Transversal Packing designs

Lijun Ji

Department of Mathematics
Soochow University

Aug 20

Outline

- Introduction
- $\mathrm{H}(m, g, 4,3)$ designs
- Transversal designs
- $\mathrm{H}(m, g, 4,3)$ packing designs
- Future researh

Transversal Packing Designs

An $\mathrm{H}(m, g, k, t)$ design is a triple $(X, \mathcal{T}, \mathcal{B})$, where
(1) X is a set of $m g$ points,
(2) \mathcal{T} is a partition of X into m disjoint sets of size g (called groups), and
(3) \mathcal{B} is a set of k-element transverses of \mathcal{T}, such that each t-element transverse of \mathcal{T} is contained in at most one of them.

If each t-element transverse is contained in exactly one block, then it is called an $H(m, g, k, t)$ design (or a group divisible t-design of type g^{m}).

Steiner Systems

An $\mathrm{H}(m, 1, k, t)$ design is usually called a Steiner system and denoted by $\mathrm{S}(t, k, m)$, the group set \mathcal{T} is omitted, i.e., a Steiner system is a pair (X, \mathcal{B}), where X is a set of m points and \mathcal{B} is a set of k-subsets of X such that each t-subset of X is contained in exactly one of \mathcal{B}
An $\mathrm{S}(2, k, m)$ is called a balanced incomplete block design.

Example: TD $(k-1, k, g)$

An $\mathrm{H}(k, g, k, t)$ design is also called a transversal design and denoted by $\operatorname{TD}(t, k, g)$.

TD ($k-1, k, g$)

- Point set: $I_{k} \times \mathbb{Z}_{g}, I_{k}=\{1,2, \ldots, k\} ;$
- Groups: $\{i\} \times \mathbb{Z}_{g}, i \in I_{k}$;
- Blocks: $\left\{\left(1, x_{1}\right),\left(2, x_{2}\right), \ldots,\left(k, x_{k}\right)\right\}$,

$$
x_{1}, \ldots, x_{k} \in \mathbb{Z}_{g}, x_{1}+\cdots+x_{k} \equiv 0(\bmod g)
$$

Equivalence

A $\operatorname{TD}(2, n+1, n)$ exists.
\Longleftrightarrow There are $n-1$ mutually Latin squares of order n.
$\Longleftrightarrow \mathrm{AnS}\left(2, n+1, n^{2}+n+1\right)$ exists.
\Longleftrightarrow A projective plane of order n exists.
\Longleftrightarrow An affine plane of order n exists.

Necessary Conditions

$\mathrm{H}(m, g, k, t)$ design $\Longrightarrow \mathrm{H}(m-1, g, k-1, t-1)$

Theorem

If there is an $\mathrm{H}(m, g, k, t)$ design, then

$$
\binom{m-i}{t-i} g^{t-i} \equiv 0 \quad\left(\bmod \binom{k-i}{t-i}\right)
$$

for $0 \leq i<t$.

Construction Methods:

- Difference family $\Longrightarrow \mathbf{S}(2, k, n)$
- Relative difference family $\Longrightarrow \mathrm{H}(n, g, k, 2)$
- Difference matrix $\Longrightarrow \mathrm{TD}(2, k, n)$
- Wilson's fundamental construction

Difference Matrix

Let G be an abelian group of order n. A difference matrix, or an $(n, k ; 1)$-DM is a $k \times n$ array $\left(a_{i j}\right)$ ($1 \leq i \leq k, 1 \leq j \leq n$) with entries from G, such that, for any two distinct rows l and h of D ($1 \leq l<h \leq k$), the difference list

$$
\Delta_{l h}=\left\{d_{h 1}-d_{l 1}, d_{h 2}-d_{l 2}, \ldots, d_{h n}-d_{l n}\right\}
$$

contains every element of G exactly once.

- For $k \in\{3,4\}$, the existence of an $\mathrm{H}(m, g, k, 2)$ has been determined.
- The existence of an $\mathrm{H}(m, g, 5,2)$ has been almost determined with a few possible exceptions.
- There is a $\operatorname{TD}(2, q+1, q)$ for any prime power q.
C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton, FL, 2007.

$\mathrm{H}(m, g, 4,3)$ designs

- $\mathrm{H}(m, 1,4,3)$ designs, Hanani $1960{ }^{1}$
- $\mathrm{H}(m, g, 4,3)$ designs, $m \neq 5$, Mills 1990^{2}
- $\mathrm{H}(5, g, 4,3)$ designs, Ji $2019{ }^{3}$

Theorem

An $\mathrm{H}(m, g, 4,3)$ design exists if and only if $m \geq 4$, $m g \equiv 0(\bmod 2), g(m-1)(m-2) \equiv 0(\bmod 3)$, and $(m, g) \neq(5,2)$.
${ }^{1}$ H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145-157. ${ }^{2}$ W. H. Mills, On the existence of H designs, Congr. Numer. 79 (1990), 129-141.
${ }^{3}$ L. Ji, Existence of H designs, J. Combin. Des. 27 (2019), 75-81

Candelabra t-systems

A candelabra t-system of order $m g+s$ and block sizes from K is a quadruple $(X, S, \Gamma, \mathcal{A})$, denoted by $C S(t, K, m g+s)$ of type ($\left.g^{m}: s\right)$, where:
(1) X is a set of $m g+s$ elements (called points);
(2) S is an s-subset of X (called a stem);
(3) $\Gamma=\left\{G_{1}, \ldots, G_{m}\right\}$ is a partition $X \backslash S$ into m groups of size g;
(4) \mathcal{A} is a family of subsets of X, each of
cardinality from K (called blocks);
(5) every t-subset T of X with $\left|T \cap\left(S \cup G_{i}\right)\right|<t$ for all i, is contained in a unique block and no t-subset of $S \cup G_{i}$ for all i occurs.

Fundamental construction for 3-CSs

A CS($3,4, m g+s$) of type $\left(g^{n}: s\right)$ is called a candelabra quadruple system and denoted by $\operatorname{CQS}\left(g^{n}: s\right)$.
Theorem (Hartman 1994)
Suppose that there is an $S(3, K, v+1)$. If there is an $\mathrm{H}(k, g, 4,3)$ design and a $\operatorname{CQS}\left(g^{k-1}: s\right)$ for $k \in K$, there is a $\operatorname{CQS}\left(g^{v}: s\right) .{ }^{a}$

[^0]
Existence of SQSs (Hanani 1960)

- An $S(3,\{4,6\}, v)$ exists $\Longleftrightarrow v \equiv 0(\bmod 2)$
(Hanani 1963).
- There is an $S(3,\{4,6\}, v)$ whose blocks of size 6 form a partition of the point set (called a $\mathrm{G}(v / 6,6,4,3)$ design) if $v \equiv 0(\bmod 6)$ (Mills 1974).
- An SQS (v) exists if $v \equiv 4(\bmod 6)$.
- An SQS (v) exists if $v \equiv 8(\bmod 12)$.
- An SQS (v) exists if $v \equiv 2(\bmod 12)$.

H frames

An $H\left(\left(n^{m}: s\right), g, k, t\right)$ frame is an ordered four-tuple $(X, \mathcal{G}, \mathcal{B}, \mathcal{F})$ where
(1) X is a set of $m n g+s g$ points;
(2) $\mathcal{G}=\left\{G_{1}, \ldots, G_{m n+s}\right\}$ is an equipartition of X into $m n+s$ groups;
(3) $\mathcal{F}=\left\{F_{0}, F_{1}, \ldots, F_{m}\right\}$ is a family of subsets of
\mathcal{G} called holes such that $\left|F_{1}\right|=\cdots=\left|F_{m}\right|=n+s$,
$\left|F_{0}\right|=s$ and $F_{i} \cap F_{j}=F_{0}, 1 \leq i<j \leq m ;$
(4) \mathcal{B} is a set of k-transverses (called blocks) of \mathcal{G} with the property that blocks contain exactly each t-transverses of \mathcal{G} which is not a t-transverse of some hole $F_{i} \in \mathcal{F}$ once, no other t-transverses.

Existence of H designs with $m \neq 5$ (Mills 1990)

- $\operatorname{SQS}(m) \Longrightarrow \mathrm{H}(m, g, 4,3)$ for $m \equiv 2,4(\bmod 6)$ and any positive integer g.
- $\mathrm{S}(3,\{4,6\}, m) \Longrightarrow \mathrm{H}(m, g, 4,3)$ for $m \equiv 0$ $(\bmod 6)$ and $g \equiv 0(\bmod 3)$.
- G-designs and SQSs $\Longrightarrow \mathrm{H}(m, g, 4,3)$ for $m \equiv 1,5(\bmod 6)$ and $g \equiv 0(\bmod 2)$.
- H frame $\Longrightarrow \mathrm{H}(m, g, 4,3)$ for $m \equiv 3(\bmod 6)$ and $g \equiv 0(\bmod 6)$.

Incomplete H designs IH($\left.m,\left(g, g^{\prime}\right), k, t\right)$

$\mathrm{An} \mathrm{H}\left(m,\left(g, g^{\prime}\right), k, t\right)\left(\mathrm{H}(m, g, k, t)-\mathrm{H}\left(m, g^{\prime}, k, t\right)\right)$ is a partial $\mathrm{H}(m, g, k, t)$ design $(X, \mathcal{G}, \mathcal{B})$ with a hole Y of size $m g^{\prime}$ satisfying the following conditions:
(1) $|Y \cap G|=g^{\prime}$ for any $G \in \mathcal{G}$,
(2) each t-transverse T of \mathcal{G} is contained in exactly one block of \mathcal{B} if $T \not \subset Y$, and
(3) any t-transverse T of \mathcal{G} with $T \subset Y$ is not contained in any block of \mathcal{B}.

A generalized lattice (t, ℓ)-design

A GLD $(m, n \times g, k,(t, \ell))$ is partial $\mathrm{H}(m, n g, k, t)$ design $(X, \mathcal{G}, \mathcal{B})$ with a hole set \mathcal{H} such that
(1) \mathcal{H} is a partition of X into n subsets of size $m g$,
(2) $|G \cap H|=g$ for $G \in \mathcal{G}, H \in \mathcal{H}$,
(3) $|B \cap H| \leq \ell$ for $B \in \mathcal{B}, H \in \mathcal{H}$, and
(4) each t-subset of X, which meets each $G \in \mathcal{G}$ in at most one point and meets each $H \in \mathcal{H}$ in at most ℓ points, is contained in exactly one block.

Lattice t-design

When $g=1$ and $\ell=1$, it is called a lattice t-design and shortly denoted by $\operatorname{LD}(m, n, k, t)$.
In 2002, Mohácsy and Ray-Chaudhuri pointed out an equivalence between ordered designs and Lattice designs.

Teirlinck 1990

There is an $\mathrm{LD}(m, 4,4,3)$ for any integer $m \geq 4$ with $m \neq 7$.

Lemma

For any integer $g \equiv 2,10(\bmod 12)$ with $n \geq 10$, there is an $\mathrm{H}(5, g, 4,3)$ design.

Proof: Write $g=2 g^{\prime}$. Start with an $\operatorname{SQS}\left(g^{\prime}+1\right)$ or a $\left.G \frac{g^{\prime}+1}{6}, 6,4,3\right)$. Input a $\operatorname{GLD}(5,3 \times 2,4,(3,2))$, a $\operatorname{GLD}(5, k \times 2,4,(3,1))$ and an $\mathrm{IH}(5,(k, 2), 4,3)$, $k \in\{4,6\}$. The required design is obtained.

Backgroud of Transversal Designs

- K. A. Bush, Orthogonal arrays of index unity, Ann. Math. Stat. 23 (1952) 426-434.
- A. S. Hedayat, N. J. A. Sloane and J. Stufken, Orthogonal Arrays Theory and Applications, Springer-Verlag, New York, 1999.

Example: $\mathrm{TD}(t, q+1, q), q$ a prime power

TD $(t, q+1, q)$ (Bush 1952)

- Point set: $I_{q+1} \times G F(q), G F(q)=\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$;
- Groups: $\{i\} \times G F(q), i \in I_{q+1}$;
- Blocks:

$$
\begin{aligned}
& \left\{\left(1, f\left(\alpha_{1}\right)\right), \ldots,\left(q, f\left(\alpha_{q}\right)\right),\left(q+1,\left[x^{t-1}\right] f(x)\right)\right\} \\
& \quad f(x) \in G F(q)[x], \operatorname{deg}(f(x))<t
\end{aligned}
$$

Equivalence

A $\operatorname{TD}(t, k, n)$ exists.
$\Longleftrightarrow \mathrm{AnOA}(t, k, n)$ exists
\Longleftrightarrow There is an n-ary maximal distance separable code of length k and Hamming distance $k-t+1$.

An orthogonal array $\mathrm{OA}(t, k, n)$ is an n^{t} by k array with entries from a symbol set X of size n such that each of its $n^{t} \times t$ subarrays contains every t-tuple from X^{t} exactly once.

A construction of TD $(3,5, v)$ via $(v, 4,1)$-DM

Construction (Ji and Yin 2009)

If there is a $(v, 4 ; 1)$ - DM , then there is a $\operatorname{TD}(3,5, v)$.

- If $v \not \equiv 2(\bmod 4)$ and $v \geq 4$, then there is a $(v, 4 ; 1)$-DM. (G. Ge, 2005)
- If $v \not \equiv 2(\bmod 4)$ and $v \geq 4$, then there is a $\mathrm{TD}(3,5, v)$.

Problem 1: Is there a $\operatorname{TD}(3,5, v)$ for $v \equiv 2$ $(\bmod 4) ?$

Difference Matrix Associated with an Adder

Let $D=\left(d_{i j}\right)$ be a $(v, 4 ; 1)$-DM over an abelian group G. An v-tuple $s=\left(s_{1}, s_{2}, \ldots, s_{v}\right)$ over G is called an adder of the difference matrix D if $\left\{s_{1}, s_{2}, \ldots, s_{v}\right\}=G$ and the matrix

$$
\begin{array}{r}
D^{s}=\left(d_{i j}^{\prime}\right), d_{i j}^{\prime}=d_{i j} \text { for } i \in\{1,2\}, \text { and } \\
d_{i j}^{\prime}=d_{i j}+s_{j} \text { for } i \in\{3,4\},
\end{array}
$$

is also a $(v, 4 ; 1)$-DM over the group G.

A construction of TD $(3,6, v)$ via $(v, 4 ; 1)$-DM

Construction (Ji and Yin, JCTA 2010)

If there is a $(v, 4 ; 1)$-DM associated with an adder, then there is a $\operatorname{TD}(3,6, v)$.

Theorem (Ji and Yin, JCTA 2010)
Let v be a positive integer which satisfies $\operatorname{gcd}(v, 4) \neq 2$ and $\operatorname{gcd}(v, 9) \neq 3$. Then there is a TD $(3,6, v)$.

Problem 2: Construct a ($3 p, 4 ; 1$)-DM associated with an adder for any prime $p \geq 11$?

Wilson's type construction for TD $(3, k, n)$

Suppose that there exist
(1) a $\operatorname{TD}(3, k+2, g)$;
(2) $\mathrm{a} \operatorname{TD}(3, k, m)$;
(3) an $\operatorname{ITD}\left((3,1), k,\left(m+m_{i}, m_{i}\right)\right)$ for $i=1,2$;
(4) an $\operatorname{ITD}\left((3,2), k,\left(m+m_{1}+m_{2}, m_{1}+m_{2}\right)\right)$ for
$i=1,2$;
(5) a $\operatorname{TD}\left(3, k, m+m_{1}+m_{2}\right)$ or a $\operatorname{TD}\left(3, k, m_{1}+m_{2}\right)$. Then there exists a $\operatorname{TD}\left(3, k, m g+m_{1}+m_{2}\right)$ that contains a $\operatorname{TD}\left(3, k, m+m_{1}+m_{2}\right)$ and a $\operatorname{TD}(3, k, m)$ as sub-designs.

New TD $(3,5,4 n+2) \quad$ (Yin et al, JCTA 2011)

Let x be an arbitrary odd positive integer. Let g be an arbitrary positive integer whose prime-power factors are all ≥ 7 such that $g \equiv 3(\bmod 4)$. Then
(1) there is a $\operatorname{TD}(3,5, v)$ with $v=35 x g+5 \equiv 2$
$(\bmod 4)$, if $x \equiv 1(\bmod 4)$;
(2) there is a $\operatorname{TD}(3,5, v)$ with $v=35 x g+7 \equiv 2$
$(\bmod 4)$, if $x \equiv 3(\bmod 4)$.

Packing Number

The packing number $\mathrm{PN}(n, g, k, t)$ is the maximum number of blocks in any $\mathrm{HP}(n, g, k, t)$.
An $\mathrm{HP}(n, g, k, t)$ is called optimal if it has $\mathrm{PN}(n, g, k, t)$ blocks.
In 2001, Yin determined packing numbers $\mathrm{PN}(n, g, 3,2)$:

$$
P N(n, g, 3,2)= \begin{cases}\left\lfloor\frac{n g}{3}\left\lfloor\frac{(n-1) g}{2}\right\rfloor\right\rfloor-1, & \text { if }(n-1) g \equiv 0 \quad(\bmod 2) \\ \left\lfloor\frac{n g}{3}\left\lfloor\frac{(n-1) g}{2}\right\rfloor\right\rfloor, & \text { and } n(n-1) g^{2} \equiv-1 \quad(\bmod 3)\end{cases}
$$

Optimal HP $(n, g, 4,3)$ with even g

Theorem (Preprint)

Let n, g be positive integers with $n \equiv 0(\bmod 3)$,
$g \equiv 0(\bmod 2)$ with $(n, g) \notin\{(a, b): a \equiv 3$
$(\bmod 6), b \in\{26,38\}\}$. There is an optimal
$\mathrm{H}(n, g, 4,3)$ packing design with $\frac{n g\left(n^{2} g^{2}-3 n g+2 g^{2}-8\right)}{24}$ blocks.

Proof: Start with an SQS, or a G-design, or an $\mathrm{H}(n, 2,\{4,6\}, 3)$. Input H-designs, Lattice H-designs and optimal HPs. An optimal $\mathrm{H}(n, g, 4,3)$ packing design is obtained.

Optimal $\operatorname{HP}(n, 3,4,3)$ with $n \equiv 1(\bmod 8)$

Theorem (Preprint)
 For any $n \equiv 1(\bmod 8)$ with $n \neq 17$, there is an optimal $\mathrm{H}(n, 3,4,3)$ packing design.

Proof: Start with an SQS, or a G-design. Input a pair of matching CQSs and an optimal $\mathrm{HP}(9,3,4,3)$. An optimal $\mathrm{H}(n, 3,4,3)$ packing design is obtained.

Future research

- Give more constructions for $\mathrm{H}(m, g, k, 3)$.
- Give a direct construction of Steiner system with strength $t \geq 6$.
- Construct optimal $\mathrm{HP}(n, g, 4,3)$ for odd g.
- Give an infinite class of Steiner systems with $t \geq 4$.

Thank you!

[^0]: ${ }^{a}$ A. Hartman, The fundamental construction for 3-designs, Discrete Math. 124 (1994), 107-132.

