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In geometry, we consider n points in a plane and the distances
between two points is the Euclidean distance. We may form a
distance matrix with (i , j) entry to be the Euclidean distance
between the i-th and the j-th points for 1 ≤ i , j ≤ n.

A. Cayley, A theorem in the geometry of position, Cambridge
Math. J. 2 (1841) 267–271.

I. Schoenberg, Remarks to Maurice Fréchet.s article “Sur la
définition axiomatique d.une classe d.espace distanciés
vectoriellement applicable sur l.espace de Hilbert0, Ann. Math. 36
(1935) 724–732.

G. Young, A. Householder, Discussion of a set of points in terms of
their mutual distances, Psy-chometrika 3 (1938) 19–22.



Hakimi and Yau considerd a graph G on n vertices with weights
wuv for each edge uv . The distance matrix D = (duv ) is an n × n
matrix whose entry duv is the shortest weighted distance between
vertices u and v .

For a given real symmetric n × n matrix D = (dij) such that
dii = 0 and 0 ≤ dij ≤ dik + dkj for any 1 ≤ i , j , k ≤ n, they
consider the problem whether there is there a graph G for which D
is its distance matrix.

Particularly, they also considered the case wuv = 1 for uv ∈ E (G ).

S.L. Hakimi, S.S. Yau, Distance matrix of a graph and its
realizability, Quart. Appl. Math. 22 (1965) 305–317.

A. Dress, Trees, tight extensions of metric spaces, and the
cohomological dimension of certain groups: a note on
combinatorial properties of metric spaces, Adv. Math. 53 (1984)
321–402.



We consider graph-theoretical distance and facts on spectral
properties distance matrix. Let G be a connected graph with vertex
set V (G ). The distance between vertices u, v is defined as the
number of edges of a shortest path between them in G , denoted by
dG (u, v) or duv .

Let V (G ) = {v1, . . . , vn}. The distance matrix of G is the n × n
matrix D(G ) = (dvivj ).

The eigenvalues of D(G ) are known as the distance eigenvalues of
G . Label them as ρ1(G ) ≥ · · · ≥ ρn(G ).

ρ(G )= ρ1(G ): The distance spectral radius of G , i.e., the largest
distance eigenvalue of G .



Graham and Pollack established a relationship between the number
of negative distance eigenvalues and the addressing problem in data
communication systems, and they showed that the determinant of
the distance matrix of a tree is a function of its order only.

Graham and Lovász computed the inverse of the distance matrix of
a tree.

R.L. Graham, H.O. Pollack, On the addressing problem for loop
switching, Bell System Tech. J. 50 (1971) 2495–2519.

R.L. Graham, L. Lovász, Distance matrix polynomials of trees,
Adv. Math. 29 (1978) 60–88.
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Comput. 7 (1978) 515–523.



Generalizations on determinant and inverse of distance matrices of
various classes of (di)graphs:

R.L. Graham, A.J. Hoffman, H. Hosoya, On the distance matrix of
a directed graph, J. Graph Theory 1 (1977) 85–88.

K.L. Collins, Distances matrices of trees, PhD thesis,
Massachusetts Institute of Technology, 1986.

R.B. Bapat, Determinant of the distance matrix of a tree with
matrix weights, Linear Algebra Appl. 416 (2006) 2–7.

R.B. Bapat, Distance matrix and Laplacian of a tree with attached
graphs, Linear Algebra Appl. 411 (2005) 295–308.

R.B. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and
Laplacians, Linear Algebra Appl. 401 (2005) 193–209.
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Recall that the inertia of the distance matrix of a tree is
determined.

R.L. Graham, L. Lovász, Distance matrix polynomials of trees,
Adv. Math. 29 (1978) 60–88.

The inertia of the distance matrix of a unicyclic graph with an odd
cycle is determined.

R.B. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and
Laplacians, Linear Algebra Appl. 401 (2005) 193–209.



The characteristic polynomial of the distance matrix (called
distance polynomial) of a graph was also investigated, and certain,
and in some cases all, the coefficients of the distance characteristic
polynomial are calculated.

H. Hosoya, M. Murakami, M. Gotoh, Distance polynomial and
characterization of a graph, Natur. Sci. Rep. Ochanomizu Univ.
24 (1973) 27–34.

M. Edelberg, M. R. Garey, R. L. Graham, On the distance matrix
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H. Hosoya, On some counting polynomials in chemistry.
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Math. 19 (1988) 239–257.
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of graphs, J. Comput. Chem. 11 (1990) 829–836.
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Trinajstić, The distance matrix in chemistry, J. Math. Chem. 11
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Phys. Lett. 239 (1995) 117–123.



Merris provided the first estimation of the distance spectrum of a
tree using its Laplacian spectrum.

R. Merris, The distance spectrum of a tree, J. Graph Theory 14
(1990) 365–369.

Ruzieh and Powers showed that the complete graph achieves the
minimum and the path achieves the maximum distance spectral
radius among connected graphs.

S.N. Ruzieh, D.L. Powers, The distance spectrum of the path Pn

and the first distance eigenvector of connected graphs, Linear
Multilinear Algebra 28 (1990) 75–81.



Koolen and Shpectorov proved that if the distance matrix of a
distance-regular graph G has exactly one positive eigenvalue then
either G is of diameter 2, or G is an isometric subgraph of a halved
cube.

J.H., Koolen, S.V. Shpectorov, Distance-regular graphs the
distance matrix of which has only one positive eigenvalue,
European J. Combin. 15 (1994) 269–275.

Conjectures

S. Fajtlowicz, Written on the wall, University of Houston, 1998.



Balaban, Ciubotariu and Medeleanu proposed the use of the
distance spectral radius as a molecular descriptor. Gutman and
Medeleanu used the distance spectral radius to infer the extent of
branching and model boiling points of an alkane.

A. T. Balaban, D. Ciubotariu, M. Medeleanu, Topological indices
and real number vertex invariants based on graph eigenvalues or
eigenvectors, J. Chem. Inf. Comput. Sci. 31 (1991) 517–523.

I. Gutman, M. Medeleanu, On the structure–dependence of the
largest eigenvalue of the distance matrix of an alkane, Indian J.
Chem. A 37 (1998) 569–573.



Lower and upper bounds for the distance spectral radius are found.
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Z. Liu, On spectral radius of the distance matrix. Appl. Anal.
Discrete Math. 4 (2010) 269–277.
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Let G be a non-trivial connected graph with u ∈ V (G ). For
positive integers k and ` with k ≥ `, let Gu(k , `) be the graph
obtained from G by attaching two pendant paths of length k and `
respectively at u, and Gu(k , 0) the graph obtained from G by
attaching a pendant path of length k at u.

Theorem

Let H be a non-trivial connected graph with u ∈ V (H). If
k ≥ ` ≥ 1, then ρ(Hu(k , `)) < ρ(Hu(k + 1, `− 1)).



Let G be a connected graph with u being a cut vertex. Suppose
that G1, G2 and G3 are subgraphs of G such that |V (Gi )| ≥ 2 for
1 ≤ i ≤ 3, V (Gi ) ∩ V (Gj) = {u} for 1 ≤ i < j ≤ 3 and
∪3i=1V (Gi ) = V (G ). For v ∈ V (G2) \ {u}, let

G ′ = G − {uw : w ∈ NG3(u)}+ {vw : w ∈ NG3(u)}.
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For w ∈ V (G ), define

f (w) =
∑

z∈V (G1)

dG (w , z)−
∑

z∈V (G2)\{u}

dG (w , z).

Theorem

If f (w) ≥ 0 for all w ∈ V (G3) \ {u}, and for some nonnegative
number k ,

min
w∈V (G1)

f (w) ≥ −k and min
w∈V (G2)\{u}

f (w) ≥ k,

then ρ(G ′) > ρ(G ).



Theorem

If |V (G1)| ≥ |V (G2)| − 1, f (u) ≥ 0 and

min
w∈V (G2)\{u}

f (w) ≥ max

{
0,− min

w∈V (G1)
f (w)

}
,

then ρ(G ′) > ρ(G ).



Let G1(s, t) be the graph shown below, where G1 is a nontrivial
connected graph, and s, t ≥ 1.
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Theorem

Let G1 be a nontrivial connected graph. For s ≥ t ≥ 2,

ρ(G1(s + 1, t − 1)) > ρ(G1(s, t)).



Among connected graphs on n vertices,
the complete graph achieves uniquely minimum distance spectral
radius, the path achieves uniquely maximum distance spectral
radius.

Among trees on n vertices,
the star achieves uniquely minimum distance spectral radius.

S.N. Ruzieh, D.L. Powers, The distance spectrum of the path Pn

and the first distance eigenvector of connected graphs, Linear
Multilinear Algebra 28 (1990) 75–81.

D. Stevanović, A. Ilić, Distance spectral radius of trees with fixed
maximum degree, Electron. J. Linear Algebra 20 (2010) 168–179.
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Theorem

Among trees with n ≥ 6 vertices,

D(n; 1, n − 3) achieves uniquely 2nd minimum distance spectral
radius,
S(n; 1, 1, n − 3) achieves uniquely 2nd maximum distance spectral
radius;
D(n; 2, n − 4) achieves uniquely 3rd minimum distance spectral
radius,
S(n; 1, 2, n − 4) achieves uniquely 3rd maximum distance spectral
radius.
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Theorem

Among non-caterpillar trees on n ≥ 7 vertices, B(n; n− 7, 1, 1, 1) is
the unique graph with minimum distance spectral radius.

Theorem

Among non-starlike non-caterpillar trees on n ≥ 8 vertices,
B(n; n − 8, 1, 1, 2) is the unique graph with minimum distance
spectral radius.
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Theorem

Among non-starlike trees on n ≥ 6 vertices, Dn is the unique graph
with maximal distance spectral radius.

Theorem

Among non-caterpillar trees on n ≥ 7 vertices, S(n; 2, 2, n − 5) is
the unique graph with maximum distance spectral radius.



For n ≥ 8, let P = v1v2 · · · vn−3, let P(n; 2, n − 5) be the tree
obtained from P by attaching a pendant vertex to v2 and a path
P2 = vnvn−1 at the terminal vertex to vn−5.

Theorem

Among non-starlike non-caterpillar trees on n ≥ 8 vertices,
P(n; 2, n − 5) is the unique graph with maximal distance spectral
radius.
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Among connected graphs with n vertices and domination number

γ, where 1 ≤ γ ≤ bn2c, D
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fordn3e < γ ≤ bn2c are the

unique graphs with maximum distance spectral radius.
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Theorem

Among trees with n vertices and 2k odd vertices, where
1 ≤ k ≤ bn2c, C

(
n, bk−12 c, d

k−1
2 e
)

is the unique tree with
maximum distance spectral radius.



Watanabe et al. studied some spectral properties of the distance
matrix of a uniform hypertree.

S. Watanabe, K. Ishi, M. Sawa, A Q-analogue of the addressing
problem of graphs by Graham and Pollak, SIAM J. Discrete Math.
26 (2012) 527–536.



TG (u): the transmission of u in G , i.e.,
TG (u) =

∑
v∈V (G) dG (u, v).

T (G ): the diagonal matrix of transmissions of G .

Q(G ) = T (G ) + D(G ): the distance signless Laplacian matrix
of G .

L(G ) = T (G )− D(G ): the distance Laplacian matrix of G .

M. Aouchiche, P. Hansen, Two Laplacians for the distance matrix
of a graph, Linear Algebra Appl. 439 (2013) 21–33.



V. Nikiforov, Merging the A- and Q-spectral theories, Appl. Anal.
Discrete Math. 11 (2017) 81–107.

Dα(G ): the convex combinations of T (G ) and D(G ), defined
as

Dα(G ) = αT (G ) + (1− α)D(G ), α ∈ [0, 1).

The eigenvalues of Dα(G ) are called the distance
α-eigenvalues of G , and the largest distance α-eigenvalue of G is
called the distance α-spectral radius of G , written as µα(G ).



A connected graph G on n vertices is distinguished vertex
deleted regular (DVDR) if there is a vertex v of degree n − 1 such
that G − v is regular.

Let G be a connected graph and u and v be vertices such that
TG (u) = Tmin(G ) and TG (v) = Tmax(G ). Let
m1 = max{TG (w)− (1− α)d(u,w) : w ∈ V (G ) \ {u}},
m2 = min{TG (w)− (1− α)d(v ,w) : w ∈ V (G ) \ {v}}, and
e(w) = max{d(w , z) : z ∈ V (G )} for w ∈ V (G ).



A connected graph G on n vertices is distinguished vertex
deleted regular (DVDR) if there is a vertex v of degree n − 1 such
that G − v is regular.

Let G be a connected graph and u and v be vertices such that
TG (u) = Tmin(G ) and TG (v) = Tmax(G ). Let
m1 = max{TG (w)− (1− α)d(u,w) : w ∈ V (G ) \ {u}},
m2 = min{TG (w)− (1− α)d(v ,w) : w ∈ V (G ) \ {v}}, and
e(w) = max{d(w , z) : z ∈ V (G )} for w ∈ V (G ).



Then

m2 + αTmax(G ) +
√

(m2 − αTmax(G ))2 + 4(1− α)2Tmax(G )

2
≤ µα(G )

≤
m1 + αTmin(G ) +

√
(m1 − αTmin(G ))2 + 4(1− α)2e(u)Tmin(G )

2
.

The first equality holds if and only if G is a complete graph and
the second equality holds if and only if G is a DVDR graph.

Let G be a connected graph of order n ≥ 4, where G 6∼= Pn. Then
µα(G ) ≤ µα(Bn,3) < µα(Pn) with equality if and only if G ∼= Bn,3.
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