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vertex coloring

Definition

A proper k-coloring of G is a mapping ¢ : V(G) — {1,2,--- |k}
such that ¢(x) # ¢(y) for every zy € E(G). The chromatic
number of G, denoted by x(G), is the least number of colors in an
proper vertex coloring of G.

It is well-known that if G is a connected simple graph and is neither an
odd cycle nor a complete graph, then x(G) < A. Every planar graph is
4-vertex-colorable( VU 2, #).

AT B G2 3- AT SR, R AL R B R —

@ GAVES-JE, [FINHA3-Fel i EE B 2=/ h2;
@ GAES-, 7-F, FIPA=MILAAHLE[J C T(B) 96 (2006) 958 - 963];
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A graph G is said to be f-choosable if, whenever we give lists of
f(z) colors to each vertex v € V(G), there exists a proper vertex
coloring of G where each vertex is colored with a color from its
own list. If f(x) = k for every vertex z € V(G), we say that G is
k-choosable. The choice number or the list chromatic number
X1ist(G) is the smallest integer k such that G is k-choosable.

{1,2} {1,3} {1,2} {1,2}
{1,3} {1,3}
{23} (3.5} {23} {2,3}

The concept of a list coloring was introduced by Vizing[Metody
Diskret. Analiz, Novosibirsk 29 (1976) 3-10] and Erdds, Rubin and
Taylor[Congr. Numer., 26 (1979), 125 - 157], respectively. It is
obvious that x;;s:(G) < A+ 1.
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Every planar graph is 5-choosable

C. Thomassen, Every planar graph is 5-choosable, J Comb Theory (B) 62 (1994)

180-181.

If G is a plane graph with outer cycle C', p; and py are two
adjacent vertices on C', and L is a list assignment for G such that
|L(v)| > \5 for all v € V(G)\V(C), |L(v)| > 3 for all

v € V(C)\V(P), |L(p1)| = |L(p2)| = 1 and L(p1) # L(p2), then
G is L-colorable.

It implies that y;;5:(G) < 5 for any planar graph G. The result
is best possible, see[M. Voigt, Disc Math 120 (1993) 215-219].
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L. Postle and R. Thomas, J. Comb. Theory, Ser. B 111(2015)234 - 241 .

If G is a plane graph with outer cycle C, v1,v3 € V(C) and L is a
list assignment for G with |L(v)| > 5 for all v € V(G)\V(C),
|L(v)| > 3 for all v € V(C)\{v1,v2}, and |L(v1)| = |L(v2)| = 2,
then GG is L-colorable.

Z Dvotak, ete, 5-list-coloring planar graphs with distant precolored vertices, J Comb

Theory, B 122(2017)311 - 352.

If G is a planar graph with list assignment L that gives lists of size
one or five to its vertices and the distance between any pair of
vertices with lists of size one is at least 20780, then G is
L-colorable.
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Z Dvotak, etc, 5-choosability of graphs with crossings far apart, J Comb Theory, B

123(2017)54 - 96.

Every graph drawn in the plane so that the distance between every
pair of crossings is at least 15 is 5-choosable.

REGEAMRARIMESH, GHIIATE (edge-width)ZSH AT
WAL 4 ) o A BB DK B, a8 T I G2 4B B iR N B T THI S 5 i 75
B TE AR M T A T A SR B RAR 2, i 15— S FE AR
/AN BB St PR R TS B — s e T . 1993
“FThomasseniiE B [+ J&#~F [ 2 5- 7] 44[1);  20084F-Mohar%é
NHET HUUE B 7R TR &5 R

M DeVos, K Kawarabayashi, B Mohar, Locally planar graphs are 5-choosable, J Comb.

Theory, Series B 98 (2008) 1215 - 1232.

Every graph embedded in a fixed surface with sufficiently large
edge-width is 5-choosable.
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Let e = zy be an edge of a graph G = (V, E). To contract
an edge e of a graph G is to delete the edge and then (if the edge
is a link) identify its ends. A graph H is a minor of a graph G if G
has a subgraph contractible to H; G is called H-minor free if G
does not have H as a minor.

R gkrekovski, Choosability of K5-minor-free graphs, Disc Math 190 (1998) 223-226.

W J He, W J Miao, Y F Shen, Another proof of the 5-choosability of K5-minor-free
graphs, Disc Math 308 (2008) 4024 - 4026.

Let G be a K5-minor-free graph and let L be a list assignment of
G such that |L(v)| > 5 for every vertex v € V(G). Suppose that
H is a subgraph of GG isomorphic to K9 or K3 and suppose that A
is an L-coloring of H. Then A can be extended to an L-coloring of
G.
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Let G be a graph and ¢ : E(G) — {1, —1} be a mapping.
The pair (G, 0) is called a signed graph, and o is called a signature
of G. An edge e is positive (or negative) if o(e) =1 (or
o(e) = —1). Proper coloring means that for any edge uv € E(G),

f(u) # o (uv) f(v).

L G Jin, Y L Kang, E Steffen, Choosability in signed planar graphs, Europ J Comb 52

(2016) 234 - 243

Every signed planar graph is 5-choosable and that there is a signed
planar graph which is not 4-choosable while the unsigned graph is
4-choosable. For each k € {3,4,5,6}, every signed planar graph
without circuits of length k is 4-choosable. Furthermore, every
signed planar graph without circuits of length 3 and of length 4 is
3-choosable. They construct a signed planar graph with girth 4
which is not 3-choosable but the unsigned graph is 3-choosable.

v
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N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992),
125 - 134.

If G is a bipartite planar graph, then y;5:(G) < 3.

C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B
64(1995) 101-107.

A short list color proof of Grotzsch’ s theorem, J. Combin. Theory Ser. B 88 (2003)
189 - 192

If G is a planar graph of girth g > 5, then x;5:(G) < 3.

IX NG5 FLxF K A B I AT RE I, LM, Voigt, A not 3-choosable
planar graph without 3-cycles, Discrete Math. 146 (1995) 325-328].
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N. Alon and M. Tarsi, Colorings and orientations of graphs, Combinatorica 12 (1992),
125 - 134.

If G is a bipartite planar graph, then y;5:(G) < 3.

C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B
64(1995) 101-107.

A short list color proof of Grotzsch’ s theorem, J. Combin. Theory Ser. B 88 (2003)
189 - 192

If G is a planar graph of girth g > 5, then x;5:(G) < 3.

IX NG5 FLxF K A B I AT RE I, LM, Voigt, A not 3-choosable
planar graph without 3-cycles, Discrete Math. 146 (1995) 325-328].

ZEFH 3, On 3-choosable planar graphs of girth at least 4, Discrete Mathematics 309

(2009) 2424-2431

If a planar graph G has neither intersecting 4-cycles nor a 5-cycle
intersecting with any 4-cycle, then G is 3-choosable.
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Let G be a planar graph. Then G is 3-choosable if one of the

following conditions holds.

@ G contains no cycles of length in {4,5,7,9}; [L. Zhang, B. Wu, Graph Theory
Notes of New York 46 (2004) 27 - 30]

@ G contains no cycles of length in {4,5,6,9}; [L. Zhang, B. Wu, Discrete
Mathematics 297 (2005) 206 - 209]

@ @ contains no cycles of length in {4,6,8,9}; [L Shen, Y Q Wang, Information
Processing Letters 104 (2007) 146 - 151]

@ G contains no cycles of length in {4,6,7,9}; [Y Q Wang, H J Lu, M Chen,
Information Processing Letters 105 (2008) 206 - 211]

@ G contains no cycles of length in {4,5,8,9}; [Y Q Wang, H J Lu, M Chen, Disc
Math, 310(2010),147-158]

@ @ contains no cycles of length in {4,7,8,9}. [Y Q Wang, Q Wu, L Shen, Disc
Appl Math, 159(2011), 232-239]
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Let G be a planar graph. Then G is 3-choosable if one of the following conditions

holds.

@ @ contains no cycles of length 3,5 and 6; [P Lam, W C Shiu, Z M Song,
Discrete Math. 294 (2005) 297 - 301.]

@ G contains no cycles of length 4 and 5 and every two triangles has distance at
least 4, or G contains no cycles of length 4,5 and 6 and any two triangles has
distance at least 3; [E4E L%, Disc Math 306(2006) 573 - 579]

@ G contains no cycle of length at most 10 with a chord; [W F Wang, Taiwanese
J Math, 11(2007) 179-186]

@ G contains no cycles of length 5,6 and 7 and any two triangles has distance at
least 3, or G contains no cycles of length 5,6 and 8 and any two triangles has
distance at least 2; [H H Zhang Z R Sun, Information Processing Letters 107
(2008) 102 - 106]

@ G contains no cycles of length 3,7 and 8. [Z Dvoraka, B Lidicky, R Skrekovski,
Discrete Mathematics 309 (2009) 5899-5904]

[R] A E4k LELEA T8 SCHF5 . there exists a non-3-choosable planar graph
without 4-cycles, 5-cycles and intersecting triangles. 7E3([D Q Wang, Y P Wen, K L
Wang, Information Processing Letters 108 (2008) 87 - 89] 45 Hi T —ANFE /MK
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Voigt[Discrete Mathematics 307 (2007) 1013 - 1015]# /o4y
TR 4- BEIRNS- B (T T B AR AN RES- ATk 1 — AT

Z. Dvotak Journal of Combinatorial Theory,Series B 104(2014) 28 - 59

If G is a planar graph such that the distance between any two
(< 4)-cycles is at least 26, then G is 3-choosable.

Z. Dvotdk and L. Postle, J Comb Theory, B 129(2018)38 - 54

Every planar graph G without cycles of lengths 4 to 8 is
3-choosable. )
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P.C.B. Lam, B. G. Xu, J.Z. Liu, The 4-choosability of plane graphs without 4-cycles,
J. Combin. Theory, Ser. B 76 (1999), 117-126.

If G is a planar graph without 4-cycles, then yst(G) < 4.
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P.C.B. Lam, B. G. Xu, J.Z. Liu, The 4-choosability of plane graphs without 4-cycles,

J. Combin. Theory, Ser. B 76 (1999), 117-126.

If G is a planar graph without 4-cycles, then yst(G) < 4.

P. C. B. Lam, W. C. Shiu, B. G. Xu, On structure of some plane graphs with
applications to choosability, J. Combin. Theory Ser. B 82 (2001) 285-296

W. F. Wang and K. W. Lih, Choosability and edge choosability of planar graphs
without five cycles, Appl. Math. Lett. 15 (2002), 561-565.

If G is a planar graph without 5-cycles, then yst(G) < 4.
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P.C.B. Lam, B. G. Xu, J.Z. Liu, The 4-choosability of plane graphs without 4-cycles,

J. Combin. Theory, Ser. B 76 (1999), 117-126.

If G is a planar graph without 4-cycles, then yst(G) < 4.

P. C. B. Lam, W. C. Shiu, B. G. Xu, On structure of some plane graphs with
applications to choosability, J. Combin. Theory Ser. B 82 (2001) 285-296

W. F. Wang and K. W. Lih, Choosability and edge choosability of planar graphs
without five cycles, Appl. Math. Lett. 15 (2002), 561-565.

If G is a planar graph without 5-cycles, then yst(G) < 4.

G. Fijavz, M. Juvan, B. Mohar, R. Skrekovski, Planar graphs without cycles of specific

lengths, European J. Combin. 23 (2002) 377 - 388.
If G is a planar graph without 6-cycles, then G is 3-degenerate and
it follows that x;;st(G) < 4.
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B. Farzad, Planar graphs without 7-cycles are 4-choosable, SIAM J Discrete Math 23

(2009), 1179 - 1199.

If G is a planar graph without 7-cycles, then x;;5:(G) < 4.
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B. Farzad, Planar graphs without 7-cycles are 4-choosable, SIAM J Discrete Math 23

(2009), 1179 - 1199.
If G is a planar graph without 7-cycles, then x;;5:(G) < 4.

W. F. Wang and K.-W. Lih, Choosability and edge choosability of planar graphs

without intersecting triangles, SIAM J Discrete Math 15 (2002), 538 - 545.

If G is a planar graph without intersecting 3-cycles( that is, every
vertex is incident with at most one 3-cycle), then y;:(G) < 4.

RER, WARREHF¥B, 5, 250100 (k, d)-choosable of graphs



A I<4- ] IR ) C R4S

B. Farzad, Planar graphs without 7-cycles are 4-choosable, SIAM J Discrete Math 23

(2009), 1179 - 1199.
If G is a planar graph without 7-cycles, then x;;5:(G) < 4.

W. F. Wang and K.-W. Lih, Choosability and edge choosability of planar graphs

without intersecting triangles, SIAM J Discrete Math 15 (2002), 538 - 545.

If G is a planar graph without intersecting 3-cycles( that is, every
vertex is incident with at most one 3-cycle), then y;:(G) < 4.

0O.V. Borodin and A.O. lvanova, Sib. Elektron. Math. Reports, 5 (2008), 75-79.

All planar graphs without triangular 4-cycles are 4-choosable.
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RY Xu and W, A sufficient condition for a planar graph to be 4-choosable, Discrete
Applied Mathematics 224 (2017) 120 - 122.

Let G be a planar graph. If every 5-cycle of G is not adjacent
simultaneously to 3-cycles and 4-cycles, then G is 4-choosable.

D Q Hu and W, Planar graphs without intersecting 5-cycles are 4-choosable, Discrete
Mathematics 340 (2017) 1788 - 1792

Planar graphs without intersecting 5-cycles are 4-choosable.

D Q Hu, D J Huang, W F Wang and W, A note on the choosability of planar graphs

without chordal 6-cycles, Discrete Applied Mathematics 244 (2018) 116 - 123

Planar graphs without chordal 6-cycles are 4-choosable.
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A graph G is said to be (k, s)-choosable (k > s) if for each
list assignment L satisfying |L(v)| > k for each vertex v and
|L(z) N L(y)| < s for each edge xy, G has an L-coloring(RI7E%13%
Jett rh N 7 ARMER: ERMHLHRHFIRELEs FFit
AHIA). Let x;(G, s) denote the minimum k such that G is
L-colorable for each s-separated k-list L.

Kratochvil%$J. Graph Theory, 27 (1998), 43-49.

(1) For positive integers s,n with s <mn,

1
1/ 53n < x1(Kn,s) < V2esn.

(2) x1(G,5) < /2es(B(G) = 1).

(3) Every planar graph is (4, 1)-choosable([Disc Math 338 (2015) 1779 - 1783] .45
TS R).

(4) Every triangle-free planar graph is (3, 1)-choosable.
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Thomassen proved that planar graphs are 5-choosable and hence they are
(5, d)-choosable for all d. Voigt constructed a non-4-choosable planar graph and there

are also examples of non-(4, 3)-choosable planar graphs. Skrekovski observed that

there are examples of triangle-free planar graphs that are not (3, 2)-choosable.

Every planar graph is (4, 2)-choosable.

It is proved for all planar graphs without chorded I-cycles, for each

l € {5,6, 7}[Graphs and Combinatorics (2017) 33:751 - 787].

Every planar graph is (3, 1)-choosable

It is proved for all planar graphs without 4-cycles adjacent to 4~ -cycles[Bull.
Malays. Math. Sci. Soc. (2018) 41:1507 - 1518], without 5- and 6-cycles[ J. Graph
Theory 81(3), 283 - 306 (2016)], or neither 6-cycles nor adjacent 4- and 5-cycles[J
Comb Optim (2017) 34:987 - 1011].
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Yue Wang, Jianliang Wu, Donglei Yang, Discrete Mathematics 342

(2019) 1782 - 1791

Every planar graph G is (3, 1)-choosable if any i-cycle is not
adjacent to a j-cycle, where 5 <7 <6and 5 < j <T.
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Let G = (V, E, F) be a counterexample to the result with the
fewest vertices. Then

(a) G has a 27 -vertex, or

(b) G contains one of the configurations (C1)-(C19).

H o A
<

o (c3) c4)

(cs> (ce> cn
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(C8) (C9) (C10) (c11)
i

(c12) (C13) (C14) (c15)

(C16) (€17) (C18) (c19)
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V| —|E| +|F| =2 \

O

|[V|=5, |[E|=6, |F|=3, |V|-|E|+|F|=5—-6+3=2.
I v (o) 4v) = 2|El, X rer(q) d(f) = 2|B|, EANFEI

> (dw) —6) + 3 (2d(f) —6) = —6(|V| — |E| + |[F) = —12<0. (1)

veV feF

D @) =4+ D> (df) —4) = —4(V| - |E| + |F|) = -8 < 0. (2)

veV feF
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By Euler's formula, we have the following formula.

S @dw) -6+ 3 (d(f)=6) = 6(|E|-|V|-|F|) = —12 < 0.

veV(G) fEF(G)

Now we assign an initial charge u(z) to each
z € V(G) U F(Q) by letting pu(v) = 2d(v) — 6 for v € V(G),
w(f)=d(f) —6 for f € F(G). Thus we have
> ceveur@) H(z) <O0.

%#Pt, Hred, 250100 (k, d)-choosable of graphs
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We define the following two rounds of discharging rules. The first round
contains (R1)-(R4), which are called vertex rules.
R1. Suppose d(v) = 4.

(R1IA) If v is incident with exactly one 5 -face f, then v sends 2 to f.

(R1B) Suppose that f;— (v) = 2. If v is incident with a 3-face f; and a 4-face f2 such
that fo is incident with at least three 4t _vertices, then v sends % to f1 and %
to fa. Otherwise, v sends 1 to each incident 5~ -face.

(R1C) If f5—(v) = 3, then v sends % to each incident 5~ -face.

R2. Suppose d(v) = 5.

(R2A) If f5— (v) < 2, then v sends 2 to each incident 5~ -face.

(R2B) If f5— (v) =3 and f3(v) < 1, then v sends % to its incident 3-face (if exists)
and % to each incident i-face, where i € {4,5}.

(R2C) If f5—(v) =3 and f3(v) = 2, then v sends % to each incident 3-face and 1 to
its incident i-face, where i € {4,5}.

(R2D) Suppose f3(v) = 3. Assume that the faces incident with v are fi, f2,---, f5 in
clockwise order such that f1, fo are 3-faces. If f3 or f5 is a 3-face, then v sends
% to each incident 3-face. Otherwise f4 is a 3-face. If f4 is bad and at most

one of f1, f2 is bad, then v sends % to f4 and % to f; (i =1,2). Otherwise v
sends 1 to f4 and % to f; (1 =1,2).
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R3. Suppose that d(v) = 6,7,8. If f;— (v) < L%(U)J, then v sends 2 to each incident
5~ -face. Otherwise v sends % to each incident 5~ -face.
R4. If d(v) > 9, then v sends 2 to each incident 5~ -face.

The second round contains (R5), which is called the face rule.
R5. Let f be a d-face where d > 7. Let fo, fi, f2,---, fa—1 be the faces adjacent to
f in clockwise order, and let vg,v1,--- ,v4_1 be the vertices incident with f in
clockwise order such that v; is incident with f; and f; 1, where the subscripts are
taken modulo d here.

(R5A) f sends d(df()f;(i to f; for any ¢ (0 <i < d).

(R5B) Suppose that f; is hungry for some ¢(0 < ¢ < d). (1) If f;4+1 is not hungry and
d(v;) < 4, then f;11 sends d(df()f;6 to fi. (2) If f;—1 is not hungry,
d(vi—1) < 4, and either d(v;—2) > 5 or f;_2 is not hungry, then f;_; also

sends d(df()fjﬁ to fi.
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(k,s)-FJ3E [

R4 B G A Ro#l 7Bl — AN B SES L(v) (1Y @31
R)HGHE—NIEFER SR e XN Mo € V(GQ) #B
Ho(v) € L(v), MFREGRL- P4/, WERAHER 5 BLL, T
R|L(v)| 2 k(Yv € V(G))HI|L(z) U L(y)| > s(Vzy € E(G)),
GREL-TT Y1), MFRGHE (k, s)- AIIE.

RSP (3, 11)- ATIERIAI(4,7)- AT AL [Discrete
Mathematics 341 (2018) 600 - 605].
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(1) ¥&I4Lta (equitable coloring):ATAr] P ANA [ (1B €2 BT % 1) T
REEZEL

(2) JolE s gk th(acyclic coloring): ATAR P ANAS [ 1 B EEL BT S 1) A
LGP T T B — AR

(3) ZetEGuta(linear coloring): AFART AN AN [ F 0 €5 Ffr G4 1) ml
BT T B AN R PERR AR

(4) (p,q)-#5"5((p.q)-labelling): LM A KIBIE ZE > Zp, B
B2 A UK B 22 /0 2 g

(5) A1 5 AT X A ) 5 e i (adjacent vertex distinguishing vertex
coloring):AFARTAH &I [ AN ke TR 2 FR &I 330 ) G 0 8 5 AN 7] 5

(6) ALFIA] X A ) 25 G4t (adjacent sum distinguishing vertex
coloring): AF-ArAH I FT P A s B R 2 FRJ <8 42K PR 3 €8 2 A0 AN AR
s

(7) r-E iR G4 ta(r-hued coloring): FEECAAMTH s AR 2/
Wmin{d, r} PpEifa;

(8) Aliskr-PR | Y2 tf (Neighborhood r-bounded coloring): &4
)R] €, 408 RN I e
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o [FAYLth(circular coloring): FEIAL, 2, ..., k&h FREAS i G
ttf. WEREREMuw € E(G),
Gd<|f(u) — f)| <k —d(k>2d>1), WG
1 (k, d)-1A et BE'&/J\E’*J%R%JG I 50 (G).
S X MK REBIERL(E > 2), BIGRIEEA s
T L BB ATRIFFIN. WA sS4, B AT B ICA
L, AT WG R L- R TTEL 1. f/NIEFR NG B .
For any graph G, x(G) — 1 < x(G) < x(G).

o 7 E YL th (fractional coloring): FEFHER a4 BB G dFh
B, W RAT AT AR B AN ST et i & A, T
PRGAETE (K, d)-3 B . e/ Nk /ARG 3 B 4

IEANEE RGN T ADRES): every planar graph has a
(9, 2)-fractional coloring.
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o (k,d)*-Gxtt: HILMEIE L gL AR B [ (i) AR S 1Y
FHTERHRKEEZ N,

o ST (vertex arboricity): FHERHEEL 22 e B ) A 15 e lRl 4
MR B TR — AR, BT R R B e R
B R B va(G);s

o SR FE S5 (linear vertex arboricity):  FH A (225 YL 11
RALAG G [E B ARG I T B — NI, TR &

DB E R AR N B B SR PE R FEvla(G);
o |5l SiHE (circular vertex arboricity): Fk(> 2d)FhEita 2: 4L &

AN 0<j<k—1), B, +1,....5+d— 11
BT s S 7 R — AN SRR iR B IZ 5, feh
[k /ARG [ 51 B
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HE DL R RISt

o YIS AR Rt A M-S T B — M, T HAEM
PIASBEL F Ge i) R B 2 2 1

o SRR XA (p,q)-Fr5: LGN IEH B R G AL
FHAB TP LB RT IE F) ST 38K Y €0 2 R 2 2 T, AR AR B
2B P 5 B % I [ <R B 2 AN 2 /b 2 g

o SRANAT X Jl 1) s BH L ARIF A SBAN BT 3 H 15 B O AR AR,

& game coloring, cochromatic number, achromatic number,
antimagic label&.
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DP-coloring

Z. Dvotak and L. Postle, J Comb Theory, B 129(2018)38 - 54

Every planar graph G without cycles of lengths 4 to 8 is
3-choosable.

Given a list L for a graph G, the vertex set of the auxiliary
graph H = H(G,L) is {(v,c) : v € V(G) and ¢ € L(v)}, and two
distinct vertices (v,c¢) and (v/, ) are adjacent in H if and only if
either c = ¢’ and v’ € E(G), or v =7'.

G has an L-coloring if and only if the independence number of H
is [V(G)|. J

L& AL Lw) T\ Ews)
( 7 g )

, HFEd, 250100 (k, d)-choosable of graphs



DP-coloring

The definition of DP-coloring

Let G be a graph. A cover of G is a pair (L, H), where L is an
assignment of pairwise disjoint sets to the vertices of G and H is a
graph with vertex set UUGV(G) L(v), satisfying the following
conditions.

(1) For each v € V(G), H[L(v)] is a complete graph.
(2) For each uv € E(G), the edges between L(u) and
L(v) form a matching (possibly empty).
(3) For each distinct u,v € V(G) with uwv ¢ E(G), no
edges of H connect L(u) and L(v).
An (L, H)-coloring of G is an independent set I C V(H) of size
|[V(G)|. The DP-chromatic number,xpp(G), is the minimum k
such that G has an (L, H)-coloring for each choice of (L, H) with
|L(v)| > k for all v € V(G).
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paintable(on-line list colouring game)

f -painting game

Given a graph G and a mapping f : V(G) — N. The f -painting
game on G is played by two players: Lister and Painter. Initially, all
vertices are uncoloured and each vertex v has f(v) tokens. In the
ith step, Lister marks a non-empty subset L; of uncoloured vertices
and takes away one token from each marked vertex. Painter
chooses an independent set X; contained in L; and colours vertices
in X; by colour 4. If at the end of some step, there is an uncoloured
vertex v with no tokens left, then Lister wins the game. Otherwise,
at some step, all vertices are coloured and Painter wins the game.

v
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paintable

f-paintable and the paint number

Suppose f: V(G) — N. We say G is f-paintable if Painter has a
winning strategy in the f -painting game on G. We say G is
s-paintable for a positive integer s if G is f -paintable for the
constant function f = s. The paint number ff,(G) (also called the
paintability and the on-line choice number) of G is the least
integer s for which G is s-paintable.

Ming Han, Xuding Zhu, Locally planar graphs are 5-paintable, Discrete Mathematics

338 (2015) 1740 - 1749.

Every graph embedded in a fixed surface with sufficiently large
edge-width is 5-paintable.

Ming Han, Xuding Zhu, European Journal of Combinatorics 54 (2016) 35 - 50.

Locally planar graphs are 2-defective 4-paintable.
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Adaptably k-coloring (I& W fi 4L t0)

5E X

Let G be a graph, and let F': E(G) — N be a coloring of the
edges of G (not necessarily proper). A vertex k-coloring

c: V(G) = {1,--- ,k} of the vertices of G is adapted to F if for
every uv € E(G ) c(u) # c(v) or ¢(v) # F(uv). In other words,
the same color never appears on an edge and both its endpoints. If
there is an integer k such that for any edge coloring F' of GG, there
exists a vertex k-coloring of G adapted to F', we say that G is
adaptably k-colorable. The smallest k such that G is adaptably
k-colorable is called the adaptable chromatic number of G,
denoted by xqq4(G).

WA Xad(G) < X(G).
J Graph Theory 62: 127 - 138, 2009

Every Ks-minor-free graph is adaptably 4-choosable;
Every triangle-free planar graph is adaptably 3-choosable.
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Edge Coloring (4% )

An edge k-coloring of a graph G is a mapping ¢ from E(G)
to the set of colors 1,2, ..., k such that any two adjacent edges
have different colors. The edge chromatic number of a graph G,
denoted by x/(G), is the smallest integer k such that G has an
edge k-coloring.

5-edge coloring 2

Vizing's Theorem, 1964

For every graph G, A(G) < X (G) < A(G) +1
A graph G is said to be of class 1 if x'(G) = A, and of class 2 if
X'(G)=A+1.
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Edge Coloring of Planar Graphs(~F1H B i 44 (4)

Four Coloring Problem

For every planar graph G, x(G) < 4 <= For every simple
2-edge-connected 3-regular planar G, x/(G) = 3.

AA L

c, A\ R =+ &k

If C4, K4, the octahedron, and the icosahedron have one edge subdivided each,

class 2 planar graphs are produced for A € {2,3,4,5}. Vizing! proved that every

planar graph with A > 8 is of class 1 and then posed the following conjecture.

~F- I [ 7 % g A

Every planar graph with A > 6 is of class 1.

1Critical graphs with given chromatic class, Diskret. Analiz. 5 (1965) 9 - 17.
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Edge Coloring of Planar Graphs(~F1H B i 44 (4)

A =172 and b.
(A,g) € {(5,4),(4,5),(3,8)}, where g is the girth of G€;
A = 6 and any vertex is incident with at most three trianglesd;

A > 5 and any vertex is incident with at most one triangle®;

A = 6 and G contains no chordal k-cycles for some
ke {3,4,5,6,7}".

L. M. Zhang, Graphs Combin. 16 (2000), 467-495.

bSanders and Y. Zhao J. Combin. Theory Ser B 83 (2001), 202-212
CFiorini and R.J. Wilson, Research Notes in Mathematics, 16, 1977
dWang and Xu, Disc. Appl. Math. 161(2013), 307-310

SRRk, 4 LTI K4, 30:4(2007),416-420

ffEM%T", MRUTKEAR, 34:3(2011), 19-24

Some related papers: [Disc Math, 306(2006), 1440-1445.] [Disc Math, 190(1998), 107-114.] [Congr.
Numer. 136 (1999), 201-205.] [Graphs Combin. 19(2003), 393-401.] [Theor Comp Sci, 385:1-3(2007), 71-77.]

[Disc Math. 263 (2003), 339-345.]
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List Edge Coloring of Graphs

A graph G is said to be edge f-choosable if, whenever we give
lists A, of f(x) colors to each element x € E(G), there exists a
proper edge coloring of G where each edge is colored with a color
from its own list. If f(z) = k for every element z € E(G), we said
G is edge k-choosable. The list edge chromatic number xj,.(G) is
the smallest integer k such that G is edge k-choosable.

Vizing, Metody Diskret. Analiz 29 (1976) 3 - 10

Conjecture 3. Every graph satisfies x;,.;, < A+ 1.

The case A = 3 was settled in Vizing and, independently, Erdos, Rubin, Taylor
[Congr. Numer. 26 (1979) 125 - 157] by proving the choosability version of the
Brooks Theorem. the case A = 4 is due to Juvan, Mohar, and Skrekovski [Combin.
Probab. Comput. 7(1998) 181 - 188].

Borodin, etc, J. Comb. Theory(B), 71(1997), 184-204.

Conjecture 4. For any graph G, x};,,(G) = x'(G) and x/’.,(G) = x"'(G).
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List Edge Coloring of Planar Graphs
Some results on a planar graph with xj,, <A +1

@ A>9° A=8band A < 45
@ A>THEFA (L) 5%7-H9, 5(2) 5%6- M

@ A >6HANZ: (1) MAE3-[, 5(2) 3- 55 FEI4Re, 5(3) 3%5-Flh, 5(4)
3%6-18)’

© A>5H¥EA: (1) %5-MMGZa-[8, 55t(2)5%5-FE f5z6-8, 5t(3) 3-M, 5i(4) 4-
Rk, 5(4) 5- &’

Borodin, Mat. Zametki 48 (6) (1990) 22 - 28

SIAM J. DISCRETE MATH, 29:3(2015), 1735 - 1763

J Graph Theory, 32(1999) 250-262.

ARS Comb. 100(2011), 169-176; DMTCS 15:1, 2013, 101 - 106
Util. Math. 86(2011), 289 - 296; Graphs and Comb (2015) 31:827 - 832
Disc Math 309 (2009) 77 - 84

&Disc Math 313 (2013) 575 - 580

h_Discrete Math. 309(2009) 2233 - 2238

{Bull Korean Math Soc 49:2(2012) 359-365

IDiscrete Mathematics 283 (2004) 289-293

kDiscrete Mathematics 308(2008) 5789 - 5794

! Appl Math Lett, 15(2002) 561-565

a
b
c
d
e
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List Edge Coloring of Planar Graphs

@ A>12,or A>T7andg>4,or A>5andg>5 0orA>4and g>6, or
A >3 and g > 10;?

@ (A,k) €{(7,4),(6,5),(5,8),(4,14)}, where k satisfies that G has no cycle of
length from 4 to k, where k > 4. b

A > 8 and G contains no chordal 5-cycles;©

A > 8 and G contains no adjacent 4-cycles;?

A > 8 H 3-8 f4-[E A4he

A > SH3-FRIS-BARAE, or A > 7HFIANA—-FARLET
A > 7 and any 4-cycle is not adjacent to 4~ -cycles &
A > 6 HEA 4B F6-M, or A > 7HBA 5Pl A16-

®© ©6 6 06 06 ©

aBorodin, etc, J. Combin. Theory Ser. B 71(1997) 184 - 204

JF Hou, GZ Liu, JS Cai, Theoret. Comput. Sci. 369(2006) 250 - 255
€J Comb Optim (2016) 32:188 - 197

J Comb Optim (2016) 31:1013 - 1022
®Discrete Mathematics 311 (2011) 2158 - 2163.

fQ. Lu, ZK Miao, YQ Wang, Discrete Mathematics 309(2013) 575-580
&Acta Math. Sin. (Engl. Ser.) 30(2014), no. 1, 91 - 96.
hlnformation Processing Letters 108 (2008) 347 - 351

o
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FATHIES 2R L4 R

L N Hu, H M Song, J L Wu, A note on list edge coloring of planar graphs without adjacent short cycles, ARS

Comb.2019.01

(1) A planar graph G is edge-(A(G) + 1)-choosable if any 4-cycle is not adjacent to a
3-cycle.

(2) If G is a planar graph with A(G) > 6 and has no adjacent 4-cycles, then
Xiist(G) < A(G) + 1.

L N Hu, L Sun, J L Wu, List edge coloring of planar graphs without 6-cycles with two chords, DMGT, to appear

If G is a planar graph without 6-cycles with two chords, then G is edge-k-choosable,
where k = max{7, A(G) + 1}, and is edge-t-choosable, where ¢ = max{9, A(G)}.

H 'Y Wang, J L Wu, List edge coloring of planar graphs without 6-cycles with three chords, J Comb Optim (2018)

35:555 - 562

Let G be a planar graph in which contains no 6-cycles with three chords or G be a
f5-free planar graph. Then G is edge-k-choosable, where k = max{8, A(G) + 1}, and
is edge-t-choosable, where ¢ = max{10, A(G)}.

TABEGAT T — A 7-FA T =262 G,
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Total Coloring(4=44)

— B A et R FE 0 B G R R AL R G (8 4540 AT A 5%
HRITCR Z H#BEAFR B, BG Watdy(G), ZHEEG
FEAE— D T 0 e D IR B

A well-known conjecture
Conjecture. For any simple graph G, A +1 < x"(G) < A + 2.

Theorem

For a planar graph G, X" (G) < A + 2, if one of the following conditions hold.

@ A<50rA>T7;

@ A =6 andvi +2(v3T +vg) 4 3v§ +4vST < 24, where vE represents the
number of vertices of degree n which lie on k distinct 3-cycles; [Graphs

and Comb. 30(2014), 377-388]
A = 6 and without 4-, 5-, or 6-cycles with chords [Hou and Liu]

@ A =6 and two cycles of length at most 5 are not adjacent.[Wu and
Fang]

22, HFEE, 250100 (k, d)-choosable of graphs



total coloring of Planar Graphs(~F [ B ) 4= 4 (1)

For any planar graph G with A > 5, x(G) = A + 1.

SHEPIHEG, X'(G) = A+ TR FHI%&EZ —

(1) A >14,12,11,10 and finally 9;

(2) A > 8 and for every vertex z € V(G), there is an integer k € {3,4,5,6,7, 8}
such that z is incident with at most one cycle of length & ;

(3) A > 8 and for each vertex z, there are two integers 4,5 € {3,4,5,6} such that
any two cycles of length 7 and j, which contain z, are not adjacent;

(4) A > 8 and G is an Fs-free planar graph;

(5) A > 8 and G contains no 5-cycles with two chords;

(6) A > 8 and G contains no adjacent chordal 5-cycles;

(7) A > 8 and G contains no adjacent chordal 7-cycles;

(8) A > 8 and G contains no 6-cycles with two chords or adjacent chordal 6-cycles;
(9) A > 8 and G contains no 7-cycles with three chords;

(10) A > 7 and for every vertex z € V(G), there is an integer k € {3,4,5,6,7, 8}
such that z is incident with no cycles of length k;

(11) A > 7 and every vertex v has an integer k, € {3,4,5,6}, such that v is not in
any ky,-cycle;
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total coloring of Planar Graphs(~F [ B ) 4= 4 (1)

W 2 R —, X FEREGAE Y (G) = A + 1:

(12) A > 7 and G contains no intersecting 3-cycles, or adjacent 4-cycles, adjacent
5-cycles, or intersecting 6-cycles;

(13) A > 7 and G contains no chordal i-cycles(i = 5,6, or 7);
(14) A > 7 and no 3-cycle is adjacent to a cycle of length less than 6;

(15) A > 6 and G contains no 5-cycles and 6-cycles, or A > 5 and G contains no
4-cycles and 6-cycles;

(16) A(G) > 6, G contains no intersecting 4-cycles and G contains no intersecting
3-cycles,or 5-cycles,or 6-cycles;

(17) A > 6 and G contains no 4-cycles;

(18) A > 6 and G contains no adjacent 4~ -cycles;

(19) (A, g) € {(7,4),(5,5), (4,6),(3,10)}, where g is the girth of G;

(20) (A,k) € {(7,4),(6,5),(5,7),(4,14)}, where G has no cycle of length from 4 to
k, where k > 4;

(21) (A, k) € {(6,4),(5,5), (4,11)}, where G contains no intersecting 3-cycles and
G has no cycle of length from 4 to k.
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List total coloring of Graphs

A graph G is said to be total f-choosable if, whenever we give
lists Ay of f(x) colors to each element x € V(G) U E(G), there
exists a proper total coloring of G where each element is colored
with a color from its own list. If f(z) = k for every element
x € V(G) U E(G), we said G is total k-choosable. The list total
chromatic number xJ; ,(G) is the smallest integer k such that G is
total k-choosable.

Borodin, ete, J. Comb. Theory(B), 71(1997), 184-204.

Conjecture 4. For any graph G, x};,;(G) = x'(G) and
Xiist(G) = X"(G).

LR AR = 73 B2 RO
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List total coloring of Planar Graphs

Some results on a planar graph with xJ; (G) < A +2

o A > 97

o A>T7H(1) BA5%T-FEP, 5(2) Fs-free €, 5((3) M1 3- &
%2 5HAh—A 3 B4R,

o A>GHAWL: (1) 5%6- [, 5i(2) 3- B 55- FBHI4LT
5(3) 3- El54- [BAHARS;

o A>5HEHA: (1) 5%5-FBM5%4-18, 5 (2)5%5- 18 fl5%6- 4,
5(3) 3-18laka- ", 5i(4) 5- B

FLNCS 4489 (2007) 320 - 328.
ARS Comb. 100(2011), 169-176; DMTCS 15:1(2013), 101 - 106
€J Comb Optim, to appear.
L1 kc24H, 200041087
®Bull Korean Math Soc 49:2(2012) 359-365
Disc Math 313 (2013) 575 - 580
&Discrete Mathematics 311 (2011) 2158 - 2163
hLNCS 4489 (2007) 320 - 328
"Appl Math Lett, 15(2002) 561-565

o

-
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List total coloring of Planar Graphs

Planar graphs on xj..,(G) = A+1

ist

o A>12°

@ (Ak) €{(7,4),(6,5),(5,8),(4,14)}, where k satisfies that G has no cycle of
length from 4 to k, where k > 4. b

A > 8 and G contains no chordal 5-cycles;€

A > 8 and G contains no adjacent 4-cycles;?

A > 8 H3-[EF4-pE A 4Le

A > 8 A3-[BFIS-BAAE, or A > THF AN -EIAAR
A > 7 and any 4-cycle is not adjacent to 4~ -cycles &
A > 6 A¥EA 4B F6-1, or A > 7HEA5-FEl Al6- Pl

© ©6 6 6 6 ©

aBorodin, etc, J. Combin. Theory Ser. B 71(1997) 184 - 204

JF Hou, GZ Liu, JS Cai, Theoret. Comput. Sci. 369(2006) 250 - 255
€J Comb Optim (2016) 32:188 - 107
dJ Comb Optim (2016) 31:1013 - 1022
®Discrete Mathematics 311 (2011) 2158 - 2163.

fQA Lu, ZK Miao, YQ Wang, Discrete Mathematics 309(2013) 575-580
&Acta Math. Sin. (Engl. Ser.) 30(2014), no. 1, 91 - 96.
hlnformation Processing Letters 108 (2008) 347 - 351

o
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BE— D FUAN R 2 [ ) R

(1) UEBAH 2 W R 4007 R R G e £ e, 851K A
BHEEZ N2, 4B, 6- BAS. AE745- B, 30E
55 BIAMAR% .

(2) BOEABREW T: A > TH7-BELZH245%06-EE%
25 P E RS RIDEHEL NA + 1. ZFEERATE ]
A REUNTR 214 (1) A > TH5-BEELHL %%, (2) A>T
H5%k- BIARMAL(k = 4,5,6,7); (3) A > 6 H.iZk-FE A HH
Lk =4,5,6,7). AR, FIRADEHET &KL, BFIRE
PERARE . AR EEEZ T IE L.

(3) UEMH: (1) BKEE NS B HI R 2B E 2 £ N10; (2)
BONEENLLI T B 51 R & 6555 TF12; (3) % Erelaxed,
separated, different ] 1% ..

(4) UEMH: FRKBEN6H B s i & 5 2 £ 28.

(5) UERH: BB AT BRI LR 24,
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BE— D FUAN R 2 [ ) R

(6) CEN1-~FmEm S alZE 286, TR A EE< 20, IBAEM
RO s, RRESIFRL O B2 20?7 XINIC-
ANC-F- 1 B ) 45 Rt 2 /2

(7) BRIA > P BRSSO A, BA1-FHE KR KR
£/ R Z /DRI R A R ? 53R 5]t E e ?

(8) BIALIATEM 1= (1) XHMEZWE > 12, Fr A -1 Bl #l 2
A k-TA R, (2) MHMER K > 21, BrA I 1- ~F 1 E T
Fe A B A k-1 g i) o A% RN B R PEEUINT0 [
[ BB, BRI R — M AR

(9) 2016%-7EEuropean Journal of Combinatorics I /&% — 7 H
A “Choosability in signed planar graphs” B3 &, A1584
A LLE RS B E 6.,

(10) LA EFERIZ R P FATA THERN GG, ikl S,
TREAG A, TR, 5 RGE, B, 5]
RIAE . BRI &Mt s, HEEESERNEE
KE;
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