Practical Numbers and Simple BIBDs

Hsin－Min Sun（孫新民）
Department of Applied Mathematics， National University of Tainan，Taiwan

2019 圖論與組合數學國際研討會
Aug 18－23， 2019

Abstract

A practical number is a positive integer m such that every number less than m can be represented as a sum of distinct divisors of m. We apply the properties of practical numbers in the existence theorem for simple BIBDs. Let q be a power of an odd prime p and $3 \leq k \leq q-3$ with $p \nmid k$. We show that the necessary conditions
(1) $\lambda(q-1) \equiv 0 \bmod (k-1)$,
(2) $\lambda q(q-1) \equiv 0 \bmod k(k-1)$, and
(3) $\lambda \leq\binom{ q-2}{k-2}$
are also sufficient for the existence of a simple (q, k, λ) BIBD when certain conditions regarding practical numbers are satisfied.

Abstract

Simple BIBDs
 BIBDs
 $\lambda_{m i n}$
 Necessary
 Conditions
 Examples
 Some Existence
 Theorems
 Practical Numbers
 Simple BIBDs

New Results
References

BIBDs (Balanced Incomplete Block Designs)

Abstract
Simple BIBDs

BIBDs

$\lambda_{\text {min }}$
Necessary
Conditions
Examples
Some Existence
Theorems
Practical Numbers
New Results
References
$v>k \geq 2$

- V : a finite set of symbols, $v=|V|$
- B: a collection of k-subsets (blocks) of V
(V, \mathcal{B}) is a $(v, k, \lambda) B I B D$: every pair of distinct symbols appears in exactly λ blocks

■ every symbol appears in exactly r blocks, where $r=\lambda(v-1) /(k-1)$ $|\mathcal{B}|=b=v r / k$

- simple design: no repeated blocks

Abstract
Simple BIBDs
BIBDs
$\lambda_{\text {min }}$
Necessary
Conditions
Examples
Some Existence
Theorems
Practical Numbers
New Results
References

Necessary conditions for the existence of a (v, k, λ) BIBD:
(1) $\lambda(v-1) \equiv 0 \bmod (k-1)$
(2) $\lambda v(v-1) \equiv 0 \bmod k(k-1)$

- $\lambda_{\text {min }}$: the smallest positive integer that satisfies the necessary conditions
- $\lambda_{\text {min }}$ divides λ whenever a (v, k, λ) BIBD exists

■ $\lambda_{\text {min }}=\operatorname{lcm}\left(\lambda_{1}, \lambda_{2}\right)=k(k-1) / c_{1} c_{2} \operatorname{gcd}(k, v)$
$c_{1}=\operatorname{gcd}(k, v-1)$
$c_{2}=\operatorname{gcd}(k-1, v-1)$
$\lambda_{1}=(k-1) / \operatorname{gcd}(k-1, v-1)$
$\lambda_{2}=k(k-1) / \operatorname{gcd}(k(k-1), v(v-1))$

Necessary Conditions for Simple BIBDs

Abstract
Simple BIBDs
BIBDs

$\lambda_{\min }$

Conditions
Examples
Some Existence
Theorems
Practical Numbers
New Results
References

Necessary conditions for a simple (v, k, λ) BIBD:
(1) $\lambda(v-1) \equiv 0 \bmod (k-1)$
(2) $\lambda v(v-1) \equiv 0 \bmod k(k-1)$
(3) $\quad \lambda_{\min } \leq \lambda \leq \lambda_{\max }=\binom{v-2}{k-2}$
(Dehon 1983) There exists a simple $(v, 3, \lambda)$ BIBD if and only if $\lambda(v-1) \equiv 0(\bmod 2), \lambda v(v-1) \equiv 0(\bmod 6)$, and $\lambda \leq v-2$.

Question: Fix the number of elements v and a block size k. Under what circumstances will simple (v, k, λ) BIBDs exist for all λ satisfying the conditions (1) through (3)?

Simple (7, 3, 1) BIBD

Abstract

Simple BIBDs
Examples
$(7,3,1) \mathrm{BIBD}$
$(7,3,2)$ BIBD
$(7,3,3)$ BIBD
Some Existence
Theorems
Practical Numbers
New Results
References

$$
\begin{aligned}
& 1,2,4 \\
& 2,3,5 \\
& 3,4,6 \\
& 4,5,0 \\
& 5,6,1 \\
& 6,0,2 \\
& 0,1,3
\end{aligned}
$$

- from lines in a projective plane

■ from a difference set $\{1,2,4\}$ in Z_{7}

- from partitioning a $(7,3,2) \mathrm{BIBD}$

Simple (7, 3, 2) BIBD

Abstract
Simple BIBDs
$\frac{\text { Examples }}{(7,3,1) \mathrm{BIBD}}$
$(7,3,2)$ BIBD
$(7,3,3) \mathrm{BIBD}$
Some Existence
Theorems
Practical Numbers
New Results
References

$1,2,4$	$3,5,6$
$2,3,5$	$4,6,0$
$3,4,6$	$5,0,1$
$4,5,0$	$6,1,2$
$5,6,1$	$0,2,3$
$6,0,2$	$1,3,4$
$0,1,3$	$2,4,5$

■ from a difference family $\{1,2,4\},\{3,5,6\}$ in Z_{7}
■ the orbit of $\{1,2,4\}$ under the action of $\operatorname{Aff}\left(Z_{7}\right)$

Simple (7, 3, 3) BIBD

Abstract
Simple BIBDs
$\frac{\text { Examples }}{(7,3,1) \text { BIBD }}$
$(7,3,2)$ BIBD
$(7,3,3)$ BIBD
Some Existence
Theorems
Practical Numbers
New Results
References

$0,1,4$	$0,1,2$	$0,3,5$
$1,2,5$	$1,2,3$	$1,4,6$
$2,3,6$	$2,3,4$	$2,5,0$
$3,4,0$	$3,4,5$	$3,6,1$
$4,5,1$	$4,5,6$	$4,0,2$
$5,6,2$	$5,6,0$	$5,1,3$
$6,0,3$	$6,0,1$	$6,2,4$

- from a difference family $\{0,1,4\},\{0,1,2\},\{0,3,5\}$ in Z_{7}
- the orbit of $\{0,1,4\}$ under the action of $\operatorname{Aff}\left(Z_{7}\right)$

All Simple $(7,3, \lambda)$ BIBDs Exist

■ two simple $(7,3,1)$ BIBDs from one simple $(7,3,2) \mathrm{BIBD}$ one simple $(7,3,3)$ BIBD they are disjoint

The list $\Gamma=(1,1,3)$ can represent numbers from 1 to 5 .

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Theorem 1
Theorem 2
Theorem 3
Practical Numbers
New Results
References

Some Existence Theorems

Existence Theorem 1

(Theorem 2.6, Sun 2016)

- q : a power p^{α} of an odd prime
- $3 \leq k \leq q-3, p \nmid k$

■ $c_{1}=\operatorname{gcd}(k, q-1), c_{2}=\operatorname{gcd}(k-1, q-1)$

- $\left\{c_{1}, c_{2}\right\} \cap\{1,2\}$ is not empty
- There is a set D of some proper divisors of $c_{1} c_{2}$ such that (1) $\sum_{d \in D} d \geq c_{1} c_{2}-1$;
(2) every number i with $1 \leq i \leq \sum_{d \in D} d$ can be expressed as a sum of distinct elements chosen from D.

Then the necessary conditions are also sufficient for the existence of a simple (q, k, λ) BIBD.

Existence Theorem 2

(Theorem 2.7, Sun 2016)

- q : a power p^{α} of an odd prime
- Let $\beta \geq 3$ be odd
- $\ell \beta^{m} \leq k \leq q-\ell \beta^{m}, p \nmid k$

■ $c_{1}=\operatorname{gcd}(k, q-1), c_{2}=\operatorname{gcd}(k-1, q-1), m \geq 1$

- $\left\{c_{1}, c_{2}\right\}=\left\{1, \ell \beta^{m}\right\}$
- $\ell \geq 4$ is an even number with the following property: there is a set D of some proper divisors of ℓ such that (1) $\sum_{d \in D} d \geq \ell-1$;
(2) every number i with $1 \leq i \leq \sum_{d \in D} d$ can be expressed as a sum of distinct elements chosen from D.

Existence Theorem 2 conti.

Abstract
Simple BIBDs
Examples

Some Existence
Theorems
Theorem 1
Theorem 2
Theorem 3
Practical Numbers

New Results
References

Then, the necessary conditions are also sufficient for the existence of a simple (q, k, λ) BIBD if
$q>\beta^{m}(\sqrt{3(\beta-1) / \delta+1 / 4}+3 / 2)$,
where $\delta=1-\sum_{\substack{h \mid \ell \\ h \text { prime }}}\left(h^{k / \beta^{m} h}\right)^{-1}$.
More specifically, this is the case when
$q>\beta^{m}(\sqrt{6 \beta-23 / 4}+3 / 2)$.

Existence Theorem 3

(Theorem 2.8, Sun 2016)

- q : a power p^{α} of an odd prime
- Let $\ell, \beta \geq 3$ be odd
- $\ell \beta^{m} \leq k \leq q-\ell \beta^{m}, p \nmid k$

■ $c_{1}=\operatorname{gcd}(k, q-1), c_{2}=\operatorname{gcd}(k-1, q-1), m \geq 1$
■ $\left\{c_{1}, c_{2}\right\}=\left\{2, \ell \beta^{m}\right\}$

- 2ℓ satisfies the following property: there is a set D of some proper divisors of 2ℓ such that (1) $\sum_{d \in D} d \geq 2 \ell-1$;
(2) every number i with $1 \leq i \leq \sum_{d \in D} d$ can be expressed as a sum of distinct elements chosen from D.

Existence Theorem 3 conti.

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Theorem 1
Theorem 2
Theorem 3
Practical Numbers
New Results
References

Then, the necessary conditions are also sufficient for the existence of a simple (q, k, λ) BIBD if
$q>\beta^{m}(\sqrt{3(\beta-1) / \delta+1 / 4}+3 / 2)$,
where $\delta=1-\sum_{\substack{h \text { hle } \\ h \text { prime }}}\left(h^{k / \beta^{m} h}\right)^{-1}$.
More specifically, this is the case when
$q>\beta^{m}(\sqrt{6 \beta-23 / 4}+3 / 2)$.

Abstract
Simple BIBDs
Examples
Some Existence
Theorems

Practical Numbers

Definition
Theorem 4
Lemma 5
Lemma 6
New Results
References

Practical Numbers

Definition, Srinivasan 1948

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers

Definition

Theorem 4
Lemma 5
Lemma 6
New Results
References

A practical number (or panarithmic number) is a positive integer m such that every number less than m can be represented as a sum of distinct divisors of m.
$1,2,4,6,8,12,16,18,20,24,28,30,32,36,40,42,48$, $54,56,60,64,66,72,78,80,84,88,90,96,100,104,108$, $112,120,126,128,132,140,144,150,156,160,162,168$, 176, 180, 192, 196, 198, 200, etc.

See: Melfi's tables

Theorem 4

(Melfi 1995, Sierpinski 1955, Stewart 1954)
Suppose $m=p_{1}^{e_{1}} p_{2}^{e_{2}} \cdots p_{n}^{e_{n}} \geq 2$ where $2=p_{1}<p_{2}<\cdots<p_{n}$ and $e_{i} \geq 1$. The following conditions are equivalent.
(1) m is a practical number.
(2) Every number less than $\sigma(m)$ can be represented as a sum of distinct divisors of m, where $\sigma(x)$ denotes the sum of the divisors of x.
(3) $n=1$ or $p_{i+1} \leq \sigma\left(p_{1}^{e_{1}} \cdots p_{i}^{e_{i}}\right)+1$ for $1 \leq i \leq n-1$.

Condition (3) brings a convenient numerical method for checking whether a number is practical or not, as long as we know its factorization.

Lemma 5, Margenstern 1991

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
Definition
Theorem 4

Lemma 5

Lemma 6
New Results
References

Let m be a practical number. Then $\sigma(m) \geq 2 m-1$.
Furthermore, $\sigma(m) \geq 2 m$ if m is not a power of 2 .

Lemma 6

Abstract
Simple BIBDs
Examples

Some Existence
Theorems
Practical Numbers
Definition
Theorem 4
Lemma 5
Lemma 6
New Results
References

Some Existence

Practical Numbers
Definition
Theorem 4
Lemma 5

Lemma 6

New Results
References

Let $n \geq 2$ and let $L=\left(d_{1}=1, d_{2}, \ldots, d_{n}\right)$ be an increasing list of numbers. Then, every number i with $1 \leq i \leq \sum_{j=1}^{n} d_{j}$ can be expressed as a sum of elements chosen from L if and only if $\left(\sum_{j=1}^{h} d_{j}\right)+1 \geq d_{h+1}$ for $h=1, \ldots, n-1$.
Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7Main Theorem
Example 2Corollary 8Corollary 9Corollary 10

$$
\text { Corollary } 11
$$

References
New Results

Theorem 7

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7
Main Theorem
Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11
References

Suppose $m \geq 2$. Then, m is a practical number if and only if there is a set D of some proper divisors of m such that (1) $\sum_{d \in D} d \geq m-1$; (2) every number i with $1 \leq i \leq \sum_{d \in D} d$ can be expressed as a sum of distinct elements chosen from D.

Main Theorem

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7

Main Theorem

Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11
References

- q: a power p^{α} of an odd prime
- $3 \leq k \leq q-3, p \nmid k$
- $c_{1}=\operatorname{gcd}(k, q-1), c_{2}=\operatorname{gcd}(k-1, q-1)$
- $\left\{c_{1}, c_{2}\right\} \cap\{1,2\}$ is not empty

Then, the necessary conditions are also sufficient for the existence of a simple (q, k, λ) BIBD in any of the following situations.

Main Theorem conti.

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7
Main Theorem
Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11
References

1. $c_{1} c_{2}$ is a practical number.
2. $\left\{c_{1}, c_{2}\right\}=\left\{1, \ell \beta^{m}\right\}$, where
(a) $\beta \geq 3$ is odd and $\ell \geq 4$ is a practical number;
(b) $q>\beta^{m}(\sqrt{6 \beta-23 / 4}+3 / 2)$ or $q>\beta^{m}(\sqrt{3(\beta-1) / \delta+1 / 4}+3 / 2)$ with $\delta=1-\sum_{\substack{\text { hle } \\ \text { prime }}}\left(h^{k / \beta^{m} h}\right)^{-1}$.
3. $\left\{c_{1}, c_{2}\right\}=\left\{2, \ell \beta^{m}\right\}$, where
(a) $\ell, \beta \geq 3$ are odd and 2ℓ is a practical number;
(b) $q>\beta^{m}(\sqrt{6 \beta-23 / 4}+3 / 2)$ or

$$
q>\beta^{m}(\sqrt{3(\beta-1) / \delta+1 / 4}+3 / 2) \text { with }
$$

$$
\delta=1-\sum_{\substack{h \mid \ell \\ h \text { prime }}}\left(h^{k / \beta^{m} h}\right)^{-1}
$$

Example 2

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results

Theorem 7

Main Theorem

Example 2

Corollary 8
Corollary 9
Corollary 10
Corollary 11
References

1. A simple (89, 44, 43i) BIBD exists for any i with $1 \leq i \leq\binom{ 87}{42} / 43$. Note that $89>\beta^{m}(\sqrt{6 \beta-23 / 4}+3 / 2)$ is not valid when $\beta=11$. However, the other inequality applies for this case.
2. A simple $(353,45,45 i)$ BIBD exists for any i with $1 \leq i \leq\binom{ 351}{43} / 45$.
3. A simple (307, 51, 25i) BIBD exists for any i with $1 \leq i \leq\binom{ 305}{49} / 25$.
4. A simple (307, 52, 26i) BIBD exists for any i with $1 \leq i \leq\binom{ 305}{50} / 26$.

Corollary 8

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7
Main Theorem
Example 2

Let $\ell \geq 4$ be a practical number. Suppose $q=\ell h+1$ is a power of an odd prime such that $\operatorname{gcd}(\ell-1, h)=1$. Then, a simple $(q, \ell,(\ell-1) i)$ BIBD exists for any i with $1 \leq i \leq\binom{ q-2}{\ell-2} /(\ell-1)$.

Examples:

Let $q=20 h+1$ be a power of an odd prime such that $19 \nmid h$. Then, a simple ($q, 20,19 i$) BIBD exists for any i with $1 \leq i \leq\binom{ q-2}{18} / 19$. Some of the valid q are $41,61,81,101$, 121, 181, 241, 281, 361, 401, 421, 461, 521, 541, 601, 641, 661, 701, 821, 841, 881, 941, 961.

Corollary 9

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7
Main Theorem
Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11
References

Let $\ell \geq 4$ be a practical number. Suppose $q=\ell h+1=p^{\alpha}$ is a power of an odd prime such that $\operatorname{gcd}(\ell+1, p h)=1$. Then, a simple $(q,(\ell+1),(\ell+1) i)$ BIBD exists for any i with $1 \leq i \leq\binom{ q-2}{\ell-1} /(\ell+1)$.

Examples:

Let $q=40 h+1=p^{\alpha}$ be a power of an odd prime such that $41 \nmid p h$. Then, a simple ($q, 41,41 i$) BIBD exists for any i with $1 \leq i \leq\binom{ q-2}{39} / 41$. Some of the valid q are 81,121 , 241, 281, 361, 401, 521, 601, 641, 761, 841, 881, 961.

Corollary 10

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7
Main Theorem
Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11
References

Let 2ℓ be a practical number such that $\ell \geq 3$ is odd.
Suppose $q=2 \ell h+1$ is a power of an odd prime such that $\operatorname{gcd}(\ell-1, h)=1$. Then, a simple $(q, \ell,(\ell-1) i / 2)$ BIBD exists for any i with $1 \leq i \leq 2\binom{q-2}{\ell-2} /(\ell-1)$.

Examples:

Let $q=18 h+1$ be a power of an odd prime such that $2 \nmid h$.
Then, a simple $(q, 9,4 i)$ BIBD exists for any i with $1 \leq i \leq\binom{ q-2}{7} / 4$. Some of the valid q are $127,163,199$, 271, 307, 343, 379, 487, 523, 631, 739, 811, 883, 919, 991.

Corollary 11

Abstract
Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
Theorem 7
Main Theorem
Example 2
Corollary 8
Corollary 9
Corollary 10
Corollary 11
References

Let 2ℓ be a practical number such that $\ell \geq 3$ is odd.
Suppose $q=2 \ell h+1=p^{\alpha}$ is a power of an odd prime such that $\operatorname{gcd}(\ell+1, p h)=1$. Then, a simple
$(q,(\ell+1),(\ell+1) i / 2)$ BIBD exists for any i with $1 \leq i \leq 2\binom{q-2}{\ell-1} /(\ell+1)$.

Examples:
Let $q=30 h+1$ be a power of an odd prime such that $2 \nmid h$.
Then, a simple ($q, 16,8 i$) BIBD exists for any i with $1 \leq i \leq\binom{ q-2}{14} / 8$. Some of the valid q are 151, 211, 271, 331, 571, 631, 691, 751, 811, 991.

Abstract

Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
References

References

References

- H.-M. Sun, From planar nearrings to generating blocks, Taiwanese J Math 14(5) (2010), 1713-1739.
- H.-M. Sun, On the existence of simple BIBDs with number of elements a prime power, J Combin Des 21(2) (2013), 47-59.
- H.-M. Sun, Correction to: "On the existence of simple BIBDs with number of elements a prime power", J Combin Des 21(10) (2013) 478-479.

References Conti.

- H.-M. Sun, More results on the existence of simple BIBDs with number of elements a prime power, Taiwanese J Math 20(3) (2016), 523-543.
- H.-M. Sun, Existence of simple BIBDs from the existence of a prime power difference family with minimum index, J Algebra Appl 18(9) (2019), Article 1950166.

Abstract

Simple BIBDs
Examples
Some Existence
Theorems
Practical Numbers
New Results
References

The End.

