
Transversal Packing designs

Lijun Ji

Department of Mathematics

Soochow University

Aug 20

Lijun Ji Aug 20, 2019, Taiwan



Outline

Introduction
H(m, g, 4, 3) designs
Transversal designs
H(m, g, 4, 3) packing designs
Future researh

Lijun Ji Aug 20, 2019, Taiwan



Transversal Packing Designs

An H(m, g, k, t) design is a triple (X, T ,B), where

(1) X is a set of mg points,
(2) T is a partition of X into m disjoint sets of size

g (called groups), and
(3) B is a set of k-element transverses of T , such

that each t-element transverse of T is
contained in at most one of them.

If each t-element transverse is contained in
exactly one block, then it is called an H(m, g, k, t)
design (or a group divisible t-design of type gm).
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Steiner Systems

An H(m, 1, k, t) design is usually called a Steiner
system and denoted by S(t, k,m), the group set T
is omitted, i.e., a Steiner system is a pair (X,B),
where X is a set of m points and B is a set of
k-subsets of X such that each t-subset of X is
contained in exactly one of B
An S(2, k,m) is called a balanced incomplete
block design.
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Example: TD(k − 1, k, g)

An H(k, g, k, t) design is also called a transversal
design and denoted by TD(t, k, g).

TD(k − 1, k, g)

Point set: Ik × Zg, Ik = {1, 2, . . . , k};
Groups: {i} × Zg, i ∈ Ik;

Blocks: {(1, x1), (2, x2), . . . , (k, xk)},
x1, . . . , xk ∈ Zg, x1 + · · ·+ xk ≡ 0 (mod g).
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Equivalence

A TD(2, n + 1, n) exists.
⇐⇒ There are n− 1 mutually Latin squares of

order n.
⇐⇒ An S(2, n + 1, n2 + n + 1) exists.
⇐⇒ A projective plane of order n exists.
⇐⇒ An affine plane of order n exists.
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Necessary Conditions

H(m, g, k, t) design =⇒ H(m− 1, g, k − 1, t − 1)

Theorem
If there is an H(m, g, k, t) design, then(

m− i
t − i

)
gt−i ≡ 0 (mod

(
k − i
t − i

)
),

for 0 ≤ i < t.
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H(m, g, k, 2) designs

Construction Methods:

Difference family =⇒ S(2, k, n)

Relative difference family =⇒ H(n, g, k, 2)

Difference matrix =⇒ TD(2, k, n)

Wilson’s fundamental construction
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Difference Matrix

Let G be an abelian group of order n. A difference
matrix, or an (n, k; 1)-DM is a k × n array (aij)
(1 ≤ i ≤ k, 1 ≤ j ≤ n) with entries from G, such
that, for any two distinct rows l and h of D
(1 ≤ l < h ≤ k), the difference list

∆lh = {dh1 − dl1, dh2 − dl2, . . . , dhn − dln}

contains every element of G exactly once.
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H(m, g, k, 2) designs

For k ∈ {3, 4}, the existence of an H(m, g, k, 2)
has been determined.
The existence of an H(m, g, 5, 2) has been
almost determined with a few possible
exceptions.
There is a TD(2, q + 1, q) for any prime power
q.

C. J. Colbourn and J. H. Dinitz, The CRC Handbook of Combinatorial

Designs, CRC Press, Boca Raton, FL, 2007.
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H(m, g, 4, 3) designs

H(m, 1, 4, 3) designs, Hanani 1960 1

H(m, g, 4, 3) designs, m 6= 5, Mills 1990 2

H(5, g, 4, 3) designs, Ji 2019 3

Theorem
An H(m, g, 4, 3) design exists if and only if m ≥ 4,
mg ≡ 0 (mod 2), g(m− 1)(m− 2) ≡ 0 (mod 3),
and (m, g) 6= (5, 2).

1H. Hanani, On quadruple systems, Canad. J. Math. 12 (1960), 145-157.
2W. H. Mills, On the existence of H designs, Congr. Numer. 79 (1990),

129-141.
3L. Ji, Existence of H designs, J. Combin. Des. 27 (2019), 75-81
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Candelabra t-systems

A candelabra t-system of order mg + s and block
sizes from K is a quadruple (X, S,Γ,A), denoted
by CS(t,K,mg + s) of type (gm : s), where:

(1) X is a set of mg + s elements (called points);
(2) S is an s-subset of X (called a stem);
(3) Γ = {G1, . . . ,Gm} is a partition X\S into m
groups of size g;
(4) A is a family of subsets of X, each of
cardinality from K (called blocks);
(5) every t-subset T of X with |T ∩ (S ∪ Gi)| < t for
all i, is contained in a unique block and no
t-subset of S ∪ Gi for all i occurs.
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Fundamental construction for 3-CSs

A CS(3, 4,mg + s) of type (gn : s) is called a
candelabra quadruple system and denoted by
CQS(gn : s).

Theorem (Hartman 1994)
Suppose that there is an S(3,K, v + 1). If there is
an H(k, g, 4, 3) design and a CQS(gk−1 : s) for
k ∈ K, there is a CQS(gv : s). a

aA. Hartman, The fundamental construction for 3-designs, Discrete Math.

124 (1994), 107-132.
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Existence of SQSs (Hanani 1960)

An S(3, {4, 6}, v) exists⇐⇒ v ≡ 0 (mod 2)
(Hanani 1963).
There is an S(3, {4, 6}, v) whose blocks of size
6 form a partition of the point set (called a
G(v/6, 6, 4, 3) design) if v ≡ 0 (mod 6) (Mills
1974).
An SQS(v) exists if v ≡ 4 (mod 6).
An SQS(v) exists if v ≡ 8 (mod 12).
An SQS(v) exists if v ≡ 2 (mod 12).
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H frames

An H((nm : s), g, k, t) frame is an ordered
four-tuple (X,G,B,F) where
(1) X is a set of mng + sg points;
(2) G = {G1, . . . ,Gmn+s} is an equipartition of X
into mn + s groups;
(3) F = {F0,F1, . . . ,Fm} is a family of subsets of
G called holes such that |F1| = · · · = |Fm| = n + s,
|F0| = s and Fi ∩ Fj = F0, 1 ≤ i < j ≤ m;
(4) B is a set of k-transverses (called blocks) of G
with the property that blocks contain exactly each
t-transverses of G which is not a t-transverse of
some hole Fi ∈ F once, no other t-transverses.
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Existence of H designs with m 6= 5 (Mills 1990)

SQS(m) =⇒ H(m, g, 4, 3) for m ≡ 2, 4 (mod 6)
and any positive integer g.
S(3, {4, 6},m) =⇒ H(m, g, 4, 3) for m ≡ 0
(mod 6) and g ≡ 0 (mod 3).
G-designs and SQSs =⇒ H(m, g, 4, 3) for
m ≡ 1, 5 (mod 6) and g ≡ 0 (mod 2).
H frame =⇒ H(m, g, 4, 3) for m ≡ 3 (mod 6)
and g ≡ 0 (mod 6).
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Incomplete H designs IH(m, (g, g′), k, t)

An IH(m, (g, g′), k, t) ( H(m, g, k, t)-H(m, g′, k, t)) is a
partial H(m, g, k, t) design (X,G,B) with a hole Y
of size mg′ satisfying the following conditions:

(1) |Y ∩ G| = g′ for any G ∈ G,
(2) each t-transverse T of G is contained in
exactly one block of B if T 6⊂ Y, and
(3) any t-transverse T of G with T ⊂ Y is not
contained in any block of B.
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A generalized lattice (t, `)-design

A GLD(m, n× g, k, (t, `)) is partial H(m, ng, k, t)
design (X,G,B) with a hole set H such that

(1) H is a partition of X into n subsets of size mg,
(2) |G ∩ H| = g for G ∈ G, H ∈ H,
(3) |B ∩ H| ≤ ` for B ∈ B, H ∈ H, and
(4) each t-subset of X, which meets each G ∈ G
in at most one point and meets each H ∈ H in at
most ` points, is contained in exactly one block.
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Lattice t-design

When g = 1 and ` = 1, it is called a lattice
t-design and shortly denoted by LD(m, n, k, t).

In 2002, Mohácsy and Ray-Chaudhuri pointed out
an equivalence between ordered designs and
Lattice designs.

Teirlinck 1990
There is an LD(m, 4, 4, 3) for any integer m ≥ 4
with m 6= 7.
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H(5, g, 4, 3)

Lemma
For any integer g ≡ 2, 10 (mod 12) with n ≥ 10,
there is an H(5, g, 4, 3) design.

Proof: Write g = 2g′. Start with an SQS(g′ + 1) or
a Gg′+1

6 , 6, 4, 3). Input a GLD(5, 3× 2, 4, (3, 2)), a
GLD(5, k × 2, 4, (3, 1)) and an IH(5, (k, 2), 4, 3),
k ∈ {4, 6}. The required design is obtained.
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Backgroud of Transversal Designs

K. A. Bush, Orthogonal arrays of index unity,
Ann. Math. Stat. 23 (1952) 426-434.

A. S. Hedayat, N. J. A. Sloane and J. Stufken,
Orthogonal Arrays Theory and Applications,
Springer-Verlag, New York, 1999.

Lijun Ji Aug 20, 2019, Taiwan



Example: TD(t, q + 1, q), q a prime power

TD(t, q + 1, q) (Bush 1952)
Point set: Iq+1 × GF(q), GF(q) = {α1, . . . , αq};
Groups: {i} × GF(q), i ∈ Iq+1;

Blocks:
{(1, f (α1)), . . . , (q, f (αq)), (q + 1, [xt−1]f (x))},

f (x) ∈ GF(q)[x], deg(f (x)) < t.
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Equivalence

A TD(t, k, n) exists.
⇐⇒ An OA(t, k, n) exists
⇐⇒ There is an n-ary maximal distance
separable code of length k and Hamming
distance k − t + 1.

An orthogonal array OA(t, k, n) is an nt by k array
with entries from a symbol set X of size n such
that each of its nt × t subarrays contains every
t-tuple from Xt exactly once.
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A construction of TD(3, 5, v) via (v, 4, 1)-DM

Construction (Ji and Yin 2009)
If there is a (v, 4; 1)-DM, then there is a TD(3, 5, v).

If v 6≡ 2 (mod 4) and v ≥ 4, then there is a
(v, 4; 1)-DM. (G. Ge, 2005)
If v 6≡ 2 (mod 4) and v ≥ 4, then there is a
TD(3, 5, v).

Problem 1: Is there a TD(3, 5, v) for v ≡ 2
(mod 4)?
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Difference Matrix Associated with an Adder

Let D = (dij) be a (v, 4; 1)-DM over an abelian
group G. An v-tuple s = (s1, s2, . . . , sv) over G is
called an adder of the difference matrix D if
{s1, s2, . . . , sv} = G and the matrix

Ds = (d′ij), d′ij = dij for i ∈ {1, 2}, and

d′ij = dij + sj for i ∈ {3, 4},
is also a (v, 4; 1)-DM over the group G.
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A construction of TD(3, 6, v) via (v, 4; 1)-DM

Construction (Ji and Yin, JCTA 2010)
If there is a (v, 4; 1)-DM associated with an adder,
then there is a TD(3, 6, v).

Theorem (Ji and Yin, JCTA 2010)
Let v be a positive integer which satisfies
gcd(v, 4) 6= 2 and gcd(v, 9) 6= 3. Then there is a
TD(3, 6, v).

Problem 2: Construct a (3p, 4; 1)-DM associated
with an adder for any prime p ≥ 11?
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Wilson’s type construction for TD(3, k, n)

Suppose that there exist
(1) a TD(3, k + 2, g);
(2) a TD(3, k,m);
(3) an ITD((3, 1), k, (m + mi,mi)) for i = 1, 2;
(4) an ITD((3, 2), k, (m + m1 + m2,m1 + m2)) for
i = 1, 2;
(5) a TD(3, k,m + m1 + m2) or a TD(3, k,m1 + m2).
Then there exists a TD(3, k,mg + m1 + m2) that
contains a TD(3, k,m + m1 + m2) and a TD(3, k,m)

as sub-designs.
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New TD(3, 5, 4n + 2) (Yin et al, JCTA 2011)

Let x be an arbitrary odd positive integer. Let g be
an arbitrary positive integer whose prime-power
factors are all ≥ 7 such that g ≡ 3 (mod 4). Then

(1) there is a TD(3, 5, v) with v = 35xg + 5 ≡ 2
(mod 4), if x ≡ 1 (mod 4);

(2) there is a TD(3, 5, v) with v = 35xg + 7 ≡ 2
(mod 4), if x ≡ 3 (mod 4).
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Packing Number

The packing number PN(n, g, k, t) is the maximum
number of blocks in any HP(n, g, k, t).
An HP(n, g, k, t) is called optimal if it has
PN(n, g, k, t) blocks.
In 2001, Yin determined packing numbers
PN(n, g, 3, 2):

PN(n, g, 3, 2) =


b ng

3 b
(n−1)g

2 cc − 1, if (n− 1)g ≡ 0 (mod 2)

and n(n− 1)g2 ≡ −1 (mod 3)

b ng
3 b

(n−1)g
2 cc, otherwise.
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Optimal HP(n, g, 4, 3) with even g

Theorem (Preprint)
Let n, g be positive integers with n ≡ 0 (mod 3),
g ≡ 0 (mod 2) with (n, g) 6∈ {(a, b) : a ≡ 3
(mod 6), b ∈ {26, 38}}. There is an optimal
H(n, g, 4, 3) packing design with ng(n2g2−3ng+2g2−8)

24
blocks.

Proof: Start with an SQS, or a G-design, or an
H(n, 2, {4, 6}, 3). Input H-designs, Lattice
H-designs and optimal HPs. An optimal
H(n, g, 4, 3) packing design is obtained.
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Optimal HP(n, 3, 4, 3) with n ≡ 1 (mod 8)

Theorem (Preprint)
For any n ≡ 1 (mod 8) with n 6= 17, there is an
optimal H(n, 3, 4, 3) packing design.

Proof: Start with an SQS, or a G-design. Input a
pair of matching CQSs and an optimal
HP(9, 3, 4, 3). An optimal H(n, 3, 4, 3) packing
design is obtained.
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Future research

Give more constructions for H(m, g, k, 3).
Give a direct construction of Steiner system
with strength t ≥ 6.
Construct optimal HP(n, g, 4, 3) for odd g.
Give an infinite class of Steiner systems with
t ≥ 4.
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Thank you!
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