The inducibility of oriented stars

Hehui Wu
Shanghai Center for Mathematical Sciences
Fudan University
the 10th Cross-strait Conf. on Graph Theory and Combin.
Taichung, Aug 2019

Base on joint works with Qilin, Dong and with Ping Hu, Jie Ma, Sergey Norin

Terminology

- $\mathcal{C}(H ; G)$: the number of induced subgraphs of G isomorphic to G.
- The induced density of H in G :

$$
i(H ; G)=\frac{\mathcal{C}(H ; G)}{\binom{|G|}{|H|}}
$$

- $i(H ; n): \max _{|G|=n} i(H ; G)$.
- The inducibility of $H: i(H)=\lim _{n \rightarrow \infty} i(H, n)$.

Rainbow-triangle

Theorem (Balogh-Hu-Lidický-Pfender 2016)

Maximum density of rainbow-triangle in 3-edge-coloring of K_{n} is achieved by the following graph:

Inducibility of $S_{1,1}$

- $\mathbf{S}_{\mathrm{i}, \mathrm{j}}$: the oriented star with i arcs oriented out from the center and j arcs oriented into the center.

Theorem (Hadlky-Kral-Norin)

Maximum induced density of $S_{1,1}$ in a directed graph is achieved by the following graph:

Inducibility of $S_{0, k}$

Question: What is the maximum induced density for $S_{i, j}$?

Inducibility of $S_{0, k}$

Question: What is the maximum induced density for $S_{i, j}$?

Theorem (Falgas-Ravry, Vaugha ($k=1,2$), Huang ($k \geq 3$))

Maximum induced density of $S_{0, k}$ in a directed graph is achieved by a unbalanced blow-up of a transitive tournaments.

Inducibility of $S_{2,2}$

Theorem (Dong, W.)

Maximum density of $S_{2,2}$ in a directed graph is achieved by an orientation of a complete bipartite graph $D[A, B]$, such that for each vertex, the difference between in degree and out degree is at most 1, and $\frac{|A|}{|B|}=2+\sqrt{3}$. In particular, $\pi_{S_{2,2}}(\emptyset)=\frac{5}{32}=0.15625$.

Sketch of proof

By Flag Algebraic, we have the following

Lemma

$$
\pi_{S_{2,2}}(\emptyset) \leq 0.15625+\epsilon \text { for some small } \epsilon
$$

Use Flag Algebraic again with $\pi_{S_{2,2}} \geq 0.15625$, we have

Lemma

For extremal graph G, we have $d\left(T_{1} ; G\right)+d\left(T_{2} ; G\right)+d\left(T_{3} ; G\right) \leq \epsilon^{\prime}$ for some small $\epsilon^{\prime}>0$.

Figure: T_{1}, T_{2} and T_{3}.

Proposition

For extremal graph G, there exists a partition (A, B), such that after changing at most $o\left(n^{2}\right)$ edges, it will be an orientation of complete bipartite graph. Furthermore, it can be change into the extremal graph that we want.

We define two types of bad vertices:

- Many "bad" edges.
- Gap between in degree and out degree are big.

Proposition

There are o(n) bad vertices.

Proposition

There is no more "bad" edges after removing "bad" vertices".

Proposition

Fit the "bad" vertices back to the A or B.

Inducibility of $S_{k, I}$

Theorem (Hu, Ma, Norin, W.)

Let k and I be positive integers with $k+I \geq 10$. Then when $k=\ell$,

$$
i\left(S_{k, \ell}\right)=\frac{(k+\ell+1)!}{2^{k+\ell} k!\ell!} \cdot \max _{\alpha \in[0,1]}\left\{\alpha(1-\alpha)^{k+\ell}+(1-\alpha) \alpha^{k+\ell}\right\} ;
$$

and when $k \geq \ell+1$, $i\left(S_{k, \ell}\right)$ is equal to

$$
\begin{aligned}
& \frac{(k+\ell+1)!}{k!\ell!} \max _{\alpha, d}\left\{\alpha(1-\alpha)^{k+\ell} d^{k}(1-d)^{\ell}\right. \\
& \left.+(1-\alpha) \alpha^{k+\ell}(1-d) \frac{(k-1)^{k-1} \ell^{\ell}}{(k+\ell-1)^{k+\ell-1}}\right\}
\end{aligned}
$$

where the maximum is over all possible pairs $(\alpha, d) \in\left[0, \frac{1}{2}\right] \times\left[\frac{\ell}{k+\ell}, \frac{k}{k+\ell}\right]$.

Inducibility of $S_{k, l}$

With α, d be the pair achieved maximum in last theorem, we have $\alpha \approx \frac{1}{k+l+1}$, and $d \approx \frac{k}{k+l}$

Theorem (Hu, Ma, Norin, W.)

Given $k+I \geq 10$, and n sufficient large, the maximum induced density $i\left(K_{k, I}\right)$ is achieved by an orientation of complete bipartite graph $D(X, Y)$, such that

- $|X|=\alpha n,|Y|=(1-\alpha) n$.
- For each vertex x in $X, d|Y|$ of arcs are oriented from x to Y.
- $Y=Y_{1} \dot{\cup} Y_{2}$, for each vertex in Y_{2}, all arcs are oriented from X, and for each vertex in $Y_{1}, \frac{1}{k+1}$ of arcs oriented into it.

Sketch of proof

Claim

For every vertex v in $V(D)$ archived the inducibility of $S_{k, l}$, there are the same numbers of induced $S_{k, I}$ contains v.

Sketch of proof

Claim

For every vertex v in $V(D)$ archived the inducibility of $S_{k, l}$, there are the same numbers of induced $S_{k, I}$ contains v.

- X : vertex with at least half of $S_{k, l}$ contains it as center
- Y : vertex with at least half of the $S_{k, l}$ contains it as a leaf

Sketch of proof

Claim

For every vertex v in $V(D)$ archived the inducibility of $S_{k, l}$, there are the same numbers of induced $S_{k, I}$ contains v.

- X : vertex with at least half of $S_{k, l}$ contains it as center
- Y : vertex with at least half of the $S_{k, l}$ contains it as a leaf

Lemma

$|X| \approx \alpha n,|Y| \approx(1-\alpha) n$, for each vertex x in X, it has approximate $(1-\alpha) n$ arcs, among which roughly d of them are oriented out from x. And each vertex y in Y has approximate α n arcs.

Sketch of proof

- Step 1: Each vertex in X has in/out degree very close to extremal graph;
- Step 2: There are not many edges in X and in Y;
- Step 3: The edges between X and Y are complete;
- Step 4: Most of the Star centers in Y are center in a set Y_{2};
- Step 5: There is no edge in Y;
- Step 6: There is no edge in X;
- Step 7: Determine the sizes by calculations.

Thank you for your attention!

