On a generalization of the bipartite graph

``` \(D(k, q)\)

\title{
Tang Yuansheng Joint work with Cheng Xiaoyan
}
```

School of Mathematical Sciences, Yangzhou University
NCHU, Aug. 2019

```

\section*{Outline}
(1) Background
(2) Generalized Graphs \(\Gamma(T, q)\)
(3) Automorphisms of \(\Gamma(T, q)\)
(4) Connectivity of \(\Gamma(T, q)\)
(5) Projections and Lifts in \(\Gamma(T, q)\)
(6) Girth of \(\Gamma(T, q)\)
(7) Conclusion

\section*{Simple Graphs}

The graphs we consider in this talk are simple, i.e. undirected, without loops and multiple edges.

For a graph \(G\), its vertex set and edge set are denoted by \(V(G)\) and \(E(G)\), respectively. The order of \(G\) is the number of vertices in \(V(G)\).

The degree of a vertex \(v \in G\) is the number of the vertices that are adjacent to it. A graph is said to be \(r\)-regular if the degree of every vertex is equal to \(r\).

An automorphism of \(G\) means a bijection \(\phi\) from \(V(G)\) to itself such that \(\left\{\phi(v), \phi\left(v^{\prime}\right)\right\}\) is an edge iff \(\left\{v, v^{\prime}\right\}\) is.
\(G\) is said to be edge-transitive if for any two edges \(\left\{v_{1}, v_{1}^{\prime}\right\}\), \(\left\{v_{2}, v_{2}^{\prime}\right\}\) there is an automorphism \(\phi\) of \(G\) such that
\[
\left\{\phi\left(v_{1}\right), \phi\left(v_{1}^{\prime}\right)\right\}=\left\{v_{2}, v_{2}^{\prime}\right\} .
\]

\section*{Simple Graphs}

A sequence \(v_{1} v_{2} \cdots v_{n}\) of vertices of \(G\) is called a path of length \(n\) if \(\left\{v_{i}, v_{i+1}\right\} \in E(G)\) for \(i=1,2, \ldots, n-1\) and \(v_{j} \neq\) \(v_{j+2}\) for \(j=1,2, \ldots, n-2\).

A path \(v_{1} v_{2} \cdots v_{n}\) is called a cycle further if its length \(n\) is not smaller than 3 and \(v_{3} v_{4} \cdots v_{n} v_{1} v_{2}\) is still a path.

If \(G\) contains at least one cycle, then the girth of \(G\), denoted by \(g(G)\), is the length of a shortest cycle in \(G\).

In the literature, graphs with large girth and a high degree of symmetry have been shown to be useful in different problems in extremal graph theory, finite geometry, coding theory, cryptography, communication networks and quantum computations.

\section*{Definition of \(D(k, q)\)}

For prime power \(q\) and integer \(k \geq 2\), Lazebnik et al. in 1995 proposed a bipartite graph, denoted by \(D(k, q)\), which is \(q\)-regular, edge-transitive and of large girth.

The vertex sets \(L(k)\) and \(P(k)\) of \(D(k, q)\) are two copies of \(\mathbb{F}_{q}^{k}\) such that \(\left(l_{1}, l_{2}, \ldots, l_{k}\right) \in L(k)\) and \(\left(p_{1}, p_{2}, \ldots, p_{k}\right) \in P(k)\) are adjacent in \(D(k, q)\) iff
\[
\begin{align*}
& l_{2}+p_{2}=p_{1} l_{1}  \tag{1}\\
& l_{3}+p_{3}=p_{1} l_{2} \tag{2}
\end{align*}
\]
and, for \(4 \leq i \leq k\),
\[
l_{i}+p_{i}= \begin{cases}p_{i-2} l_{1}, & \text { if } i \equiv 0 \text { or } 1(\bmod 4)  \tag{3}\\ p_{1} l_{i-2}, & \text { if } i \equiv 2 \text { or } 3(\bmod 4)\end{cases}
\]

\section*{Girth of \(D(k, q)\)}

In 1995 Lazebnik et al. showed some automorphisms of \(D(k, q)\) and then proved \(g(D(k, q)) \geq k+4\).

Since the girth of a bipartite graph must be even, we have \(g(D(k, q)) \geq k+5\) for odd \(k\). In 1995 Füredi et al. proved
\[
g(D(k, q))=k+5
\]
for odd \(k\) with \(\left.\frac{k+5}{2} \right\rvert\,(q-1)\) and conjectured further
Conjecture A. \(g(D(k, q))=k+5\) for all odd \(k\) and all \(q \geq 4\).
This conjecture was proved to be valid:
- in 2014 when \(k+5=2 p^{s}\) for some \(s>0\);
- in 2016 when \(\frac{k+5}{2 p^{s}}\) divides \(q-1\) for some \(s \geq 0\);
where \(p\) is the characteristic of the field \(\mathbb{F}_{q}\).

\section*{Connected Components of \(D(k, q)\)}

The graph \(D(k, q)\) was shown to be disconnected in general in 1996. The number of components of \(D(k, q)\) was determined further for \(q \geq 3\) in 2004 .

The connectivity and the lower bound of the girth of \(D(k, q)\) imply that the components of \(D(k, q)\) provide the best-known asymptotic lower bound for the greatest number of edges in graphs of their order and girth. Indeed, at the present, the components of \(D(k, q)\) provide the best general lower bound (for all but few exceptional values of \(t\) ) on the Turán numbers \(e x\left(n ;\left\{C_{3}, \ldots, C_{2 t+1}\right\}\right)\) and \(e x\left(n ;\left\{C_{2 t}\right\}\right)\).

\section*{Wenger Graphs}

For \(n \geq 1\), Lazebnik and Viglione constructed in 2002 a bipartite graph \(G_{n}(q)\) (indeed a generalization of the graph defined by Wenger in 1991) whose vertex sets are \(L(n+1)\) and \(P(n+1)\) such that two vertices \(\left(l_{1}, l_{2}, \ldots, l_{n+1}\right) \in L(n+1)\) and \(\left(p_{1}, p_{2}, \ldots, p_{n+1}\right) \in P(n+1)\) are adjacent in \(G_{n}(q)\) if and only if
\[
\begin{equation*}
l_{i}+p_{i}=p_{1} l_{i-1}, i=2,3, \ldots, n+1 \tag{4}
\end{equation*}
\]

For \(n \geq 3\) and \(q \geq 3\), or \(n=2\) and \(q\) odd, the graph \(G_{n}(q)\) is semi-symmetric ( edge-transitive but not vertex-transitive), connected when \(1 \leq n \leq q-1\) and disconnected when \(n \geq q\), in which case it has \(q^{n-q+1}\) components, each isomorphic to \(G_{q-1}(q)\).

\section*{Graphs Defined by Equation Systems}

For \(n \geq 2\) and commutative ring \(\mathcal{R}\), Lazebnik and Woldar constructed in 2001 a bipartite graph \(B \Gamma_{n}=B \Gamma\left(\mathcal{R} ; f_{2}, \ldots, f_{n}\right)\) whose vertex sets \(L_{n}\) and \(P_{n}\) are two copies of \(\mathcal{R}^{n}\) such that \(\left(l_{1}, l_{2}, \ldots, l_{n}\right) \in L_{n}\) and \(\left(p_{1}, p_{2}, \ldots, p_{n}\right) \in P_{n}\) are adjacent in \(B \Gamma_{n}\) if and only if
\[
\begin{equation*}
l_{i}+p_{i}=f_{i}\left(p_{1}, l_{1}, p_{2}, l_{2}, \ldots, p_{i-1}, l_{i-1}\right), i=2,3, \ldots, n \tag{5}
\end{equation*}
\]
where \(f_{i}: \mathcal{R}^{2 i-2} \rightarrow \mathcal{R}\) are given functions.
Some general properties of \(B \Gamma_{n}\) were exhibited by Lazebnik and Woldar in that paper.

\section*{Monomial Graphs}

When \(\mathcal{R}\) is a finite field and the functions \(f_{i}\) are monomials of \(p_{1}\) and \(l_{1}\), the graph \(B \Gamma_{n}\) is also called a monomial graph. For positive integers \(k, m, k^{\prime}, m^{\prime}\), it is proved in 2005 that the monomial graphs \(B \Gamma_{2}\left(\mathbb{F}_{q} ; p_{1}^{k} l_{1}^{m}\right)\) and \(B \Gamma_{2}\left(\mathbb{F}_{q} ; p_{1}^{k^{\prime}} l_{1}^{m^{\prime}}\right)\) are isomorphic if and only if \(\{\operatorname{gcd}(k, q-1), \operatorname{gcd}(m, q-1)\}=\) \(\left\{\operatorname{gcd}\left(k^{\prime}, q-1\right), \operatorname{gcd}\left(m^{\prime}, q-1\right)\right\}\) as multi-sets.

If \(q\) is odd, it was proved in 2007 that any monomial graph \(B \Gamma_{3}\) of girth \(\geq 8\) is isomorphic to a graph \(B \Gamma_{3}\left(\mathbb{F}_{q} ; p_{1} l_{1}, p_{1}^{k} l_{1}^{2 k}\right)\) for \(k\) with \((k, q)=1\). In particular, the integer \(k\) can be restricted to be 1 further if the odd prime power \(q\) is not greater than \(10^{10}\) or of form \(q=p^{2^{a} 3^{b}}\) for odd prime \(p\). It was further conjectured that:

Conjecture B. For any odd prime power \(q\), every monomial graph \(B \Gamma_{3}\) of girth \(\geq 8\) is isomorphic to \(B \Gamma_{3}\left(\mathbb{F}_{q} ; p_{1} l_{1}, p_{1} l_{1}^{2}\right)\).

\section*{Two Conjectures on Permutation Polynomials}

Let \(q\) be a power of an odd prime \(p\) and \(1 \leq k \leq k-1\).
Conjection C. \(X^{k}\left[(X+1)^{k}-x^{k}\right] \in \mathbb{F}_{q}[X]\) is a permutation polynomial if and only if \(k\) is a power of \(p\).

Conjection D. \(\left[(X+1)^{2 k}-1\right] X^{q-1-k}-2 X^{q-1} \in \mathbb{F}_{q}[X]\) is a permutation polynomial if and only if \(k\) is a power of \(p\).

It was proved in 2007 that Conjecture B is true if Conjectures C and D are true.

In 2019, Xiangdong Hou et.al proved that Conjecture B is true though the Conjectures C and D are still open.

\section*{Condition for the Index Sets}

In this talk, \(T\) denotes a set of binary sequences satisfying
C1: \(T\) contains the null sequence \(\eta\) and the sequences obtained from those in \(T \backslash\{\eta\}\) by deleting the last bits.

We note that \(T\) corresponds indeed a binary tree.
Let \(L(T)\) and \(R(T)\) be two copies of \(\mathbb{F}_{q}^{|T|+1}\), where \(|T|\) is the size of \(T\).

We will denote the vectors in \(L(T)\) by [l] (or in \(R(T)\) by \(\langle r\rangle\), respectively). The entries of vectors in \(L(T) \cup R(T)\) are indexed by the elements in \(T \cup\{*\}\), where \(*\) is a symbol not in \(T\) and used to index the colors of the vectors.

\section*{Definition of the Generalized Graphs}

Let \(\Gamma(T, q)\) be the bipartite graph with vertex sets \(L(T)\), \(R(T)\) such that \([l] \in L(T)\) and \(\langle r\rangle \in R(T)\) are adjacent in \(\Gamma(T, q)\) if and only if
\[
\begin{equation*}
l_{\eta}+r_{\eta}=l_{*} r_{*}, \tag{6}
\end{equation*}
\]
and
\[
\begin{align*}
& l_{\alpha 0}+r_{\alpha 0}=r_{*} l_{\alpha}, \text { for } \alpha 0 \in T,  \tag{7}\\
& l_{\beta 1}+r_{\beta 1}=l_{*} r_{\beta}, \text { for } \beta 1 \in T . \tag{8}
\end{align*}
\]

If we define \(* 0 \sigma=* 1 \sigma=\sigma\) for any \(\sigma \in\{0,1\}^{*}\), the equation (6) can also be included in either (7) or (8).

\section*{Generalization of \(D(k, q)\) and \(G_{n}(q)\)}

Let \([0]_{x}\) denote the vector \([l]\) satisfying \(l_{*}=x\) and \(l_{\alpha}=0\) for \(\alpha \in T\), and \(\langle 0\rangle_{x}\) denote the vector \(\langle r\rangle\) satisfying \(r_{*}=x\) and \(r_{\alpha}=0\) for \(\alpha \in T\).

Clearly, for any \(T\) the bipartite graph \(\Gamma(T, q)\) is \(q\)-regular and contains the edge \(\left([0]_{0},\langle 0\rangle_{0}\right)\).

For \(k \geq 2\), let \(U_{k}\) denote the set consisting of the first \(k-1\) elements in the following set
\[
\begin{equation*}
U=\{\eta, 0,1,01,10,010,101,0101,1010, \ldots\} \tag{9}
\end{equation*}
\]

Then, \(\Gamma\left(U_{k}, q\right)\) is equivalent to \(D(k, q)\).
For positive integer \(n\), let \(W_{n}\) denote the set of all-zero sequences of length less than \(n\). Then, \(\Gamma\left(W_{n}, q\right)\) is equivalent to the Wenger graph \(G_{n}(q)\).

\section*{Automorphisms of \(\Gamma(T, q)\)}

For any binary sequence \(\alpha\), let \(|\alpha|\) and \(w(\alpha)\) denote its length and the number of its nonzero bits, respectively.

For \(x, y \in \mathbb{F}_{q}\), let \(\lambda_{x, y}\) denote the map from \(L(T) \cup R(T)\) to itself such that, for \([l] \in L(T)\) and \(\langle r\rangle \in R(T)\),
\[
\left(\lambda_{x, y}([l])\right)_{*}=x l_{*},\left(\lambda_{x, y}(\langle r\rangle)\right)_{*}=y r_{*},
\]
and
\[
\begin{aligned}
\left(\lambda_{x, y}([l])\right)_{\alpha} & =x^{w(\alpha)+1} y^{|\alpha|-w(\alpha)+1} l_{\alpha}, \\
\left(\lambda_{x, y}(\langle r\rangle)\right)_{\alpha} & =x^{w(\alpha)+1} y^{|\alpha|-w(\alpha)+1} r_{\alpha} .
\end{aligned}
\]

\section*{Theorem}

For any \(x, y \in \mathbb{F}_{q}^{*}, \lambda_{x, y}\) is an automorphism of \(\Gamma(T, q)\).

\section*{Automorphisms of \(\Gamma(T, q)\)}

For \(\alpha \in T\), let \(S_{T}(\alpha)\) denote the set of sequences \(\beta\) with
\[
\{\alpha 01 \beta, \alpha 10 \beta\} \cap T \neq \emptyset .
\]

Let \(\mathbb{S}(T)=\cup_{\alpha \in T} S_{T}(\alpha)\).

\section*{Theorem}

For any \(x \in \mathbb{F}_{q}\) and \(\alpha \in T\) with \(S_{T}(\alpha) \subset T\), there is an automorphism \(\theta_{x, \alpha}\) of \(\Gamma(T, q)\) such that, for any \([l] \in L(T)\) and \(\langle r\rangle \in R(T)\),
\[
\left(\theta_{x, \alpha}([l])\right)_{\alpha}=l_{\alpha}+x, \quad\left(\theta_{x, \alpha}(\langle r\rangle)\right)_{\alpha}=r_{\alpha}-x
\]
and
\[
\left(\theta_{x, \alpha}([l])\right)_{\gamma}=l_{\gamma}, \quad\left(\theta_{x, \alpha}(\langle r\rangle)\right)_{\gamma}=r_{\gamma},
\]
for any \(\gamma \notin\left\{\alpha \beta: \beta \in\{0,1\}^{*}\right\}\).

\section*{Automorphisms of \(\Gamma(T, q)\)}

For \(\sigma \in\{0,1\}^{*}\), let \(\sigma^{0}=\eta\) and \(\sigma^{i}=\sigma^{i-1} \sigma\) for \(i>0\).

\section*{Theorem}

If \(\mathbb{S}(T) \subset T\), then for any edge \(([l],\langle r\rangle)\) there are automorphisms \(\theta_{0}, \theta_{1}\) of \(\Gamma(T, q)\) such that
(1) \(\theta_{0}([l])=[0]_{l_{*}},\left(\theta_{0}(\langle r\rangle)\right)_{*}=r_{*}\) and
\[
\begin{aligned}
& \left(\theta_{0}(\langle r\rangle)\right)_{1^{i}}=l_{*}^{i+1} r_{*}, \text { if } 1^{i} \in T, i \geq 0 \\
& \left(\theta_{0}(\langle r\rangle)\right)_{\alpha}=0 \text { for all } \alpha \in T \backslash\left\{1^{i}: i \geq 0\right\}
\end{aligned}
\]
(2) \(\theta_{1}(\langle r\rangle)=\langle 0\rangle_{r_{*}},\left(\theta_{1}([l])\right)_{*}=l_{*}\) and
\[
\begin{aligned}
& \left(\theta_{1}([l])\right)_{0^{i}}=r_{*}^{i+1} l_{*}, \text { if } 0^{i} \in T, i \geq 0 \\
& \left(\theta_{1}([l])\right)_{\alpha}=0 \text { for all } \alpha \in T \backslash\left\{0^{i}: i \geq 0\right\}
\end{aligned}
\]

\section*{Automorphisms of \(\Gamma(T, q)\)}

For \(a \in\{0,1\}\), let \(H_{a}(T)\) denote the set of sequences obtained from the sequences \(\alpha \in T \backslash\{\eta\}\) by deleting a \(a\) either from the leftmost or from two consecutive \(a\) 's.

\section*{Theorem}
(1) If \(H_{0}(T) \subset T\), then, for any \(x \in \mathbb{F}_{q}\), there is an automorphism \(\phi\) of \(\Gamma(T, q)\) such that
\[
\begin{aligned}
(\phi([l]))_{*} & =l_{*}, \text { for }[l] \in L(T) \\
(\phi(\langle r\rangle))_{*} & =r_{*}+x, \text { for }\langle r\rangle \in R(T)
\end{aligned}
\]
(2) If \(H_{1}(T) \subset T\), then, for any \(x \in \mathbb{F}_{q}\), there is an automorphism \(\psi\) of \(\Gamma(T, q)\) such that
\[
\begin{aligned}
(\psi([l]))_{*} & =l_{*}+x, \text { for }[l] \in L(T), \\
(\psi(\langle r\rangle))_{*} & =r_{*}, \text { for }\langle r\rangle \in R(T) .
\end{aligned}
\]

\section*{Automorphisms of \(\Gamma(T, q)\)}

\section*{Theorem}
(1) If \(H_{0}(T) \cup \mathbb{S}(T) \subset T\), then for any \(\langle r\rangle \in R(T)\) there is an automorphism \(\pi\) of \(\Gamma(T, q)\) such that \(\pi(\langle r\rangle)=\langle 0\rangle_{0}\).
(2) If \(H_{1}(T) \cup \mathbb{S}(T) \subset T\), then for any \([l] \in L(T)\) there is an automorphism \(\pi\) of \(\Gamma(T, q)\) such that \(\pi([l])=[0]_{0}\).

\section*{Theorem}

If \(H_{0}(T) \cup H_{1}(T) \subset T\), then the bipartite graph \(\Gamma(T, q)\) is edgetransitive, or equivalently, for any edge \(([l],\langle r\rangle) \in E(\Gamma(T, q))\) there is an automorphism \(\pi\) of \(\Gamma(T, q)\) such that \(\pi([l])=[0]_{0}\) and \(\pi(\langle r\rangle)=\langle 0\rangle_{0}\).

\section*{Corollary}

The bipartite graphs \(D(k, q)\) and \(G_{k}(q)\) are edge-transitive.

\section*{Example 1}

For example, let \(T_{1}\) denote the following set
\[
\begin{aligned}
& \left\{\eta, 1,0,10,0^{2}, 01,101,0^{2} 1,010,(10)^{2}, 0^{2} 10,(01)^{2},(10)^{2} 1\right. \\
& \left.\quad 0(01)^{2},(01)^{2} 0,(10)^{3}, 0^{2}(10)^{2},(01)^{3}, 1(01)^{3}, 0(01)^{3}\right\}
\end{aligned}
\]

Then, the bipartite graph \(\Gamma\left(T_{1}, q\right)\) is edge-transitive.
If the sequences in \(T_{1}\) are mapped into \(\{1,2, \ldots, 20\}\) in order and the symbol \(*\) is mapped to 0 , then \([l]\) and \(\langle r\rangle\) are adjacent in \(\Gamma\left(T_{1}, q\right)\) if and only if
\[
\begin{gathered}
l_{k}+r_{k}=l_{0} r_{k-1}, \quad k=1,2 \\
l_{j}+r_{j}=r_{0} l_{j-2}, \quad j=3,4,5
\end{gathered}
\]
and, for \(6 \leq i \leq 20\),
\[
l_{i}+r_{i}= \begin{cases}l_{0} r_{i-3}, & \text { if } i \equiv 0 \text { or } 1 \text { or } 2(\bmod 6) \\ r_{0} l_{i-3}, & \text { if } i \equiv 3 \text { or } 4 \text { or } 5(\bmod 6)\end{cases}
\]

\section*{Invariants for Components of \(\Gamma(T, q)\)}

For any \(x \in \mathbb{F}_{q}\), let \(x^{0}\) be the multiplicative unit of \(\mathbb{F}_{q}\).

\section*{Lemma}

For any \(([l],\langle r\rangle) \in E(\Gamma(T, q)), \alpha, \beta \in\{0,1\}^{*} \cup\{*\}\) and \(s \geq 0\),
(1) If \(\left\{\alpha 10^{s}, \beta 10^{s}\right\} \subset T\), then
\[
l_{\alpha 10^{s}} r_{\beta}-r_{\alpha} l_{\beta 10^{s}}=\sum_{t=0}^{s} r_{*}^{s-t}\left(r_{\alpha} r_{\beta 10^{t}}-r_{\alpha 10^{t}} r_{\beta}\right)
\]
(2) If \(\left\{\alpha 01^{s}, \beta 01^{s}\right\} \subset T\), then
\[
r_{\alpha 01^{s}} l_{\beta}-l_{\alpha} r_{\beta 01^{s}}=\sum_{t=0}^{s} l_{*}^{s-t}\left(l_{\alpha} l_{\beta 01^{t}}-l_{\alpha 01^{t}} l_{\beta}\right)
\]

\section*{Invariants for Components of \(\Gamma(T, q)\)}

\section*{Theorem}

Suppose \(\alpha \in\{0,1\}^{*} \cup\{*\}\).
(1) If \(\alpha 0^{q}\) is a sequence in \(T\), then
\[
l_{\alpha 0^{q}}-l_{\alpha 0}=r_{\alpha 0}-\left(r_{\alpha 0^{q}}+r_{*} r_{\alpha 0^{q-1}}+\cdots+r_{*}^{q-1} r_{\alpha 0}\right)
\]
is an invariant of \(\Gamma(T, q)\).
(2) If \(\alpha 1^{q}\) is a sequence in \(T\), then
\[
r_{\alpha 1^{q}}-r_{\alpha 1}=l_{\alpha 1}-\left(l_{\alpha 1^{q}}+l_{*} l_{\alpha 1^{q-1}}+\cdots+l_{*}^{q-1} l_{\alpha 1}\right)
\]
is an invariant of \(\Gamma(T, q)\).

\section*{Invariants for Components of \(\Gamma(T, q)\)}

For any sequence \(\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots\right)\) of nonnegative integers, let \(\mu_{0}(s)=*\) and, for \(i \geq 1\),
\[
\mu_{i}(\boldsymbol{s})= \begin{cases}\mu_{i-1}(\boldsymbol{s}) 10^{s_{i}}, & \text { if } i \text { is odd } \\ \mu_{i-1}(\boldsymbol{s}) 01^{s_{i}}, & \text { if } i \text { is even. }\end{cases}
\]

\section*{Theorem}

If \(\alpha=\mu\left(s_{1}, \ldots, s_{2 n+1}\right)\) is not equal to \(\hat{\alpha}=\mu\left(s_{2 n+1}, \ldots, s_{1}\right)\), then for any edge \(([l],\langle r\rangle)\) of \(\Gamma(T, q)\),
\[
\begin{gathered}
\quad l_{\alpha}-l_{\hat{\alpha}}+\sum_{i=1}^{n} \sum_{t=0}^{s_{2 i}} l_{*}^{s_{2 i}-t}\left(l_{\mu_{2 i}^{\prime}} l_{\mu_{2 i-1} 01^{t}}-l_{\mu_{2 i}^{\prime} 01^{t}} l_{\mu_{2 i-1}}\right) \\
=r_{\hat{\alpha}}-r_{\alpha}+\sum_{i=0}^{n} \sum_{t=0}^{s_{2 i+1}} r_{*}^{s_{2 i+1}-t}\left(r_{\mu_{2 i+1}^{\prime} 10^{t}} r_{\mu_{2 i}}-r_{\mu_{2 i+1}^{\prime}} r_{\mu_{2 i} 10^{t}}\right) \\
\text { where } \mu_{i}=\mu_{i}\left(s_{1}, \ldots, s_{2 n+1}\right) \text { and } \mu_{i}^{\prime}=\mu_{2 n+1-i}\left(s_{2 n+1}, \ldots, s_{1}\right) .
\end{gathered}
\]

\section*{Invariants for Components of \(\Gamma(T, q)\)}

For any sequence \(\boldsymbol{s}=\left(s_{1}, s_{2}, \ldots\right)\) of nonnegative integers, let \(\nu_{0}(s)=*\) and, for \(i \geq 1\),
\[
\nu_{i}(\boldsymbol{s})= \begin{cases}\nu_{i-1}(\boldsymbol{s}) 01^{s_{i}}, & \text { if } i \text { is odd } \\ \nu_{i-1}(\boldsymbol{s}) 10^{s_{i}}, & \text { if } i \text { is even }\end{cases}
\]

\section*{Theorem}

If \(\alpha=\nu\left(s_{1}, \ldots, s_{2 n+1}\right)\) is not equal to \(\hat{\alpha}=\nu\left(s_{2 n+1}, \ldots, s_{1}\right)\), then for any edge \(([l],\langle r\rangle)\) of \(\Gamma(T, q)\),
\[
\begin{gathered}
l_{\alpha}-l_{\hat{\alpha}}+\sum_{i=0}^{n} \sum_{t=0}^{s_{2 i+1}} l_{*}^{s_{2 i+1}-t}\left(l_{\nu_{2 i+1}^{\prime}} l_{\nu_{2 i} 01^{t}}-l_{\nu_{2 i+1}^{\prime} 01^{\prime}} l_{\nu_{2 i}}\right) \\
=r_{\hat{\alpha}}-r_{\alpha}+\sum_{i=1}^{n} \sum_{t=0}^{s_{2 i}} r_{*}^{s_{2 i}-t}\left(r_{\nu_{2 i}^{\prime}} 0^{t} r_{\nu_{2 i-1}}-r_{\nu_{2 i}^{\prime}} r_{\nu_{2 i-1} 10^{t}}\right) \text {, } \\
\text { where } \nu_{i}=\nu_{i}\left(s_{1}, \ldots, s_{2 n+1}\right) \text { and } \nu_{i}^{\prime}=\nu_{2 n+1-i}\left(s_{2 n+1}, \ldots, s_{1}\right) .
\end{gathered}
\]

\section*{Invariants for Components of \(\Gamma(T, q)\)}

\section*{Theorem}

If \(\alpha=\mu\left(s_{1}, \ldots, s_{2 n}\right)\) is not equal to \(\hat{\alpha}=\nu\left(s_{2 n}, \ldots, s_{1}\right)\), then for any two adjacent vertices \([l],\langle r\rangle\) of \(\Gamma(T, q)\),
\[
\begin{aligned}
& l_{\alpha}-l_{\hat{\alpha}}+\sum_{i=1}^{n} \sum_{t=0}^{s_{2 i}} l_{*}^{s_{2 i}-t}\left(l_{\nu_{2 i}^{\prime \prime}} l_{\mu_{2 i-1} 01^{t}}-l_{\nu_{2 i}^{\prime \prime} 01^{t}} l_{\mu_{2 i-1}}\right) \\
= & r_{\hat{\alpha}}-r_{\alpha}+\sum_{i=0}^{n-1} \sum_{t=0}^{s_{2 i+1}} r_{*}^{s_{2 i+1}-t}\left(r_{\nu_{2 i+1}^{\prime \prime} 10^{t}} r_{\mu_{2 i}}-r_{\nu_{2 i+1}^{\prime \prime}} r_{\mu_{2 i} 10^{t}}\right),
\end{aligned}
\]
\[
\text { where } \mu_{i}=\mu_{i}\left(s_{1}, \ldots, s_{2 n}\right) \text { and } \nu_{i}^{\prime \prime}=\mu_{2 n-i}\left(s_{2 n}, \ldots, s_{1}\right) \text {. }
\]

\section*{Lower Bounds of the Number of Components}

For any binary sequence \(\alpha=a_{1} a_{2} \cdots a_{n}, a_{i} \in\{0,1\}\), let \(\hat{\alpha}=a_{n} a_{n-1} \cdots a_{1}\).

\section*{Theorem}
\(\Gamma(T, q)\) has at least \(q^{h}\) connected components, where \(h\) is the number of pairs \(\alpha, \hat{\alpha} \in T\) with \(\alpha \neq \hat{\alpha}\).

\section*{Projection from \(\Gamma(T, q)\) to \(\Gamma\left(T^{\prime}, q\right)\)}

Hereafter, we suppose that \(T^{\prime}\) is a subtree of \(T\) with \(\eta \in T^{\prime}\). Let \(\Pi_{T / T^{\prime}}\) denote the projection from \(\Gamma(T, q)\) to \(\Gamma\left(T^{\prime}, q\right)\) defined naturally.

\section*{Theorem}

For any component \(C\) of \(\Gamma(T, q), \Pi_{T / T^{\prime}}(C)\) is a component of \(\Gamma\left(T^{\prime}, q\right)\) and \(\Pi_{T / T^{\prime}}\) is a t-to-1 graph homomorphism from \(C\) to \(\Pi_{T / T^{\prime}}(C)\) for some \(t\) with \(1 \leq t \leq q^{|T|-\left|T^{\prime}\right|}\).

where \(\left\{v_{1}, \ldots, v_{t}\right\}=\left\{v \in V(C): \Pi_{T / T^{\prime}}(v)=u\right\}\).

\section*{Lifting to a Component of \(\Gamma(T, q)\)}

Assume \(T^{\prime}=T \backslash\{\alpha\}\) for some leaf node \(\alpha\) in the tree \(T\). Let \(C^{\prime}\) be a component of \(\Gamma\left(T^{\prime}, q\right)\) and \(\mathbb{L}\left(C^{\prime}\right)\) the set of components \(C\) of \(\Gamma(T, q)\) with \(C^{\prime}=\Pi_{T / T^{\prime}}(C)\). For \(C \in \mathbb{L}\left(C^{\prime}\right)\) and vertex \(u \in V\left(C^{\prime}\right)\), let
\[
\rho(u, C)=\left\{v_{\alpha} \mid v \in V(C), \Pi_{T / T^{\prime}}(v)=u\right\} .
\]

Then, \(\rho(u, C)\) is a coset of some additive subgroup \(G\) of \(\mathbb{F}_{q}\).


\section*{Structure of the Lifting Sets}

\section*{Theorem}

Suppose \(T^{\prime}=T \backslash\{\alpha\}\) for some leaf node \(\alpha\) in the tree \(T\). Let \(C^{\prime}\) be a component of \(\Gamma\left(T^{\prime}, q\right)\) and \(C \in \mathbb{L}\left(C^{\prime}\right)\). Then, \(n=\left|\mathbb{L}\left(C^{\prime}\right)\right|\) divides \(q\) and there are maps \(f: V\left(C^{\prime}\right) \rightarrow \mathbb{F}_{q}\), \(g: \mathbb{L}\left(C^{\prime}\right) \rightarrow \mathbb{F}_{q}\) and an additive subgroup \(G=G\left(C^{\prime}\right)\) of \(\mathbb{F}_{q}\) of order \(t=q / n\) such that, for \(C \in \mathbb{L}\left(C^{\prime}\right)\),
\[
\rho(u, C)= \begin{cases}f(u)+g(C)+G, & \text { if } u \in V\left(C^{\prime}\right) \cap L\left(T^{\prime}\right), \\ f(u)-g(C)+G, & \text { if } u \in V\left(C^{\prime}\right) \cap R\left(T^{\prime}\right),\end{cases}
\]
where \(\left\{g(C) \mid C \in \mathbb{L}\left(C^{\prime}\right)\right\}\) is a representive set of cosets of \(G\) in \(\mathbb{F}_{q}\), namely, \(\{g(C)+G\}_{C \in \mathbb{L}\left(C^{\prime}\right)}\) are distinct cosets of \(G\) in \(\mathbb{F}_{q}\) with \(\bigcup_{C \in \mathbb{L}\left(C^{\prime}\right)}(g(C)+G)=\mathbb{F}_{q}\).

\section*{Projections and Lifts}

\section*{Theorem}

Suppose \(\mathbb{S}(T) \subset T\) and \(\mathbb{S}\left(T^{\prime}\right) \subset T^{\prime}\).
(1) There is an integer \(t\) with \(1 \leq t \leq q^{|T|-\left|T^{\prime}\right|}\) such that, for any component \(C\) of \(\Gamma(T, q), \Pi_{T / T^{\prime}}\) is a t-to-1 graph homomorphism from \(C\) to \(\Pi_{T / T^{\prime}}(C)\).
(2) If \(T^{\prime}=T \backslash\{\alpha\}\) for some leaf node \(\alpha\) of \(T\), there is an additive subgroup \(G\) of \(\mathbb{F}_{q}\) such that, for any component \(C\) of \(\Gamma(T, q)\) and vertex \(u\) of \(\Pi_{T / T^{\prime}}(C)\), the set \(\rho(u, C)\) is a coset of \(G\).

\section*{Corollary}

If \(\mathbb{S}(T) \subset T\), all components of \(\Gamma(T, q)\) are of the same size.

\section*{Lower Bounds for the Girth of \(\Gamma(T, q)\)}

For \(a \in\{0,1\}\), let \(M_{a}\) denote the set of the sequences \(\beta \in U\) that are lead by \(a\), namely,
\[
M_{a}= \begin{cases}\{0,01,010,0101, \ldots\}, & \text { if } a=0 \\ \{1,10,101,1010, \ldots\}, & \text { if } a=1\end{cases}
\]

\section*{Lemma}

Let \(\beta\) be a sequence in \(T \cap U\).
(1) If \(\beta \in M_{0}\), then \(\Gamma(T, q)\) has no cycle of length \(2(|\beta|+1)\) containing a vertex of form \([0]_{x}\).
(2) If \(\beta \in M_{1}\), then \(\Gamma(T, q)\) has no cycle of length \(2(|\beta|+1)\) containing a vertex of form \(\langle 0\rangle_{x}\).

\section*{Theorem}

Assume that \(\mathbb{S}(T) \subset T\). If \(\beta \in T \cap U\), then the girth of \(\Gamma(T, q)\) is at least \(2(|\beta|+2)\).

\section*{Example 2}

For example, for \(n>0\) let
\[
\mathcal{X}_{n}= \begin{cases}U_{4 k-1} \cup\left\{(01)^{k-1} 0,(01)^{k} 0\right\}, & \text { if } n=2 k-1, \\ U_{4 k+1} \cup\left\{(01)^{k},(01)^{k+1}\right\}, & \text { if } n=2 k .\end{cases}
\]

From \(\mathbb{S}\left(\mathcal{X}_{n}\right) \subset \mathcal{X}_{n}\), we see that the girth of \(\Gamma\left(\mathcal{X}_{n}, q\right)\) is at least \(2((n+2)+2)=2 n+8\). Note that this lower bound is equal to the best known one achieved by \(D(2 n+3, q) \cong \Gamma\left(U_{2 n+3}, q\right)\).
\[
\mathcal{X}_{2 k-1}:
\]

\(\mathcal{X}_{2 k}\) :


\section*{Lower Bounds for the Girth of \(\Gamma(T, q)\)}

\section*{Lemma}

Let \(s, t\) be nonnegative integers with \(\operatorname{gcd}(s-t, q-1)=1\).
(1) If \(\beta \in M_{0} \cup\{\eta\}\) and \(\left\{0^{s} \beta, 0^{t} \beta\right\} \subset T\), then \(\Gamma(T, q)\) has no cycle of length \(2(|\beta|+2)\) containing a vertex of form \([0]_{x}\).
(2) If \(\beta \in M_{1} \cup\{\eta\}\) and \(\left\{1^{s} \beta, 1^{t} \beta\right\} \subset T\), then \(\Gamma(T, q)\) has no cycle of length \(2(|\beta|+2)\) containing a vertex of form \(\langle 0\rangle_{x}\).

\section*{Theorem}

Suppose \(\mathbb{S}(T) \subset T, a \in\{0,1\}\) and \(\beta \in M_{a} \cup\{\eta\}\). If there are nonnegative integers \(s, t\) with \(\operatorname{gcd}(s-t, q-1)=1\) such that \(\left\{a^{s} \beta, a^{t} \beta\right\} \subset T\), then the girth of \(\Gamma(T, q)\) is at least \(2(|\beta|+3)\).

\section*{Example 3}

Let \(T_{3}\) denote the following set
\(\left\{\eta, 0,1,01,10,010,0101,01010,0^{2}, 0^{2} 1,0^{2} 10,0^{2} 101,0^{2} 1010\right\}\).
From \(\mathbb{S}\left(T_{3}\right) \cup\{01010,001010\} \subset T_{3}\), the girth of \(\Gamma\left(T_{3}, q\right)\) is at least \(2(5+3)=16\).


\section*{Lower Bounds for the Girth of \(\Gamma(T, q)\)}

\section*{Lemma}
(1) If \(\beta \in M_{0} \cup\{\eta\}\) and \(1^{m} \beta \in T\) for some \(m>0\), then \(\Gamma(T, q)\) has no cycle of length \(2(|\beta|+3)\) containing the vertex \([0]_{0}\).
(2) If \(\beta \in M_{1} \cup\{\eta\}\) and \(0^{m} \beta \in T\) for some \(m>0\), then \(\Gamma(T, q)\) has no cycle of length \(2(|\beta|+3)\) containing the vertex \(\langle 0\rangle_{0}\).

\section*{Theorem}

Suppose \(a \in\{0,1\}\) and \(\mathbb{S}(T) \cup H_{a}(T) \subset T\). If there are positive integers \(t, n_{1}, n_{2}, \ldots, n_{t}, m\) and sequences \(\gamma, \beta \in M_{a} \cup\{\eta\}\) with \(|\beta|=|\gamma|+2 t-1\) such that \(\left\{a \bar{a}^{n_{1}} a \bar{a}^{n_{2}} \cdots a \bar{a}^{n_{t}} \gamma, \bar{a}^{m} \beta\right\} \subset\) \(T\), where \(\bar{a}\) is the symbol in \(\{0,1\}\) other than \(a\), then the girth of \(\Gamma(T, q)\) is at least \(2(|\beta|+4)\).

\section*{Example 4}

Let \(T_{4}\) denote the set of the following sequences
\[
\begin{gathered}
10^{3} 10,10^{3} 1,10^{3}, 10^{2}, 10,1 ; \\
0^{2} 101,0^{2} 10,0^{2} 1,0^{2}, 0 ; 01 ; 0^{3} 10,0^{3} 1,0^{3} ; \eta
\end{gathered}
\]

From \(\mathbb{S}\left(T_{4}\right) \cup H_{1}\left(T_{4}\right) \cup\left\{10^{3} 10,0^{2} 101\right\} \subset T_{4}\), the girth of \(\Gamma\left(T_{4}, q\right)\) is at least \(2(3+4)=14\).


\section*{Lower Bounds for the Girth}

\section*{Theorem \\ Assume that \(H_{0}(T) \cup H_{1}(T) \subset T\). If \(\alpha \in T \cap U\), then the girth of \(\Gamma(T, q)\) is at least \(2(|\alpha|+3)\).}

\section*{Corollary}

For \(k \geq 2\), the girth of \(D(k, q)\) is at least \(k+4\).

\section*{Conclusion}

In this talk, we deal with a generalization \(\Gamma(T, q)\) of the bipartite graph \(D(k, q)\), by indexing the entries of vertex vectors with the nodes in a binary tree \(T\).
(1) Sufficient conditions for \(\Gamma(T, q)\) to admit a variety of automorphisms are proposed. A sufficient condition for \(\Gamma(T, q)\) to be edge-transitive is shown.
(2) For \(\Gamma(T, q)\), we show some invariants over the connected components. A lower bound for the number of its components is given.
(3) Projections and lifts of \(\Gamma(T, q)\) are investigated.
(1) A few lower bounds for the girth of \(\Gamma(T, q)\) are deduced. New families of graphs with large girth in the sense of Biggs can be obtained from \(\Gamma(T, q)\), such as \(\Gamma\left(\mathcal{X}_{n}, q\right)\).
```

Background
Generalized
Graphs
\Gamma (T , q)
Automorphisms
of \Gamma(T,q)
Connectivity
of \Gamma(T,q)

```

\section*{Thank You for Your Attention!}```

