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Xg Abstract

A practical number is a positive integer m such that every number less
than m can be represented as a sum of distinct divisors of m. We apply
the properties of practical numbers in the existence theorem for simple
BIBDs. Let ¢ be a power of an odd prime p and 3 < k < ¢ — 3 with

p 1 k. We show that the necessary conditions

(1) M(¢g—1) =0 mod (k—1),

(2) A\g(¢ —1) =0 mod k(k—1), and

(3) A< (15

are also sufficient for the existence of a simple (¢, k, A\) BIBD when
certain conditions regarding practical numbers are satisfied.
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g
Xﬁ& BIBDs (Balanced Incomplete Block Designs)

Abstract m v>k>2

m V' afinite set of symbols, v = |V|

i m BB a collection of k-subsets (blocks) of V

Conditions m (V,B)isa (v,k,\) BIBD: every pair of distinct symbols
zmmp;“ appears in exactly A\ blocks

Theorems

Practical Numbers

New Results m every symbol appears in exactly r blocks, where

References r — )\(U _ 1)/(k _ 1)

Bl =b=wvr/k
simple design: no repeated blocks
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Abstract

Necessary conditions for the existence of a (v, k, A) BIBD:
Simple BIBDs

BIBs (]_) )\(U — 1) =0 mod (k — 1)
(2) M(v—1)=0 mod k(k — 1)
Examples

m )\, the smallest positive integer that satisfies the
necessary conditions
Amin divides A\ whenever a (v, k, \) BIBD exists
Amin = lem(A, Ag) = k(k — 1) /cico ged(k, v)
¢ = ged(k,v —1)
co =ged(k—1,0—1)
M= (k—1)/ged(k—1,v—1)
Ao =k(k—1)/ged(k(k—1),v(v—1))
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Necessary Conditions for Simple BIBDs

Abstract

Necessary conditions for a simple (v, k, \) BIBD:

Simple BIBDs

BIBDs (1) AMv—1)=0 mod (k—1)

Amin

(2) Mv(v—1)=0 mod Iz(—lg —1)

Examples (3) )\m'ln S )\ S )\max — (k—Z)

Some Existence

Theorems

N (Dehon 1983) There exists a simple (v,3, \) BIBD if and
New Results only if A(v — 1) =0 (mod 2), Av(v — 1) =0 (mod 6), and
References )\ S UV — 2

Question: Fix the number of elements v and a block size k.
Under what circumstances will simple (v, k, \) BIBDs exist
for all \ satisfying the conditions (1) through (3)7
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(7,3,1) BIBD

(7,3,2) BIBD
(7,3, 3) BIBD
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= Simple (7,3,1) BIBD

1,2,4
2.3.5
3.4.6
4,50
5,6, 1
6,0, 2
0,1,3

from lines in a projective plane
from a difference set {1,2,4} in Z;
from partitioning a (7, 3,2) BIBD
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(7,3,1) BIBD

(7,3,2) BIBD

(7,3, 3) BIBD

Some Existence
Theorems

Practical Numbers

New Results

References

= Simple (7,3,2) BIBD

1,2,4 3.5, 6
2.3.5 4,6,0
3.4.6 5,0, 1
4,5,0 6,1,2
5,6, 1 0,2.3
6,0, 2 1,3,4
0,1,3 24,5

from a difference family {1, 2,4}, {3,5,6} in Z;
the orbit of {1,2,4} under the action of Aff(Z7)
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Abstract

Simple BIBDs

Examples

(7,3,1) BIBD
(7,3,2) BIBD

(7,3,3) BIBD

Some Existence

Theorems

Practical Numbers

New Results

References

from a difference family {0,1,4},{0,1,2},{0,3,5} in

2

0,1,4
1,2,5
2.3.6
3,4, 0
4,5.1
5,6, 2
6,0,3

. Simple (7,3,3) BIBD

0,1,2
1,2,3
2.3.4
3,4.5
4,5.6
5,6, 0
6,0, 1

0,3,5
1,4,6
2.5.0
3,6, 1
4,0,2
51,3
6,2, 4

the orbit of {0, 1,4} under the action of Aff(Z7)
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= All Simple (7,3,)\) BIBDs Exist

m two simple (7,3,1) BIBDs from one simple (7,3,2) BIBD
m  onesimple (7,3,3) BIBD
m they are disjoint

The list I' = (1,1, 3) can represent numbers from 1 to 5.
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Existence Theorem 1

(Theorem 2.6, Sun 2016)

m (. a power p® of an odd prime

m 3<k<q—-3,ptk

m ¢ =gcdk,g—1), co=ged(k—1,9g—1)

m {c1,c0} N{1,2} is not empty

m T[hereis aset D of some proper divisors of cicy such that
(1) 2gepd = crca — 1,
(2) every number 7 with 1 <7 <} . d can be expressed as a sum
of distinct elements chosen from D.

Then the necessary conditions are also sufficient for the existence of a
simple (¢, k, \) BIBD.
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-« Existence Theorem 2

(Theorem 2.7, Sun 2016)

g: a power p® of an odd prime

Let 5 > 3 be odd

(" <k <q—1L8™ pik

cg =ged(k,q—1), o =ged(k—1,¢g—1), m > 1
{01702} — {Lgﬁm}

¢ > 4 is an even number with the following property:
there is a set D of some proper divisors of £ such that

(1) >gepd > €= 1;

(2) every number ¢ with 1 <7 < )" d can be expressed as a sum

of distinct elements chosen from D.
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Existence Theorem 2 conti.

Abstract

Then, the necessary conditions are also sufficient for the
existence of a simple (¢, k, A\) BIBD if

Simple BIBDs

Examples

SomepExistence q > /Bm \/3 o 1 /5 —i_ 1/4 —|_ 3/2)
Ty where 0 =1 — Zh pe (RE/P7)
eorem ] p.rlm_e

Thearem 3 More specifically, this is the case when

Practical Numbers q > Bm(\/GB — 23/4 —l— 3/2)

New Results

References
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"« Existence Theorem 3

(Theorem 2.8, Sun 2016)

g: a power p® of an odd prime

Let 7, 5 > 3 be odd

(" <k <q—1LB™ pik

cp =ged(k,q—1), o =ged(k—1,¢g—1), m > 1

{Cla 02} — {27 gﬁm}

20 satisfies the following property:

there is a set D of some proper divisors of 2¢ such that

(1) Ygepd > 20— 1;

(2) every number ¢ with 1 <7 < )", d can be expressed as a sum

of distinct elements chosen from D.
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Existence Theorem 3 cont.i.

A Then, the necessary conditions are also sufficient for the
Simple 5B existence of a simple (¢, k, \) BIBD if

Examples
SomepExistence q > /Bm \/3 o 1 /5 —i_ 1/4 —|_ 3/2)
— where 0 =1 — Zh pe (M)
eorem ] p.rlm_e
More specifically, this is the case when

Practical Numbers q > Bm(\/GB — 23/4 —l— 3/2)

New Results

References
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X& Definition, Srinivasan 1948

Abstract

A practical number (or panarithmic number) is a positive

Zir:p'eleBS'BDs integer m such that every number less than m can be

o Exictence represented as a sum of distinct divisors of m.

Theorems

e e mbeTs 1, 2,4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, 36, 40, 42, 48
oo ’ : : ' ' ’ ’ ’ ' ' ' :
54, 56, 60, 64, 66, 72, 78, 80, 84, 88, 90, 96, 100, 104, 108,
Lemma s 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168,
New Results 176, 180, 192, 196, 198, 200, etc.

References

See: Melfi's tables
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http://www.dm.unipi.it/gauss-pages/melfi/public_html/pratica.html
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Xﬁ Theorem 4

(Melfi 1995, Sierpinski 1955, Stewart 1954)

Suppose m = p{'py® -+ -pir > 2 where 2 =p; < py < --- < p, and
e; > 1. The following conditions are equivalent.

(1) m is a practical number.

(2) Every number less than o(m) can be represented as a sum of distinct
divisors of m, where o(x) denotes the sum of the divisors of .

3) n=lorp1 <opi---pi)+1forl1<i<n-—1.

Condition (3) brings a convenient numerical method for checking whether
a number is practical or not, as long as we know its factorization.
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Lemma 5, Margenstern 1991

Let m be a practical number. Then o(m) > 2m — 1.
Furthermore, o(m) > 2m if m is not a power of 2.
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Lemma 6

e Let n >2and let L = (d; = 1,d>,...,d,) be an increasing
e SRS list of numbers. Then, every number ¢ with 1 < < Z;”:l d;
o Evietonc can be expressed as a sum of elements chosen from L if and

Theorems on|y if (2?21 d]) +1> dh_|_1 for h = 1, N 1.

Practical Numbers

Examples

Definition
Theorem 4

Lemma 5

New Results

References
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Theorem 7

Abstract

Suppose m > 2. Then, m is a practical number if and only
If there is a set D of some proper divisors of m such that
(1) >_yepd > m —1; (2) every number ¢ with

1 <1< ZdeD d can be expressed as a sum of distinct
elements chosen from D.

Simple BIBDs

Examples

Some Existence
Theorems

Practical Numbers

New Results

Main Theorem

Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11

References
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- =+ Main Theorem

Abstract

m (. a power p® of an odd prime
ElmpleIBlBDs - 3 S ]{ S q o 37 p /‘/ k
xamples
Some Existence o C]- — ng(k7 q o 1)’ 02 — ng(k o 17 q o 1)
Theorems m {c,c0} N {1,2} is not empty
Practical Numbers
ﬁ:w Results Then, the necessary conditions are also sufficient for the
eorem 7 . . . .
existence of a simple (g, k, A) BIBD in any of the following
Example 2 . -
Corollary & situations.
Corollary 9
Corollary 10
Corollary 11
References
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Abstract

Simple BIBDs

Examples

Some Existence
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Practical Numbers
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Theorem 7
Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11

References

Main Theorem conti.

1.
2.

3.

c1Co 1s a practical number.

{cr,e0 = {1,05™}, where

(a) [ >3isodd and ¢ > 4 is a practical number;

(b) ¢ > B™(\/68 —23/4+3/2) or
g > B"(\/3(8—1) /5+1/4+3/2) with
d=1=3 ne (RHPM)~

h prime

{cr, 00 = {2,06™}, where

(a) ¢,8 > 3 are odd and 2/ is a practical number;

(b) ¢ > p™(\/68 —23/4+3/2) or
q > B"(\/3(8—1) /5+1/4+3/2) with
d=1=3 ne (AHM)~

h prime
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Abstract

Simple BIBDs

Examples
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Theorem 7
Main Theorem
Corollary 8
Corollary 9
Corollary 10
Corollary 11

References

Example 2

A simple (89,44, 43:) BIBD exists for any ¢ with
1 <i< (ig)/43. Note that

89 > B™(1/68 — 23/4 + 3/2) is not valid when 3 = 11.

However, the other inequality applies for this case.

A simple (353,45,457) BIBD exists for any i with

1 <i<(3))/45.

A simple (307,51, 257) BIBD exists for any i with

1 <i<(%)/25.

A simple (307, 52,267) BIBD exists for any ¢ with

1 <i<(%))/26.
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S Corollary 8

Abstract

Let ¢ > 4 be a practical number. Suppose ¢ = ¢h + 1 is a

Zimp'elB'BDs power of an odd prime such that ged(¢ — 1,h) = 1. Then, a
o simple (q,q€,2(€ — 1)) BIBD exists for any ¢ with

Theorems 1 <1< - g —1).

Practical Numbers o ! o (8_2)/( )

e — Examples:

Vi Theorer Let ¢ = 20~ 4+ 1 be a power of an odd prime such that

19 1 h. Then, a simple (¢, 20,197) BIBD exists for any i with
S 1 <i < (%7)/19. Some of the valid ¢ are 41, 61, 81, 101,
Corollary 11 121, 181, 241, 281, 361, 401, 421, 461, 521, 541, 601, 641,
References 661, 701, 821, 841, 881, 941, 961.
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S Corollary 9

Abstract Let £ > 4 be a practical number. Suppose ¢ = ¢(h + 1 = p°

Eimp'elB'BDs is a power of an odd prime such that ged(¢ + 1, ph) = 1.
o Then, a simple (q2, (¢4 1),(¢+ 1)) BIBD exists for any i
:rae:c:i:sNumbers Wlth 1 S ! S (%—1)/(6 —l_ 1)

e — Examples:

Vi Theorer Let ¢ = 40h + 1 = p® be a power of an odd prime such that
ol & 41 1 ph. Then, a simple (q,41,41:) BIBD exists for any 4
with 1 < < (%%)/41. Some of the valid ¢ are 81, 121,
Corollary 11 241, 281, 361, 401, 521, 601, 641, 761, 841, 881, 961.

References
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S Corollary 10

Abstract Let 2¢ be a practical number such that £ > 3 is odd.

Z‘::QIB'BDS Suppose ¢ = 2¢h + 1 is a power of an odd prime such that
Somep:istence ged(¢ — 1,h) = 1. Then, a simple (¢, /¢, (¢ —1)i/2) BIBD
Theorems exists for any ¢ with 1 <17 < 2(2:3)/(6 —1).

Practical Numbers

e — Examples:

Vi Theeren Let ¢ = 18h + 1 be a power of an odd prime such that 2 1 h.
Corollary 8 Then, a simple (¢, 9, 47) BIBD exists for any ¢ with

1 <4< (77%)/4. Some of the valid ¢ are 127, 163, 199,
Corollary 11 271, 307, 343, 379, 487, 523, 631, 739, 811, 883, 919, 991.

References
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Theorem 7
Main Theorem
Example 2
Corollary 8
Corollary 9
Corollary 10

Corollary 11

References

Let 2¢ be a practical number such that ¢ > 3 is odd.
Suppose ¢ = 2¢h + 1 = p“® is a power of an odd prime such
that ged(¢ + 1,ph) = 1. Then, a simple
(q,(£+1),(£+1)i/2) BIBD exists for any 7 with

1 <i<2(77))/(t+1).

Examples:

Let ¢ = 30h + 1 be a power of an odd prime such that 2 { h.
Then, a simple (¢, 16, 8¢) BIBD exists for any ¢ with

1 << (q;f)/& Some of the valid ¢ are 151, 211, 271,
331, 571, 631, 691, 751, 811, 991.
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