On some properties of the α -spectral radius of (hyper)graph

Haiying Shan

School of mathematical Sciences, Tongji University

August 19, 2019

Joint work with Feifei Wang, Tingting Shi and Zhiyi Wang

Outline

Notation and preliminaries

- 2) Graph operations and lpha-spectral radius of hypergraph
- **3** Supertrees with Large α -Spectral Radius
- ${f 40}$ Majorization and lpha- spectral radius of graph

Notation and preliminaries

- **O** A k-uniform hypergraph H = (V(H), E(H)) consists of the vertex set V(H) and the edge set E(H) which is a collection of k-subsets of V(H).
- **2** For $v \in V(H)$, the degree of v,denoted by $d_H(v)$, is defined as the cardinality of $\{e \in E(H) | v \in e\}$.
- **3** Let G = (V, E) be a simple graph. The kth power hypergraph [1] of G is the k-uniform hypergraph resulting from adding k-2 new vertices to each edge of G. The kth power of a tree is called a hypertree [1].
- A supertree [2] is a hypergraph which is both connected and acyclic. A supertree is called a caterpillar if the removal of all pendant edges results in a loose (linear) path. Otherwise, it is called a non-caterpillar.

[1] Shenglong Hu, Liqun Qi, and Jia-Yu Shao. "Cored Hypergraphs, Power Hypergraphs and Their Laplacian H-Eigenvalues". In: Linear Algebra and Its Applications 439.10 (2013), pp. 2980–2998.

[2] Honghai Li, Jia-Yu Shao, and Ligun Qi. "The extremal spectral radii of k-uniform supertrees". In: Journal of Combinatorial Optimization 32:3-(2016), pp. 741=764. August 19, 2019 3/31

Eigenvalues of Tensor

- A tensor (hypermatrix) $\mathscr{A} = (a_{\alpha})$ is a multi-array of entries $a_{\alpha} \in F$, where $\alpha \in [n]^m$ and \mathbf{F} is a field.
- In 2005, Qi [3] introduced the definition of eigenvalues of a tensor.

$$\mathcal{A} \boldsymbol{x} = \lambda \boldsymbol{x}^{[k-1]}.$$
 (1)

$$\begin{split} \lambda \text{ is called an eigenvalue of } \mathcal{A}, \ \boldsymbol{x} \in \mathbb{C}^n \text{ is called an eigenvector of } \mathcal{A} \\ \text{corresponding to the eigenvalue } \lambda, \text{ where } \mathcal{A} \boldsymbol{x} \in \mathbb{C}^n \text{ and} \\ (\mathcal{A} \boldsymbol{x})_i &= \sum_{\beta \in [n]^{k-1}} a_{i,\beta} \prod_{j \in \beta} x_{j}, \quad \boldsymbol{x}^{[r-1]} = \left(x_1^{r-1}, x_2^{r-1}, \dots, x_n^{r-1}\right)^{\mathrm{T}}. \end{split}$$

One spectral radius of A is the largest modulus of its eigenvalues, denoted by ρ(A).

[3] Liqun Qi. "Eigenvalues of a real supersymmetric tensor". In: J. Symbolic Comput. 40.6 (2005), pp. 1302–1324.

Tensors related with Hypergraphs

(J. Cooper,2012 [4]) The adjacency tensor 𝒴(G) = (a_{i1...ik}) of a k-uniform hypergraph G is defined to be a k-th order n dimensional non-negative tensor with entries a_{i1...ik} such that

$$a_{i_1\dots i_k} = \begin{cases} \frac{1}{(k-1)!} & \text{if } \{i_1, i_2, \dots, i_k\} \in E(G), \\ 0 & \text{otherwise.} \end{cases}$$

- 2 The degree tensor $\mathscr{D} = \mathscr{D}(G)$ of G, is a *k*th order *n*-dimensional diagonal tensor, with its *i*th diagonal element as d(i).
- The Laplacian tensor *L* of *G* is defined by *D* − *A*; The signless Laplacian tensor *Q* of *G* is defined by *D* + *A*.
- Onnegative tensors, Laplacian tensors are both copositive tensors(协正张量). Namely x^T𝔄 x ≥ 0 for all x ∈ ℝⁿ₊.

[4] Joshua Cooper and Aaron Dutle. "Spectra of Uniform Hypergraphs". In: *Linear* Algebra and its applications 436.9 (2012), pp. 3268–3292.

α -matrix (tensor) for (hyper)graph

 For an ordinary undirected graph G, 2017, Nikiforov [5] defined the matrix A_α(G) as

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G)$$
 for any real $\alpha \in [0, 1]$.

2 (2018, Guo,Zhou [6]) For $0 \le \alpha < 1$, the \mathscr{A}_{α} tensor of a k-uniform hypergraph G with $V(G) = \{v_1, v_2, \dots, v_n\}$ is defined as follows:

$$\mathscr{A}_{\alpha}(G) = \alpha \mathscr{D}(G) + (1 - \alpha) \mathscr{A}(G).$$
⁽²⁾

• if
$$\alpha = 0$$
, then $\mathscr{A}_{\alpha}(G) = \mathscr{A}(G)$;
• if $\alpha = 1/2$, then $\mathscr{A}_{\alpha}(G) = \frac{1}{2}\mathscr{Q}(G)$;
• if $\alpha = 1$, then $\mathscr{A}_{\alpha}(G) = \mathscr{D}(G)$;
•

$$\mathscr{A}_{\alpha}(G) - \mathscr{A}_{\beta}(G) = (\alpha - \beta)\mathscr{L}(G)$$
(3)

[5] V Nikiforov. "MERGING the A-and Q-SPECTRAL THEORIES". In: Applicable Analysis and Discrete Mathematics 11.1 (2017), pp. 81–107.
[6] HaiYan Guo and Bo Zhou. "On the α-Spectral Radius of Uniform Hypergraphs".
In: arXiv preprint arXiv:1807.08112 (2018).
Haiying Shan (Tongji University) On some properties of the α-spectral radius August 19, 2019 6/31

Homogeneous polynomial form for $\mathscr{A}_{\alpha}(G)$

For a vector \boldsymbol{x} of dimension n and subset $U \subseteq [n] = \{1, 2, ..., n\}$. Denote $x_U = \prod_{i \in U} x_i$. We have

$$\boldsymbol{x}^{T} \mathcal{A}_{\alpha}(G) \boldsymbol{x} = \sum_{e \in E(G)} (\alpha \sum_{u \in e} x_{u}^{k} + (1 - \alpha) k x_{e}).$$
(4)

Let \boldsymbol{x} be the unit Perron eigenvector of $\mathcal{A}_{\alpha}(G)$. We have:

$$\rho_{\alpha}(G) = \sum_{e \in E(G)} \left(\alpha \sum_{u \in e} x_u^k + (1 - \alpha) k x_e \right)$$

$$\rho_{\alpha}(G) x_v^k = \alpha d_v x_v^k + (1 - \alpha) \sum_{e \in E_G(v)} x_e.$$
(6)

Let G be ordinary undirected graph of order n. For the α eigenvalues of G:

$$\lambda_1(A_{\alpha}(G)) \ge \lambda_2(A_{\alpha}(G)) \ge \dots \ge \lambda_n(A_{\alpha}(G))$$

Nikiforov [5] obtain the following result:

Proposition 1.1 (Monotonicity of $\lambda_k(A_\alpha(G))$ in α for graph *G*) If $1 > \alpha > \beta > 0$ and *G* is a graph of order *n*, then

 $\lambda_k(A_\alpha(G)) \ge \lambda_k(A_\beta(G))$

for any $k \in [n]$. If G is connected, then inequality is strict, unless k = 1 and G is regular.

From Formula (3) and Laplacian tensors is copositive, we have

Proposition 1.2 (Monotonicity of $\rho(\mathscr{A}_{\alpha}(G))$ in α for hypergraph G) If $1 > \alpha > \beta > 0$ and G is a hypergraph of order n, then $\rho(A_{\alpha}(G)) \ge \rho(A_{\beta}(G))$

Proposition 1.3

If G is a connected hypergraph with maximal degree Δ and $\alpha \in [0,1],$ then

$$\rho(\mathscr{A}(G)) \le \rho(\mathscr{A}_{\alpha}(G)) \le \Delta.$$

Furthermore, if $\rho(\mathscr{A}_{\alpha}(G)) = \Delta$, then either $\alpha = 1$, or G is regular.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Outline

${f 2}$ Graph operations and lpha-spectral radius of hypergraph

- **3** Supertrees with Large lpha-Spectral Radius
- ${f 0}$ Majorization and lpha- spectral radius of graph

From Perron-Frobenius theorem for nonnegative tensors, we know that the α -spectral radius is monotone with respect to deletion of edges.

Lemma 2.1 (Edge deletion operation)

If G is a connected k-uniform hypergraph and $e \in E(G)$, then $\rho_{\alpha}(G) > \rho_{\alpha}(G-e)$.

Consequently, among k-uniform hypergraphs on n vertices the complete hypergraph $K_n^{(k)}$ has the maximum α -spectral radius.

Lemma 2.2 (The edge rotation lemma (2018, Guo, Zhou [6]))

For $k \geq 2$, let G be a k-uniform hypergraph with $u, v_1, \ldots, v_r \in V(G)$ and $e_1, \ldots, e_r \in E(G)$ for $r \geq 1$ such that $u \notin e_i$ and $v_i \in e_i$ for $i = 1, \ldots, r$, where v_1, \ldots, v_r are not necessarily distinct. Let $e'_i = (e_i \setminus \{v_i\}) \cup \{u\} \notin E(G)$ for $i = 1, \ldots, r$. Let $G' = G - \{e_1, \ldots, e_r\} + \{e'_1, \ldots, e'_r\}$. If the α -Perron vector x of G satisfies $x_u \geq \max\{x_{v_1}, \ldots, x_{v_r}\}$, then $\rho_{\alpha}(G') > \rho_{\alpha}(G)$.

Corollary 2.1

Let u_1, u_2 are non-pendant vertices in an edge of connected uniform hypergraph H with $|E_H(u_i) \setminus E_H[\{u_1, u_2\}]| \ge 1$ for i = 1, 2. Let H' be the hypergraph obtained from H by moving edges $E_H(u_2) \setminus E_H[\{u_1, u_2\}]$ from u_2 to u_1 and $H \ncong H'$, then

$$\rho_{\alpha}(H) < \rho_{\alpha}(H').$$

Definition 2.3 (Edge-releasing Operation)

Let G be a k-uniform linear hypergraph with $k \ge 3$. Let $e = \{v_1, \ldots, v_k\}$ be an edge of G with $d_G(v_i) \ge 2$ for $i = 1, \ldots, r$, and $d_G(v_i) = 1$ for $i = r + 1, \ldots, k$, where $3 \le r \le k$. Let G' be the hypergraph obtained from G by moving all edges containing v_3, \ldots, v_r except e from v_3, \ldots, v_r to v_1 . We say G' is obtained from G by Operation I.

Theorem 2.4 (2018, Guo, Zhou)

If G' is obtained from G by Operation I, then we have $\rho_{\alpha}(G') > \rho_{\alpha}(G)$.

Definition 2.5 (2-switching operation)

Let e_1, e_2 be two edges of k-uniform hypergraph G = (V, E). If U_1, U_2 are r-subsets of e_1, e_2 respectively with $1 \le r < k$ and k-sets $e'_1 = (e_1 \cup U_2) \setminus U_1, e'_2 = (e_2 \cup U_1) \setminus U_2 \notin E(G)$. We say that hypergraph $G' = G - \{e_1, e_2\} + \{e'_1, e'_2\}$ is obtained from Gby 2-switching operation $e_1 \underbrace{\frac{U_1}{U_2}}{e_2} e_2$.

Theorem 2.6 (Wang, Shan, et al. 2019+; Guo, Zhou, 2018)

Let G be a connected k-uniform hypergraph and $e, f \in E(G)$. Let $U_1 \subset e, U_2 = e \setminus U_1, V_1 \subset f, V_2 = f \setminus V_1$ with $1 \leq |U_1| = |V_1| \leq k - 1$. Suppose that $e' = U_1 \cup V_2$ and $f' = V_1 \cup U_2$ are k-subsets of V(G) and not in E(G). Let $G' = G - \{e, f\} + \{e', f'\}$. Let x be the principal eigenvector of $\mathcal{A}_{\alpha}(G)$. If $x_{U_1} \geq x_{V_1}$ and $x_{U_2} \leq x_{V_2}$, then $\rho_{\alpha}(G) \leq \rho_{\alpha}(G')$. Moreover, the equality holds iff $x_{U_2} = x_{V_2}$ and $x_{U_1} = x_{V_1}$.

Corollary 2.2

Let G be a connected k-uniform hypergraph and x be the principal eigenvector of $\mathcal{A}_{\alpha}(G)$. Suppose that $e, f \in E(G)$ such that

$$\{u_1, u_2\} \subset e, \{v_1, v_2\} \subset f \text{ and } x_{u_1} > x_{v_1}, x_{u_2} \leq x_{v_2}.$$

If u_i is not adjacent to v_j in G for any $i, j \in \{1, 2\}$, then there exist k-subsets e', f' of V(G) with $\{u_1, v_2\} \subset e', \{u_2, v_1\} \subset f'$ such that:

 $\rho_{\alpha}(G) < \rho_{\alpha}(G'),$

where $G' = G - \{e, f\} + \{e', f'\}.$

・ 「「・ ・ 」 ・ ・ 「」

悬挂路的同 (异) 点嫁接

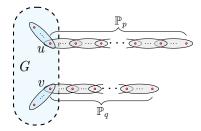


Figure 1: The hypergraph $G_{u,v}(p,q)$

For non-negative integers a, b, c, d with a + b = c + d, we say that the graph $G_{u,v}(c, d)$ is obtained from $G_{u,v}(a, b)$ by an edge grafting operation on the two relevant pendant paths of $G_{u,v}(a, b)$.

The edge grafting operation for graphs was usually considered in the study on graph variants.

16/31

Nikiforov's Conjecture on grafting operation

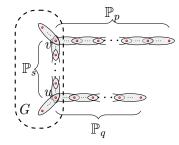


Figure 2: Hypergraph $G_{u,v}(p, q; s)$

Conjecture 1 (Nikiforov and Rojo, 2018 [5])

Suppose G be an ordinary graph with $u, v \in V(G)$ and $d_G(u), d_G(v) \ge 2$. Let $\alpha \in [0, 1)$ and s = 0, 1. If $q \ge 1$ and $p \ge q + 2$, then

$$\rho_{\alpha}(G_{u,v}(p,q;s)) < \rho_{\alpha}(G_{u,v}(p-1,q+1;s)).$$

Question 1

For which connected graphs G the following statement is true: Let $\alpha \in [0,1)$ and let u and v be non-adjacent vertices of G of degree at least 2. If $q \ge 1$ and $p - q \ge 2$, then $\rho_{\alpha}(G_{u,v}(p,q)) < \rho_{\alpha}(G_{u,v}(p-1,q+1)).$

Conjecture 1 is already confirmed by Lin in [7]. Furthermore, Guo in [5] showed that Conjecture 1 also holds for connected k-uniform hypergraph when s = 0.

Question 1 is confirmed true by Lin in [9] for the type of graphs $G_{u,v}(p,q;s)$ when $p-q \ge \max\{s+1,2\}$.

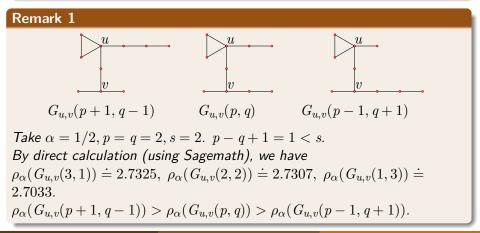
[7] Huiqiu Lin, Xing Huang, and Jie Xue. "A Note on the A_{α} -Spectral Radius of Graphs". In: Linear Algebra and its Applications 557 (2018); pp.430-437.(\Rightarrow) \Rightarrow Haiying Shan (Tongji University) On some properties of the α -spectral radius August 19, 2019

18/31

Theorem 2.7 (Wang, Shan, et al. 2019+)

Let u, v be two non-pendant vertices of hypergraph G. If there exist an internal path \mathbb{P} with s length in hypergraph $G_{u,v}(p,q)$ for any $p \ge q \ge 1$, then we have

$$\rho_{\alpha}(G_{u,v}(p+1,q-1)) < \rho_{\alpha}(G_{u,v}(p,q)) \quad \text{for } p-q+1 \ge s \ge 0.$$



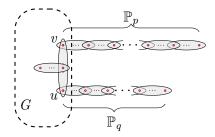


Figure 3: The hypergraph $G_{u,v}(p,q)$

Theorem 2.8

Let G be a connected uniform hypergraph and u, v be two pendant vertices in a pendant edge e of G. If $p \ge q \ge 1$, then

$$\rho_{\alpha}(G_{u,v}(p,q)) > \rho_{\alpha}(G_{u,v}(p+1,q-1)).$$

Outline

1 Notation and preliminaries

2) Graph operations and lpha-spectral radius of hypergraph

3 Supertrees with Large α -Spectral Radius

m 4 Majorization and lpha- spectral radius of graph

Supertrees with Large α -Spectral Radius

- In [8], [9], Yuan et al. determined the top ten supertrees with the maximum spectral radii.
- **②** Guo, Zhou, 2018, Suppose that $k \ge 2$. If G is a k-uniform supertree with $m \ge 1$ edges, then $\rho_{\alpha}(G) \le \rho_{\alpha}(K_{1,m}^k)$ for $0 \le \alpha < 1$ with equality holds if and only if $G \cong K_{1,m}^k$.

Theorem 3.1 (Wang, Shan, et al. 2019+)

Let T be a k-uniform supertree on n vertices with m edges, suppose that $T \ncong K_{1,m}^k$, then we have

$$\rho_{\alpha}(T) \le \rho_{\alpha}(S^{k}(1, m-2))$$

where the equality holds if and only if $T \cong S^k(1, m-2)$.

[8] Xiying Yuan, Jiayu Shao, and Haiying Shan. "Ordering of some uniform supertrees with larger spectral radii". In: *Linear Algebra Appl.* 495 (2016), pp. 206–222.
[9] Xiying Yuan, Xuelian Si, and Li Zhang. "Ordering Uniform Supertrees by Their Spectral Radii". In: *Frontiers of Mathematics in China* 12.6=(2017), pp. 1393–1408. 2000

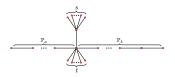
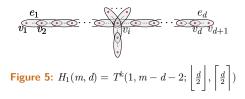


Figure 4: The tree T(s, t; a, b)



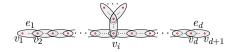


Figure 6: $H_2(m, d) = T^k(m - d - 1, 0; \lfloor \frac{d}{2} \rfloor, \lceil \frac{d}{2} \rceil)$

Let NC(m) denote the set of k-uniform non-hyper-caterpillars with m edges. Let C(m, d) and NC(m, d) denote, respectively, the set of k-uniform hyper-caterpillars and non-hyper-caterpillars with m edges and diameter d. In [10], Guo and Zhou investigated the adjacency spectral radius of uniform hypertrees and showed that $H_1(m, d)$ be the unique non-hyper-caterpillar with maximum spectral radius among NC(m, d).

Theorem 3.2

Let $G \in NC(m, d)$, then we have

 $\rho_{\alpha}(G) \leq \max\{\rho_{\alpha}(H_1(m,d)), \rho_{\alpha}(H_2(m,d))\}.$

Equality holds if and only if $G \cong H_1(m, d)$ or $G \cong H_2(m, d)$.

[10] Haiyan Guo and Bo Zhou. "On the spectral radius of uniform hypertrees". In: Linear Algebra and its Applications 558 (2018), pp. 236-249. $A \rightarrow A = A = A = A$ Haiying Shan (Tongji University) On some properties of the α -spectral radius August 19, 2019

24/31

Outline

- Notation and preliminaries
- 2) Graph operations and lpha-spectral radius of hypergraph
- **3** Supertrees with Large α -Spectral Radius
- **4** Majorization and α spectral radius of graph

Majorization and $\alpha\textsc{-}$ spectral radius of graph

Definition 4.1

For non-increasing sequences
$$\pi = (n_1, \ldots, n_k)$$
 and $\pi' = (n'_1, \ldots, n'_k)$, π' is said to majorize π if $\sum_{i=1}^k n_i = \sum_{i=1}^k n'_i$, and $\sum_{i=1}^p n_i \ge \sum_{i=0}^p n'_i$ for $p = 1, \ldots, k-1$
 π is said to majorize π' and denoted by $\pi \triangleright \pi'$ or $\pi' \triangleleft \pi$.

For details, the readers are referred to the book of Marshall and Olkin [11]

Proposition 4.1

Let $\pi = (n_1, n_2 \cdots n_k)$ and $\pi' = (n'_1, \cdots, n'_k)$ be two different non-increasing integer sequences. If $\pi' \triangleleft \pi$, then there exists a series integer sequences $\pi_1, \pi_2, \ldots, \pi_k$ such that $\pi' \triangleleft \pi_1 \triangleleft \cdots \triangleleft \pi_k \triangleleft \pi$, and only two components of π_i and π_{i+1} are different from 1.

[11] Barry C. Arnold (auth.) Albert W. Marshall Ingram Olkin. Inequalities: Theory of
majorization and its applications. 2nd ed. Springer Series in Statistics. Springer-Verlag
New York, 2011.New York, 2011.

August 19, 2019

26/31

Let $G_v(n_1, n_2, \ldots, n_k)$ be the graph obtained from a non-trivial connected graph G by attaching pendant paths of lengths n_1, n_2, \ldots, n_k , respectively, at some vertex $v \in V(G)$.

From Theorem 2.7, we have the following corollary which reported in [6]

Corollary 4.1 (Guo, Zhou [6])

For $k \geq 2$, let G be a connected k-uniform hypergraph with $|E(G)| \geq 1$ and $u \in V(G)$. For $p \geq q \geq 1$ and $0 \leq \alpha < 1$, we have $\rho_{\alpha}(G_u(p,q)) > \rho_{\alpha}(G_u(p+1,q-1)).$

According to Proposition 4.1 and Corollary 4.1, we have:

Theorem 4.2

Suppose $\pi = (n_1, n_2 \cdots n_k)$ and $\pi' = (n'_1, \cdots, n'_k)$ be two different non-increasing integer sequences such that $\pi' \triangleleft \pi$. Then

 $\rho_{\alpha}(G_{v}(n_{1}, n_{2}, \dots, n_{k}) < \rho_{\alpha}(G_{v}(n'_{1}, \cdots, n'_{k}) \text{ for } 0 \leq \alpha < 1.$

The main result of [12] is an immediate consequence of the theorem above. [12] Mohammad Reza Oboudi. "Majorization and the spectral radius of starlike trees". In: Journal of Combinatorial Optimization 36.1 (2018), pp. $421+429.4 \equiv 5 \pm 2 = 20$ Haiying Shan (Tongji University) On some properties of the α -spectral radius August 19, 2019 27/3 Let $G = K_{n_1,...,n_k}$ be complete k-partite graph of n vertices which fall into k disjoint blocks V_i of size n_i , respectively. Then $\pi = (V_1, V_2, ..., V_k)$ is an equitable partition of $A_{\alpha}(G)$.

In [13], [14], the relationship between the spectral radius and the energy of complete multipartite graphs are studied.

- (Dragan Stevanović, Ivan Gutman,[15]) If $n_i n_j \ge 2$, then $\rho(A(K_{n_1,...,n_i-1,...,n_j+1,...,n_p})) > \rho(A(K_{n_1,...,n_i,...,n_j,...,n_p}))$
- **②** For fixed n, both the spectral radius and the energy of complete p-partite graphs are minimal for complete split graph CS(n, p-1) and are maximal for Turán graph T(n, p).
- (Mohammad Reza Oboudi [16]) If $n_i n_j ≥ 2$, then
 $\rho(Q(K_{n_1,...,n_i-1,...,n_j+1,...,n_p})) > \rho(Q(K_{n_1,...,n_i,...,n_j,...,n_p}))$

[13] Dragan Stevanović, Ivan Gutman, and Masood U. Rehman. "On spectral radius and energy of complete multipartite graphs". In: *Ars Math. Contemp.* 9.1 (2015), pp. 109–113.

[14] Mohammad Reza Oboudi. "A relation between the signless Laplacian spectral radius of complete multipartite graphs and majorization". In: *Linear Algebra and its Applications* 565 (2019), pp. 225–238.

Theorem 4.3

Let π be an equitable partition of square matrix A and $B = (b_{ij})_{s \times s}$ be the quotient matrix A/π , Then

- **Q** $\phi(A, x) = \phi(B, x) \prod_{i=1}^{m} (x b_{ii})^{-1} \phi(A_{ii}, x).$
- $\rho(A) = \rho(B) = \max_{\|X\|=1} X^T Q_s(A) X$ if A is nonnegative matrix, where $Q_s(A)$ is the symmetric quotient matrix of A corresponding to partition π .

Corollary 4.2

Let $k \ge 2$ and n_1, \ldots, n_k be some positive integers. Let $n = n_1 + \cdots + n_k$. Then

•
$$\phi(B, x) = f(x) \prod_{i=1}^{k} (x + n_i - n\alpha), \text{ where } f(x) = 1 - \sum_{i=1}^{k} \frac{(1-\alpha)n_i}{x + n_i - n\alpha}$$

• $\phi_\alpha(K_{n_1,...,n_k}, x) = \prod_{i=1}^{k} (x + n_i\alpha - n\alpha)^{n_i - 1} \phi(B, x)$

- 4 目 ト - 4 日 ト

Theorem 4.4 (Shan, Shi, 2019+)

Let $k \geq 3$ and n'_1, \ldots, n'_k and n_1, \ldots, n_k be some positive integers such that $n'_1 \geq \cdots \geq n'_k$ and $n_1 \geq \cdots \geq n_k$. If $(n'_1, \ldots, n'_k) \triangleleft (n_1, \ldots, n_k)$, then when $0 \leq \alpha < 1 - \frac{1}{k}$, $\rho_\alpha(K_{n_1,\ldots,n_k}) > \rho_\alpha(K_{n'_1,\ldots,n'_k}) > n\alpha$; when $\alpha = 1 - \frac{1}{k}$, $\rho_\alpha(K_{n_1,\ldots,n_k}) = \rho_\alpha(K_{n'_1,\ldots,n'_k}) = n\alpha$; when $0 \leq \alpha > 1 - \frac{1}{k}$, $\rho_\alpha(K_{n_1,\ldots,n_k}) < \rho_\alpha(K_{n'_1,\ldots,n'_k}) < n\alpha$

・ 「「・ ・ 」 ・ ・ 「」

Thank you!

3