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A practical number is a positive integer m such that every number less
than m can be represented as a sum of distinct divisors of m. We apply
the properties of practical numbers in the existence theorem for simple
BIBDs. Let q be a power of an odd prime p and 3 ≤ k ≤ q − 3 with
p ∤ k. We show that the necessary conditions
(1) λ(q − 1) ≡ 0 mod (k − 1),
(2) λq(q − 1) ≡ 0 mod k(k − 1), and
(3) λ ≤

(

q−2

k−2

)

are also sufficient for the existence of a simple (q, k, λ) BIBD when
certain conditions regarding practical numbers are satisfied.
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■ v > k ≥ 2
■ V : a finite set of symbols, v = |V |
■ B: a collection of k-subsets (blocks) of V
■ (V,B) is a (v, k, λ) BIBD: every pair of distinct symbols

appears in exactly λ blocks

■ every symbol appears in exactly r blocks, where
r = λ(v − 1)/(k − 1)

■ |B| = b = vr/k
■ simple design: no repeated blocks
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Necessary conditions for the existence of a (v, k, λ) BIBD:

(1) λ(v − 1) ≡ 0 mod (k − 1)
(2) λv(v − 1) ≡ 0 mod k(k − 1)

■ λmin: the smallest positive integer that satisfies the
necessary conditions

■ λmin divides λ whenever a (v, k, λ) BIBD exists
■ λmin = lcm(λ1, λ2) = k(k − 1)/c1c2 gcd(k, v)

c1 = gcd(k, v − 1)
c2 = gcd(k − 1, v − 1)
λ1 = (k − 1)/ gcd(k − 1, v − 1)
λ2 = k(k − 1)/ gcd(k(k − 1), v(v − 1))
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Necessary conditions for a simple (v, k, λ) BIBD:

(1) λ(v − 1) ≡ 0 mod (k − 1)
(2) λv(v − 1) ≡ 0 mod k(k − 1)
(3) λmin ≤ λ ≤ λmax =

(

v−2

k−2

)

(Dehon 1983) There exists a simple (v, 3, λ) BIBD if and
only if λ(v − 1) ≡ 0 (mod 2), λv(v − 1) ≡ 0 (mod 6), and
λ ≤ v − 2.

Question: Fix the number of elements v and a block size k.
Under what circumstances will simple (v, k, λ) BIBDs exist
for all λ satisfying the conditions (1) through (3)?
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1, 2, 4

2, 3, 5

3, 4, 6

4, 5, 0

5, 6, 1

6, 0, 2

0, 1, 3

■ from lines in a projective plane
■ from a difference set {1, 2, 4} in Z7

■ from partitioning a (7, 3, 2) BIBD
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1, 2, 4 3, 5, 6

2, 3, 5 4, 6, 0

3, 4, 6 5, 0, 1

4, 5, 0 6, 1, 2

5, 6, 1 0, 2, 3

6, 0, 2 1, 3, 4

0, 1, 3 2, 4, 5

■ from a difference family {1, 2, 4}, {3, 5, 6} in Z7

■ the orbit of {1, 2, 4} under the action of Aff(Z7)
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0, 1, 4 0, 1, 2 0, 3, 5

1, 2, 5 1, 2, 3 1, 4, 6

2, 3, 6 2, 3, 4 2, 5, 0

3, 4, 0 3, 4, 5 3, 6, 1

4, 5, 1 4, 5, 6 4, 0, 2

5, 6, 2 5, 6, 0 5, 1, 3

6, 0, 3 6, 0, 1 6, 2, 4

■ from a difference family {0, 1, 4}, {0, 1, 2}, {0, 3, 5} in
Z7

■ the orbit of {0, 1, 4} under the action of Aff(Z7)
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■ two simple (7, 3, 1) BIBDs from one simple (7, 3, 2) BIBD
■ one simple (7, 3, 3) BIBD
■ they are disjoint

The list Γ = (1, 1, 3) can represent numbers from 1 to 5.
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(Theorem 2.6, Sun 2016)

■ q: a power pα of an odd prime
■ 3 ≤ k ≤ q − 3, p ∤ k
■ c1 = gcd(k, q − 1), c2 = gcd(k − 1, q − 1)
■ {c1, c2} ∩ {1, 2} is not empty
■ There is a set D of some proper divisors of c1c2 such that

(1)
∑

d∈D d ≥ c1c2 − 1;
(2) every number i with 1 ≤ i ≤

∑

d∈D d can be expressed as a sum
of distinct elements chosen from D.

Then the necessary conditions are also sufficient for the existence of a
simple (q, k, λ) BIBD.
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(Theorem 2.7, Sun 2016)

■ q: a power pα of an odd prime
■ Let β ≥ 3 be odd
■ ℓβm ≤ k ≤ q − ℓβm, p ∤ k
■ c1 = gcd(k, q − 1), c2 = gcd(k − 1, q − 1), m ≥ 1
■ {c1, c2} = {1, ℓβm}
■ ℓ ≥ 4 is an even number with the following property:

there is a set D of some proper divisors of ℓ such that
(1)

∑

d∈D d ≥ ℓ− 1;
(2) every number i with 1 ≤ i ≤

∑

d∈D d can be expressed as a sum
of distinct elements chosen from D.



Existence Theorem 2 conti.

Abstract

Simple BIBDs

Examples

Some Existence
Theorems

Theorem 1

Theorem 2

Theorem 3

Practical Numbers

New Results

References

14 / 34

Then, the necessary conditions are also sufficient for the
existence of a simple (q, k, λ) BIBD if
q > βm(

√

3(β − 1)/δ + 1/4 + 3/2),
where δ = 1−

∑

h|ℓ
h prime

(hk/βmh)−1.

More specifically, this is the case when
q > βm(

√

6β − 23/4 + 3/2).
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(Theorem 2.8, Sun 2016)

■ q: a power pα of an odd prime
■ Let ℓ, β ≥ 3 be odd
■ ℓβm ≤ k ≤ q − ℓβm, p ∤ k
■ c1 = gcd(k, q − 1), c2 = gcd(k − 1, q − 1), m ≥ 1
■ {c1, c2} = {2, ℓβm}
■ 2ℓ satisfies the following property:

there is a set D of some proper divisors of 2ℓ such that
(1)

∑

d∈D d ≥ 2ℓ− 1;
(2) every number i with 1 ≤ i ≤

∑

d∈D d can be expressed as a sum
of distinct elements chosen from D.



Existence Theorem 3 conti.

Abstract

Simple BIBDs

Examples

Some Existence
Theorems

Theorem 1

Theorem 2

Theorem 3

Practical Numbers

New Results

References

16 / 34

Then, the necessary conditions are also sufficient for the
existence of a simple (q, k, λ) BIBD if
q > βm(

√

3(β − 1)/δ + 1/4 + 3/2),
where δ = 1−

∑

h|ℓ
h prime

(hk/βmh)−1.

More specifically, this is the case when
q > βm(

√

6β − 23/4 + 3/2).
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A practical number (or panarithmic number) is a positive
integer m such that every number less than m can be
represented as a sum of distinct divisors of m.

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48,
54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108,
112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168,
176, 180, 192, 196, 198, 200, etc.

See: Melfi’s tables

http://www.dm.unipi.it/gauss-pages/melfi/public_html/pratica.html
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(Melfi 1995, Sierpinski 1955, Stewart 1954)
Suppose m = pe11 pe22 · · · penn ≥ 2 where 2 = p1 < p2 < · · · < pn and
ei ≥ 1. The following conditions are equivalent.

(1) m is a practical number.
(2) Every number less than σ(m) can be represented as a sum of distinct

divisors of m, where σ(x) denotes the sum of the divisors of x.
(3) n = 1 or pi+1 ≤ σ(pe11 · · · peii ) + 1 for 1 ≤ i ≤ n− 1.

Condition (3) brings a convenient numerical method for checking whether
a number is practical or not, as long as we know its factorization.
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Let m be a practical number. Then σ(m) ≥ 2m− 1.
Furthermore, σ(m) ≥ 2m if m is not a power of 2.
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Let n ≥ 2 and let L = (d1 = 1, d2, . . . , dn) be an increasing
list of numbers. Then, every number i with 1 ≤ i ≤

∑n
j=1

dj
can be expressed as a sum of elements chosen from L if and
only if (

∑h
j=1

dj) + 1 ≥ dh+1 for h = 1, . . . , n− 1.
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Suppose m ≥ 2. Then, m is a practical number if and only
if there is a set D of some proper divisors of m such that
(1)

∑

d∈D d ≥ m− 1; (2) every number i with
1 ≤ i ≤

∑

d∈D d can be expressed as a sum of distinct
elements chosen from D.
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■ q: a power pα of an odd prime
■ 3 ≤ k ≤ q − 3, p ∤ k
■ c1 = gcd(k, q − 1), c2 = gcd(k − 1, q − 1)
■ {c1, c2} ∩ {1, 2} is not empty

Then, the necessary conditions are also sufficient for the
existence of a simple (q, k, λ) BIBD in any of the following
situations.
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1. c1c2 is a practical number.
2. {c1, c2} = {1, ℓβm}, where

(a) β ≥ 3 is odd and ℓ ≥ 4 is a practical number;
(b) q > βm(

√

6β − 23/4 + 3/2) or

q > βm(
√

3(β − 1)/δ + 1/4 + 3/2) with
δ = 1−

∑

h|ℓ
h prime

(hk/βmh)−1.

3. {c1, c2} = {2, ℓβm}, where

(a) ℓ, β ≥ 3 are odd and 2ℓ is a practical number;
(b) q > βm(

√

6β − 23/4 + 3/2) or

q > βm(
√

3(β − 1)/δ + 1/4 + 3/2) with
δ = 1−

∑

h|ℓ
h prime

(hk/βmh)−1.
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1. A simple (89, 44, 43i) BIBD exists for any i with
1 ≤ i ≤

(

87

42

)

/43. Note that

89 > βm(
√

6β − 23/4 + 3/2) is not valid when β = 11.
However, the other inequality applies for this case.

2. A simple (353, 45, 45i) BIBD exists for any i with
1 ≤ i ≤

(

351

43

)

/45.
3. A simple (307, 51, 25i) BIBD exists for any i with

1 ≤ i ≤
(

305

49

)

/25.
4. A simple (307, 52, 26i) BIBD exists for any i with

1 ≤ i ≤
(

305

50

)

/26.
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Let ℓ ≥ 4 be a practical number. Suppose q = ℓh+ 1 is a
power of an odd prime such that gcd(ℓ− 1, h) = 1. Then, a
simple (q, ℓ, (ℓ− 1)i) BIBD exists for any i with
1 ≤ i ≤

(

q−2

ℓ−2

)

/(ℓ− 1).

Examples:
Let q = 20h+ 1 be a power of an odd prime such that
19 ∤ h. Then, a simple (q, 20, 19i) BIBD exists for any i with
1 ≤ i ≤

(

q−2

18

)

/19. Some of the valid q are 41, 61, 81, 101,
121, 181, 241, 281, 361, 401, 421, 461, 521, 541, 601, 641,
661, 701, 821, 841, 881, 941, 961.
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Let ℓ ≥ 4 be a practical number. Suppose q = ℓh+ 1 = pα

is a power of an odd prime such that gcd(ℓ+ 1, ph) = 1.
Then, a simple (q, (ℓ+ 1), (ℓ+ 1)i) BIBD exists for any i
with 1 ≤ i ≤

(

q−2

ℓ−1

)

/(ℓ+ 1).

Examples:
Let q = 40h+ 1 = pα be a power of an odd prime such that
41 ∤ ph. Then, a simple (q, 41, 41i) BIBD exists for any i
with 1 ≤ i ≤

(

q−2

39

)

/41. Some of the valid q are 81, 121,
241, 281, 361, 401, 521, 601, 641, 761, 841, 881, 961.



Corollary 10

Abstract

Simple BIBDs

Examples

Some Existence
Theorems

Practical Numbers

New Results

Theorem 7

Main Theorem

Example 2

Corollary 8

Corollary 9

Corollary 10

Corollary 11

References

29 / 34

Let 2ℓ be a practical number such that ℓ ≥ 3 is odd.
Suppose q = 2ℓh+ 1 is a power of an odd prime such that
gcd(ℓ− 1, h) = 1. Then, a simple (q, ℓ, (ℓ− 1)i/2) BIBD
exists for any i with 1 ≤ i ≤ 2

(

q−2

ℓ−2

)

/(ℓ− 1).

Examples:
Let q = 18h+ 1 be a power of an odd prime such that 2 ∤ h.
Then, a simple (q, 9, 4i) BIBD exists for any i with
1 ≤ i ≤

(

q−2

7

)

/4. Some of the valid q are 127, 163, 199,
271, 307, 343, 379, 487, 523, 631, 739, 811, 883, 919, 991.
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Let 2ℓ be a practical number such that ℓ ≥ 3 is odd.
Suppose q = 2ℓh+ 1 = pα is a power of an odd prime such
that gcd(ℓ+ 1, ph) = 1. Then, a simple
(q, (ℓ+ 1), (ℓ+ 1)i/2) BIBD exists for any i with
1 ≤ i ≤ 2

(

q−2

ℓ−1

)

/(ℓ+ 1).

Examples:
Let q = 30h+ 1 be a power of an odd prime such that 2 ∤ h.
Then, a simple (q, 16, 8i) BIBD exists for any i with
1 ≤ i ≤

(

q−2

14

)

/8. Some of the valid q are 151, 211, 271,
331, 571, 631, 691, 751, 811, 991.
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