hadwiger): True for $t \leq 3$.
- (Wagner): Equivalent with the Four Color Theorem for $t=4$.
- (Robertson, Seymour, Thomas): True for $t=5$.
- Open for $t \geq 6$.
- (Kostochka; Thomason:) $O(t \sqrt{\log t})$ colors suffice.

Topological minors

A graph G contains another graph H as a topological minor if H can be obtained from a subgraph of G by repeatedly contracting edges incident with vertices of degree two.

Hajós' conjecture: Every K_{t+1}-topological minor free graph is properly t-colorable.

Topological minors

A graph G contains another graph H as a topological minor if H can be obtained from a subgraph of G by repeatedly contracting edges incident with vertices of degree two.

Hajós’ conjecture: Every K_{t+1}-topological minor free graph is properly t-colorable.

- (Dirac): True for $t \leq 3$.
- (Catlin): False for $t \geq 6$.
- Open for $t \in\{4,5\}$.
- (Erdős, Fajtlowicz): Need $\Omega\left(t^{2} / \log t\right)$ colors.
- (Bollobás, Thomason; Komlós, Szemerédi): $O\left(t^{2}\right)$ colors suffice.

Odd minors

A graph G contains another graph H as an odd minor if H can be obtained from a subgraph of G by contracting all edges in an edge-cut.

Gerards-Seymour Conjecture: Every odd K_{t+1}-minor free graph is properly t-colorable.

Odd minors

A graph G contains another graph H as an odd minor if H can be obtained from a subgraph of G by contracting all edges in an edge-cut.

Gerards-Seymour Conjecture: Every odd K_{t+1}-minor free graph is properly t-colorable.

- (Catlin): True for $t \leq 3$.
- (Guenin): True for $t \leq 4$.
- Open for $t \geq 5$.
- (Geelen, Gerards, Reed, Seymour, Vetta): $O(t \sqrt{\log t})$ colors suffice.

Clustered coloring

A graph G is properly k-colorable if and only if the vertices of G can be colored with k colors such that every monochromatic component contains only 1 vertex.

Clustered coloring

A graph G is properly k-colorable if and only if the vertices of G can be colored with k colors such that every monochromatic component contains only 1 vertex.

A class \mathcal{F} of graphs is clustered k-colorable if there exists an integer N such that for every $G \in \mathcal{F}$, the vertices of G can be colored with k colors such that every monochromatic component contains at most N vertices.

Standard construction

Let $\mathcal{F}_{k, N}$ be the set of graphs such that every k-coloring leads to a monochromatic component on more than N vertices.

A class \mathcal{F} of graph is clustered k-colorable \Leftrightarrow there exists N such that $\mathcal{F} \cap \mathcal{F}_{k, n}=\emptyset$ for every $n \geq N$.

Standard construction

Let $\mathcal{F}_{k, N}$ be the set of graphs such that every k-coloring leads to a monochromatic component on more than N vertices.

A class \mathcal{F} of graph is clustered k-colorable \Leftrightarrow there exists N such that $\mathcal{F} \cap \mathcal{F}_{k, n}=\emptyset$ for every $n \geq N$.
$\mathcal{F}_{1, N}$ is the set of graphs that contain a component on at least $N+1$ vertices.

Standard construction

Let $\mathcal{F}_{k, N}$ be the set of graphs such that every k-coloring leads to a monochromatic component on more than N vertices.

A class \mathcal{F} of graph is clustered k-colorable \Leftrightarrow there exists N such that $\mathcal{F} \cap \mathcal{F}_{k, n}=\emptyset$ for every $n \geq N$.
$\mathcal{F}_{1, N}$ is the set of graphs that contain a component on at least $N+1$ vertices.

Standard construction:

- Let $H \in \mathcal{F}_{k, N}$.
- Let G be the graph obtained from a union of N disjoint copies of H by adding a new vertex v adjacent to all other vertices.
- Then $G \in \mathcal{F}_{k+1, N}$.

Clustered coloring and planar graphs

Hex Lemma: Any 2-coloring of the $N \times N$ triangular grid leads to a monochromatic path on N vertices.

Clustered coloring and planar graphs

Hex Lemma: Any 2-coloring of the $N \times N$ triangular grid leads to a monochromatic path on N vertices.

Corollary: Let $q \geq 6$. If \mathcal{F} is a set of graphs of maximum degree at most q and contains all planar graphs, then \mathcal{F} is not clustered 2-colorable.

Clustered coloring and planar graphs

Hex Lemma: Any 2-coloring of the $N \times N$ triangular grid leads to a monochromatic path on N vertices.

Corollary: Let $q \geq 6$. If \mathcal{F} is a set of graphs of maximum degree at most q and contains all planar graphs, then \mathcal{F} is not clustered 2-colorable.

Theorem: (Alon, Ding, Oporowski, Vertigan) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

Minor closed families of bounded maximum degree graphs

Theorem:

(1) (Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

Minor closed families of bounded maximum degree graphs

Theorem:

(1) (Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.
(2) (Alon, Ding, Oporowski, Vertigan): For any q and any graph H, the class of H -minor-free graphs of maximum degree at most q is clustered 4-colorable.

Minor closed families of bounded maximum degree graphs

Theorem:

(1) (Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.
(2) (Alon, Ding, Oporowski, Vertigan): For any q and any graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 4-colorable.
(3) (Esperet, Joret): For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

Minor closed families of bounded maximum degree graphs

Theorem:

(1) (Alon, Ding, Oporowski, Vertigan): For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.
(2) (Alon, Ding, Oporowski, Vertigan): For any q and any graph H, the class of H -minor-free graphs of maximum degree at most q is clustered 4-colorable.
(3) (Esperet, Joret): For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.
(9) (L., Oum): For any q and any graph H, the class of odd H-minor-free graphs of maximum degree at most q is clustered 3-colorable.

Clustered list-coloring

Theorem: (Alon, Ding, Oporowski, Vertigan) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

Clustered list-coloring

Theorem: (Alon, Ding, Oporowski, Vertigan) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-colorable.

A class \mathcal{F} of graphs is clustered k-choosable if there exists an integer N such that for every list-assignment $L=\left(L_{v}: v \in V(G)\right)$ of any graph $G \in \mathcal{F}$ with $|L(v)| \geq k$ for every $v \in V(G)$, there exists a coloring f such that $f(v) \in L_{v}$ for every $v \in V(G)$ such that every monochromatic component contains at most N vertices.

Theorem: (L.) For any q and any planar graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 2-choosable.

Tree-decomposition

(T, \mathcal{X}) is a tree-decomposition of G if the following hold.

- T is a tree, and $\mathcal{X}=\left\{X_{t}: t \in V(T)\right\}$, where each X_{t} is a subset of $V(G)$ and $\bigcup_{t \in V(T)} X_{t}=V(G)$.
- For every edge of G, its both ends are in some X_{t}.
- For every vertex v of G, the subgraph of T induced by $\left\{t \in V(T): v \in X_{t}\right\}$ is connected.
The width of (T, \mathcal{X}) is $\max _{t \in V(T)}\left|X_{t}\right|-1$.
The tree-width of a graph is the minimum width of its tree-decompositions.

Tree-decomposition

(T, \mathcal{X}) is a tree-decomposition of G if the following hold.

- T is a tree, and $\mathcal{X}=\left\{X_{t}: t \in V(T)\right\}$, where each X_{t} is a subset of $V(G)$ and $\bigcup_{t \in V(T)} X_{t}=V(G)$.
- For every edge of G, its both ends are in some X_{t}.
- For every vertex v of G, the subgraph of T induced by $\left\{t \in V(T): v \in X_{t}\right\}$ is connected.
The width of (T, \mathcal{X}) is $\max _{t \in V(T)}\left|X_{t}\right|-1$.
The tree-width of a graph is the minimum width of its tree-decompositions.

Theorem (L.): For any q, w, the class of graphs of maximum degree at most q and tree-width most w is clustered 2-choosable.

Layered tree-width

Theorem: (Esperet, Joret) For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

Layered tree-width

Theorem: (Esperet, Joret) For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

A layering of a graph G is an ordered partition $\left(V_{1}, V_{2}, \ldots\right)$ of $V(G)$ such that for every edge e of G, there exists i such that either both ends of e are contained in V_{i}, or e is between V_{i} and V_{i+1}.

Layered tree-width

Theorem: (Esperet, Joret) For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

A layering of a graph G is an ordered partition $\left(V_{1}, V_{2}, \ldots\right)$ of $V(G)$ such that for every edge e of G, there exists i such that either both ends of e are contained in V_{i}, or e is between V_{i} and V_{i+1}.

The layered tree-width of G is the minimum w such that there exist a layering $\left(V_{1}, V_{2}, \ldots\right)$ and a tree-decomposition (T, \mathcal{X}) such that $\max _{i \in \mathbb{N}, t \in V(T)}\left|V_{i} \cap X_{t}\right|=w$.

Layered tree-width

Theorem: (Esperet, Joret) For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3-colorable.

A layering of a graph G is an ordered partition $\left(V_{1}, V_{2}, \ldots\right)$ of $V(G)$ such that for every edge e of G, there exists i such that either both ends of e are contained in V_{i}, or e is between V_{i} and V_{i+1}.

The layered tree-width of G is the minimum w such that there exist a layering $\left(V_{1}, V_{2}, \ldots\right)$ and a tree-decomposition (T, \mathcal{X}) such that $\max _{i \in \mathbb{N}, t \in V(T)}\left|V_{i} \cap X_{t}\right|=w$.

Theorem: (Dujmović, Morin, Wood) Every graph embeddable in a surface of Euler genus g has layered tree-width at most $2 g+3$.

Layered tree-width

Theorem: (Esperet, Joret) For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3 -colorable such that every monochromatic component contains $O\left(q^{32 q 2^{g}}\right)$ vertices.

Theorem (L., Wood)
For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable such that every monochromatic component contains $O\left(w^{22} q^{43}\right)$ vertices.

Layered tree-width

Theorem: (Esperet, Joret) For any q and any surface Σ, the class of graphs of maximum degree at most q embeddable in Σ is clustered 3 -colorable such that every monochromatic component contains $O\left(q^{32 q 2^{g}}\right)$ vertices.

Theorem (L., Wood)

For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable such that every monochromatic component contains $O\left(w^{22} q^{43}\right)$ vertices.

- Classes of graphs of bounded layered treewidth are not minor closed.
- K K_{6}-minor-free graphs can have arbitrarily large layered treewidth.
- Graphs of layered treewidth 2 can contain arbitrarily large graph as a minor.

Summary for graphs of bounded maximum degree

Theorem:

(1) (L.): For any q, w, the class of graphs of maximum degree at most q and tree-width at most w is clustered 2-choosable.
(2) (L., Wood): For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable.
(3) (L., Oum): For any q and graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 3-colorable.
(9) (L., Oum): For any q and graph H, the class of odd H-minor-free graphs of maximum degree at most q is clustered 3 -colorable.

Summary for graphs of bounded maximum degree

Theorem:

(1) (L.): For any q, w, the class of graphs of maximum degree at most q and tree-width at most w is clustered 2-choosable.
(2) (L., Wood): For any q, w, the class of graphs of maximum degree at most q and layered tree-width at most w is clustered 3-colorable.
(3) (L., Oum): For any q and graph H, the class of H-minor-free graphs of maximum degree at most q is clustered 3-colorable.
(9) (L., Oum): For any q and graph H, the class of odd H-minor-free graphs of maximum degree at most q is clustered 3 -colorable.

Maximum degree at most $q \Leftrightarrow$ no $K_{1, q+1}$-subgraph.

Excluding complete bipartite subgraphs

Theorem (L., Wood)

(1) For any p, q, w, the class of graphs of tree-width at most w with no $K_{p, q}$-subgraph is clustered $p+1$-choosable.
(2) For any p, q, w, the class of graphs of layered tree-width at most w with no $K_{p, q}$-subgraph is clustered $p+2$-colorable.
(3) For any p, q and graph H, the class of H-minor-free graphs with no $K_{p, q}$-subgraph is clustered $p+2$-colorable.
(9) For any p, q and graph H, the class of odd H-minor-free graphs with no $K_{p, q}$-subgraph is clustered $2 p+1$-colorable.
(3) For any p, q, d with $p+3 d \geq 7$ and graph H of maximum degree d, the class of H-topological minor free graphs with no $K_{p, q}$-subgraph is clustered ($p+3 d-4$)-colorable.

Statements 1 and 3 are tight for every p.

Application to Hadwiger's conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of K_{t+1}-minor-free graphs is clustered $f(t)$-colorable?

Application to Hadwiger's conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of K_{t+1}-minor-free graphs is clustered $f(t)$-colorable?

Theorem:

- (Edwards, Kang, Kim, Oum, Seymour) $t \leq f(t) \leq 4 t$.
- (Kawarabayashi, Mohar) $f(t) \leq\left\lceil\frac{31}{2}(t+1)\right\rceil$.
- (Wood) $f(t) \leq\left\lceil\frac{7}{2} t+2\right\rceil$.
- (L., Oum) $f(t) \leq 3 t$.
- (Norin; van den Heuval, Wood) $f(t) \leq 2 t$.

Application to Hadwiger's conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of K_{t+1}-minor-free graphs is clustered $f(t)$-colorable?

Theorem:

- (Edwards, Kang, Kim, Oum, Seymour) $t \leq f(t) \leq 4 t$.
- (Kawarabayashi, Mohar) $f(t) \leq\left\lceil\frac{31}{2}(t+1)\right\rceil$.
- (Wood) $f(t) \leq\left\lceil\frac{7}{2} t+2\right\rceil$.
- (L., Oum) $f(t) \leq 3 t$.
- (Norin; van den Heuval, Wood) $f(t) \leq 2 t$.

No $K_{t+1}-$ minor \Rightarrow no $K_{t, t}$-subgraph.
Theorem (L., Wood)
$f(t) \leq t+2$.

Application to Hadwiger's conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of K_{t+1}-minor-free graphs is clustered $f(t)$-colorable?

Theorem:

- (Edwards, Kang, Kim, Oum, Seymour) $t \leq f(t) \leq 4 t$.
- (Kawarabayashi, Mohar) $f(t) \leq\left\lceil\frac{31}{2}(t+1)\right\rceil$.
- (Wood) $f(t) \leq\left\lceil\frac{7}{2} t+2\right\rceil$.
- (L., Oum) $f(t) \leq 3 t$.
- (Norin; van den Heuval, Wood) $f(t) \leq 2 t$.

No K_{t+1}-minor \Rightarrow no $K_{t, t}$-subgraph.
Theorem (L., Wood)
$f(t) \leq t+2$.
Theorem: (Dvořák, Norin) $f(t)=t$.

Application to Gerards-Seymour Conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of odd K_{t+1}-minor-free graphs is clustered $f(t)$-colorable?

Application to Gerards-Seymour Conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of odd K_{t+1}-minor-free graphs is clustered $f(t)$-colorable?

Theorem:

- (Edwards, Kang, Kim, Oum, Seymour) $f(t) \geq t$.
- (Kawarabayashi) $f(t) \leq 496 t$.
- (Kang, Oum) $f(t) \leq 10 t-13$.

Theorem (L., Wood)

$f(t) \leq 8 t-4$.

Application to Hajós' conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of K_{t+1}-topological minor free graphs is clustered $f(t)$-colorable?

Application to Hajós' conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of K_{t+1}-topological minor free graphs is clustered $f(t)$-colorable?

$$
t \leq f(t)=O\left(t^{2}\right)
$$

Application to Hajós' conjecture

Question: For every t, what is the minimum $f(t)$ such that the class of K_{t+1}-topological minor free graphs is clustered $f(t)$-colorable? $t \leq f(t)=O\left(t^{2}\right)$.

Theorem (L., Wood)
$f(t) \leq 4 t-5$ if $t \geq 2$.

Application Hajós' conjecture

No K_{t+1}-topological minor \Rightarrow no $K_{t,\binom{t}{2}+1^{\text {-subgraph }}}$.

Theorem (L., Wood)

(1) For any t, w, the class of K_{t+1}-topological minor free graphs of tree-width at most w is clustered $t+1$-choosable.
(2) For any t, w, the class of K_{t+1}-topological minor free graphs of layered tree-width at most w is clustered $t+2$-colorable.
(3) For any t and graph H, the class of $K_{t+1 \text {-topological minor and }}$ H-minor free graphs is clustered $t+2$-colorable.
(9) For any t and graph H, the class of $K_{t+1 \text {-topological minor and odd }}$ H-minor free graphs is clustered $2 t+1$-colorable.
(3) For any t, d and graph H of maximum degree d, the class of K_{t+1}-topological minor and H-topological minor free graphs is clustered $(t+3 d-4)$-colorable.

Application to Hajós' conjecture

Theorem (L., Wood)

(1) For any t, w, the class of K_{t+1}-topological minor free graphs of tree-width at most w is clustered t-choosable.
(2) For any t, w, the class of K_{t+1}-topological minor free graphs of layered tree-width at most w is clustered $t+2$-colorable.
(3) For any t and graph H, the class of $K_{t+1 \text {-topological minor and }}$ H-minor free graphs is clustered $t+1$-colorable.
(9) For any t and graph H, the class of K_{t+1}-topological minor and odd H-minor free graphs is clustered $2 t+1$-colorable.
(6) For any t, d and graph H of maximum degree d, the class of K_{t+1}-topological minor and H-topological minor free graphs is clustered $(t+3 d-5)$-colorable.

Application to embedded graphs with crossings

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

Application to embedded graphs with crossings

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

Theorem:

(1) (Esperet, Ochem) The class of $(g, 0)$-planar graphs is clustered 5-colorable.
(2) (Wood) The class of (g, k)-planar graphs is clustered 12-colorable.

Application to embedded graphs with crossings

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

Theorem:

(1) (Esperet, Ochem) The class of $(g, 0)$-planar graphs is clustered 5-colorable.
(2) (Wood) The class of (g, k)-planar graphs is clustered 12-colorable.
(3) (Dujmović, Eppstein, Wood) Every (g, k)-planar graph has layered tree-width at most $O(g k)$.
(9) (Ossona de Mendez, Oum, Wood) Every ($g, k)$-planar graph has no $K_{3, t}$ subgraph for some large $t \leq O\left(\mathrm{~kg}^{2}\right)$.
(3) (L., Wood) For any p, q, w, the class of graphs of layered tree-width at most w with no $K_{p, q}$-subgraph is clustered $p+2$-colorable.

Application to embedded graphs with crossings

A graph is (g, k)-planar if it can be drawn in a surface of Euler genus at most g such that there are at most k edge-crossings on each edge.

Theorem:

(1) (Esperet, Ochem) The class of $(g, 0)$-planar graphs is clustered 5-colorable.
(2) (Wood) The class of (g, k)-planar graphs is clustered 12-colorable.
(3) (Dujmović, Eppstein, Wood) Every (g, k)-planar graph has layered tree-width at most $O(g k)$.
(9) (Ossona de Mendez, Oum, Wood) Every ($g, k)$-planar graph has no $K_{3, t}$ subgraph for some large $t \leq O\left(\mathrm{~kg}^{2}\right)$.
(3) (L., Wood) For any p, q, w, the class of graphs of layered tree-width at most w with no $K_{p, q}$-subgraph is clustered $p+2$-colorable.

Corollary (L., Wood)

The class of (g, k)-planar graph is clustered 5-colorable.

Application to geometric graphs

A graph G is a (g, d)-map graph if there exist a graph G_{0} embedded in a surface of Euler genus at most g with no edge-crossing and a partition of $F\left(G_{0}\right)$ into two parts X_{1}, X_{2} such that

- every vertex of G_{0} is incident with at most d faces in X_{1}, and
- $V(G)=X_{1}$, and two vertices in G are adjacent if and only if they share a vertex of G_{0}.

Application to geometric graphs

A graph G is a (g, d)-map graph if there exist a graph G_{0} embedded in a surface of Euler genus at most g with no edge-crossing and a partition of $F\left(G_{0}\right)$ into two parts X_{1}, X_{2} such that

- every vertex of G_{0} is incident with at most d faces in X_{1}, and
- $V(G)=X_{1}$, and two vertices in G are adjacent if and only if they share a vertex of G_{0}.

The class of $(g, 3)$-map graphs equals the class of graphs of Euler genus at most g.

Theorem: (Dujmović, Eppstein, Wood) Every (g, d)-map graph is $\left(g, O\left(d^{2}\right)\right)$-planar.

Corollary (L., Wood)
The class of (g, d)-map graphs is clustered 5-colorable.

Application to geometric graphs

A (g, k)-string graph is the intersection graph of a set of curves on a surface of Euler genus at most g, where every curve intersects at most k other curves.

Theorem: (Dujmović, Joret, Morin, Norin, Wood) Every (g, k)-string graph has layered treewidth at most $O(g k)$.

Corollary (L., Wood)
The class of (g, k)-string graphs is clustered 3-colorable.

Future work

Question:

(1) Is the class of K_{t+1}-topological minor free graphs clustered t-colorable?
(2) Is the class of odd K_{t+1}-minor free graphs clustered t-colorable?
(3) Is the class of K_{t+1}-topological minor free graphs clustered t-choosable?

Future work

Question:

(1) Is the class of K_{t+1}-topological minor free graphs clustered t-colorable?
(2) Is the class of odd K_{t+1}-minor free graphs clustered t-colorable?
(3) Is the class of K_{t+1}-topological minor free graphs clustered t-choosable?
(9) What is the minimum $f(d)$ such that the class of graphs of maximum degree at most d is clustered $f(d)$-colorable?

- (Alon, Ding, Oporowski, Vertigan; Haxell, Szabó, Tardos) $\left\lfloor\frac{d+6}{4}\right\rfloor \leq f(d) \leq\left\lceil\frac{d+1}{3}\right\rceil$.

Future work

Question:

(1) Is the class of K_{t+1}-topological minor free graphs clustered t-colorable?
(2) Is the class of odd K_{t+1}-minor free graphs clustered t-colorable?
(3) Is the class of K_{t+1}-topological minor free graphs clustered t-choosable?
(9) What is the minimum $f(d)$ such that the class of graphs of maximum degree at most d is clustered $f(d)$-colorable?

- (Alon, Ding, Oporowski, Vertigan; Haxell, Szabó, Tardos)

$$
\left\lfloor\frac{d+6}{4}\right\rfloor \leq f(d) \leq\left\lceil\frac{d+1}{3}\right\rceil .
$$

The connected tree-depth of a graph H is the minimum depth of a rooted tree T such that H is a subgraph of the closure of T.

Conjecture: (Norin, Scott, Seymour, Wood) If the connected tree-depth of H is at most t, then the class of H-minor free graphs is clustered ($2 t-2$)-colorable.

THANK YOU!

