
A talk given at Int. Symp. on Wen-Tsun Wu’s
Academic Thought and Mathematical Mechanization
(Academy of Sciences, Beijing, May 12-17, 2019)
and the 10th Cross-strait Conf. on Graph Theory and Combin.
(Taichung, August 18-23, 2019)

Problems and Results on Permutations

Zhi-Wei Sun

Nanjing University, Nanjing 210093, P. R. China
zwsun@nju.edu.cn

http://math.nju.edu.cn/∼zwsun

August 19, 2019



Part I. On Signs of Permutations
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Definition of signs of permutations

Recall that for a permutation aσ(1), . . . , aσ(n) of n distinct numbers
a1, . . . , an, its sign (or signature) is given by

sign(σ) := (−1)Inv(σ),

where

Inv(σ) := |{(i , j) : 1 6 i < j 6 n & σ(i) > σ(j)}|

is the number of inverse pairs of σ. The permutation is said to be
odd or even according as sign(σ) is −1 or 1.

Let Sn be the symmetric group of all the permutations on
{1, . . . , n}. It is well known that

sign(στ) = sign(σ)sign(τ) for all σ, τ ∈ Sn.
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On the inverse of k modulo m

For a prime p and each k = 1, . . . , p − 1 let k̄ be the inverse of k
mod p (i.e., 1 6 k̄ 6 p − 1 and kk̄ ≡ 1 (mod p)). Then the list
1̄, . . . , p − 1 is a permutation of 1, . . . , p − 1. What’s the sign of
this permutation?

Let m > 1 be a general odd integer, and let a1 < . . . < aϕ(m) be
all the numbers among 1, . . . ,m − 1 relatively prime to m. For
each k ∈ {1, . . . ,m− 1} with gcd(k,m) = 1, let σm(k) = k̄ be the
inverse of k modulo m, that is, k̄ ∈ {1, . . . ,m − 1} and kk̄ ≡ 1
(mod m). Then σm is a permutation of a1, . . . , aϕ(m).

Theorem (Z.-W. Sun [Finite Fields Appl. 59(2019), 246-283]).
For any odd integer m > 1, we have

sign(σm) = −1 ⇐⇒ m is a power of a prime p ≡ 1 (mod 4).

In particular, sign(σp) = (−1)(p+1)/2 for each odd prime p.
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Quadratic residues modulo primes
Let p be an odd prime. For a ∈ Z with p - a, if x2 ≡ a (mod p) for
some x ∈ Z, then a is called a quadratic residue modulo p,
otherwise a is called a quadratic nonresidue modulo p.

For example, 1, 2, 4 are quadratic residues mod 7, and 3, 5, 6 are
quadratic nonresidue mod 7. (Note that 32 ≡ 2 (mod 7).)

If x = pq + r with q, r ∈ Z and |r | 6 (p − 1)/2, then

x2 ≡ r2 = |r |2 (mod p).

If 0 6 j < k 6 (p − 1)/2, then

k2 − j2 = (k − j)(k + j) 6≡ 0 (mod p).

Therefore

12, 22, . . . ,

(
p − 1

2

)2

give all the (p − 1)/2 quadratic residues modulo p.
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Legendre symbols and Jacobi symbols

Let a ∈ Z. For an odd prime p, the Legendre symbol ( a
p ) is given

by (
a

p

)
=


0 if p | a,
1 if p - a and x2 ≡ a (mod p) for some x ∈ Z,
−1 if p - a and x2 ≡ a (mod p) for no x ∈ Z.

Let n be a positive odd integer. Then the Jacobi symbol ( an ) is
given by(a

n

)
=

{
1 if n = 1,∏r

i=1( a
pi

) if n = p1 . . . pr with p1, . . . , pr prime.(
−1

n

)
= (−1)(n−1)/2 =

{
1 if n ≡ 1 (mod 4),

−1 if n ≡ −1 (mod 4);(
2

n

)
= (−1)(n

2−1)/8 =

{
1 if n ≡ ±1 (mod 8),

−1 if n ≡ ±3 (mod 8).
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Zolotarev’s Lemma

For a ∈ Z and n ∈ Z+ = {1, 2, 3, . . .}, let {a}n denote the least
nonnegative residue of a modulo n.

Zolotarev’s Lemma (1872). Let p be any odd prime, and let
a ∈ Z with p - a. Then, the permutation {aj}p (j = 1, . . . , p − 1)
of 1, . . . , p − 1 has the sign ( a

p ).

Frobenius’ Extension. Let n be any positive odd integer relatively
prime to a ∈ Z. Then, the permutation {aj}n (j = 0, . . . , n − 1) of
0, 1, . . . , n − 1 has the sign ( an ).

Recently, I noted that Zolotarev’s Lemma is actually equivalent to
Gauss’ Lemma and Frobenius’ Extension is also equivalent to
Jenkins’ Extension of Gauss’ Lemma.
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A mysterious discovery on Sept. 15, 2018

Let p = 2n + 1 be an odd prime, and let a1 < . . . < an be all the
quadratic residues modulo p among 1, . . . , p − 1. It is well known
that {12}p, . . . , {n2}p is a permutation of a1, . . . , an. Let πp
denote this permutation. What’s the sign of the permutation πp?

On Sept. 14, 2018, I made computation via Mathematica but
could not see any pattern. Then I thought that perhaps sign(πp) is
distributed randomly.

After I waked up in the early morning of Sept. 15, 2018, I thought
that it would be very interesting if sign(πp) obeys certain pattern.
Thus, I computed and analyzed sign(πp) once again. This led to
the following surprising discovery.

Conjecture (Z.-W. Sun, Sept. 15, 2018). Let p ≡ 3 (mod 4) be a
prime and let h(−p) be the class number of Q(

√
−p). Then

sign(πp) =

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8).
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An example

For the prime p = 11,

({12}11, . . . , {52}11) = (1, 4, 9, 5, 3),

and

{(j , k) : 1 6 j < k 6 5 & {j2}11 > {k2}11}
= {(2, 5), (3, 4), (3, 5), (4, 5)}.

Thus
sign(π11) = (−1)4 = 1.

9 / 38



On
∏

16i<j6(p−1)/2(j2 − i2) mod p
For an odd prime p, clearly sign(πp) is the sign of the product

Sp :=
∏

16i<j6(p−1)/2

({j2}p − {i2}p).

It is relatively easy to determine Sp modulo p.

Theorem. Let p = 2n + 1 be an odd prime. Then∏
16i<j6n

(j2 − i2) ≡

{
−n! (mod p) if p ≡ 1 (mod 4),

1 (mod p) if p ≡ 3 (mod 4).

Sketch of My Proof. This is because∏
16i<j6n

(j − i)×
∏

16i<j6n

(j + i)

=
n∏

k=1

kn−k ×
n∏

k=1

kb(k−1)/2c(p − k)bk/2c

≡(−1)
∑n

k=0bk/2c(n!)n−1 (mod p)

and (−1)n(n!)2 ≡ (p − 1)! ≡ −1 (mod p) by Wilson’s theorem. 10 / 38



Known results involving ζ = e2πi/p

Lemma. Let p be an odd prime, and let ζ = e2πi/p.
(i) For any a ∈ Z with p - a, we have

p−1∏
n=1

(1− ζan) = p,

p−1∑
x=0

ζax
2

=

(
a

p

)√
(−1)(p−1)/2p (Gauss).

(ii) (Dirichlet’s class number formula) If p ≡ 1 (mod 4), then

p−1∏
n=1

(1− ζn)(
n
p
) = ε

−2h(p)
p ,

where εp and h(p) are the fundamental unit and the class number
of the quadratic field Q(

√
p) respectively. When p ≡ 3 (mod 4),

we have

ph(−p) = −
p−1∑
k=1

k

(
k

p

)
.
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On
∏(p−1)/2

k=1 (1− ζak2

)

Theorem (Z.-W. Sun [Finite Fields Appl. 59(2019), 246-283]).
Let p > 3 be a prime and let ζ = e2πi/p. Let a be any integer not
divisible by p.

(i) If p ≡ 1 (mod 4), then

(p−1)/2∏
k=1

(1− ζak2
) =
√
p ε
−( a

p
)h(p)

p .

(ii) If p ≡ 3 (mod 4), then

(p−1)/2∏
k=1

(1− ζak2
) = (−1)(h(−p)+1)/2

(
a

p

)
√
p i .
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On
∏(p−1)/2

k=1 sin π ak2

p and
∏(p−1)/2

k=1 cos π ak2

p

Corollary. Let p > 3 be a prime and let a ∈ Z with p - a. Then

2(p−1)/2
(p−1)/2∏
k=1

sinπ
ak2

p

=(−1)(a+1)b(p+1)/4c√p ×

{
ε
−( a

p
)h(p)

p if 4 | p − 1,

(−1)(h(−p)+1)/2( a
p ) if 4 | p − 3,

and

2(p−1)/2
(p−1)/2∏
k=1

cosπ
ak2

p
=

(−1)a(p−1)/4ε
(1−( 2

p
))( a

p
)h(p)

p if 4 | p − 1,

(−1)(a+1)(p+1)/4 if 4 | p − 3.
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More identities involving the sine and cosine functions

Theorem (Z.-W. Sun [Finite Fields Appl. 59(2019), 246-283]).
Let p be an odd prime and let a ∈ Z with p - a. Then

∏
16j<k6(p−1)/2

p-j2+k2

sinπ
a(j2 + k2)

p

=
( p

2p−1

)(p−(−1
p
)−4)/8

×


ε
( a
p
)h(p)(1+( 2

p
))/2

p if 4 | p − 1,

(−1)(p−3)/8 if 8 | p − 3,

(−1)(p+1)/8+(h(−p)+1)/2( a
p ) if 8 | p − 7,

and ∏
16j<k6(p−1)/2

cosπ
a(j2 + k2)

p
= (−1)a

p+1
2
b p−1

4
c2−

p−1
2
b p−3

4
c.
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Determination of sign(πp) for p ≡ 3 (mod 4)

Theorem (Z.-W. Sun [Finite Fields Appl. 59(2019), 246-283]).
Let p be a prime with p ≡ 3 (mod 4). Then

sign(πp) =

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8).

Moreover, for any a ∈ Z with p - a, we have∏
16j<k6(p−1)/2

cscπ
a(k2 − j2)

p
=

∏
16j<k6(p−1)/2

(
cotπ

aj2

p
− cotπ

ak2

p

)

=

{
(2p−1/p)(p−3)/8 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2( a
p )(2p−1/p)(p−3)/8 if p ≡ 7 (mod 8),

Remark. Note that for 1 6 j < k 6 (p − 1)/2 we have

{j2}p > {k2}p ⇐⇒ cotπ
j2

p
< cotπ

k2

p
.
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Reduction to
∏

16j<k6(p−1)/2 sin π a(k2−j2)
p

For real numbers θ1 and θ2, clearly

cotπθ1 − cotπθ2 =
cosπθ1
sinπθ1

− cosπθ2
sinπθ2

=
sinπ(θ2 − θ1)

sinπθ1 sinπθ2
.

Thus ∏
16j<k6(p−1)/2

sinπa(k2 − j2)/p

cotπaj2/p − cotπak2/p

=
∏

16j<k6(p−1)/2

sinπ
aj2

p
sinπ

ak2

p

=

(p−1)/2∏
k=1

(
sinπ

ak2

p

)|{16j6(p−1)/2: j 6=k}|
.

Recall that we have determined the value of
∏(p−1)/2

k=1 sinπ ak2

p .
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Reduction to
∏

16j<k6(p−1)/2(e2πiaj2/p − e2πiak2/p)

For 1 6 j < k 6 (p − 1)/2, clearly

sinπ
a(k2 − j2)

p
=
e iπa(k

2−j2)/p − e−iπa(k
2−j2)/p

2i

=
i

2
e−iπa(k

2+j2)/p(e2πiaj
2/p − e2πiak

2/p).

It is easy to show that

∑
16j<k6(p−1)/2

(j2 + k2) =
p − 3

2

(p−1)/2∑
k=1

k2 =
p − 3

2
· p

2 − 1

24
p.
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Determine
∏

16j<k6(p−1)/2(ζaj
2 − ζak2

)2 with ζ = e2πi/p

∏
16j<k6(p−1)/2

(ζaj
2 − ζak2

)2

=(−1)((p−1)/2
2 )

∏
16j<k6(p−1)/2

(ζaj
2 − ζak2

)(ζak
2 − ζaj2)

=(−1)((p−1)/2
2 )

(p−1)/2∏
k=1

(p−1)/2∏
j=1
j 6=k

(ζak
2 − ζaj2)

=(−1)(p−1)(p−3)/8
p−1∏
n=1

(1− ζan)r(n),

where

r(n) =|{(j , k) : 1 6 j , k < p/2 & j2 − k2 ≡ n (mod p)}|

=
∑
0<x<p
p-n+x

( xp ) + 1

2
·

(n+x
p ) + 1

2
=

⌊
p − 1

4

⌋
−

1 + (−1p )

2
·

1 + (np )

2
.
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The value of
∏

16j<k6(p−1)/2(e2πiaj2/p − e2πiak2/p)2

When p ≡ 1 (mod 4), we get∏
16j<k6(p−1)/2

(ζaj
2 − ζak2

)2 = (−1)(p−1)/4p(p−3)/4ε
( a
p
)h(p)

p .

If p ≡ 3 (mod 4), then∏
16j<k6(p−1)/2

(ζaj
2 − ζak2

)2 = (−p)(p−3)/4.

How to determine the value of
∏

16j<k6(p−1)/2(ζaj
2 − ζak2

) in the
case p ≡ 3 (mod 4)?

We need Galois theory!
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The cyclotomic field Q(e2πi/n)

Let n > 1 be an integer and let ζn = e2πi/n. The minimal
polynomial of ζn over Q is the cyclotomic polynomial

Φn(x) =
n∏

a=1
(a,n)=1

(x − ζan) ∈ Z[x ].

It is known that the Galois group

Gal(Q(ζn)/Q) = {σ ∈ Aut(Q(ζn)) : σ(r) = r for all r ∈ Q}

has exactly ϕ(n) elements, and they are

ϕa (1 6 a 6 n & (a, n) = 1) with ϕa(ζn) = ζan .
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The value of
∏

16j<k6(p−1)/2(e2πiaj2/p − e2πiak2/p)2

Let p be an odd prime let ζ = e2πi/p. Let a ∈ Z with p - a, and let
ϕa ∈ Gal(Q(ζ)/Q) with ϕa(ζ) = ζa. Then

ϕa

(√
(−1)(p−1)/2p

)
=ϕa

( p−1∑
x=0

ζx
2

)

=

p−1∑
x=0

ζax
2

=

(
a

p

)√
(−1)(p−1)/2p.

Now assume that p ≡ 3 (mod 4). Recall that∏
16j<k6(p−1)/2

(ζ j
2 − ζk2

)2 = (−p)(p−3)/4.

So, for some ε ∈ {±1}, we have∏
16j<k6(p−1)/2

(ζ j
2 − ζk2

) = ε(
√
p i)(p−3)/4.
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On
∏

16j<k6(p−1)/2(e2πiaj2/p − e2πiak2/p)

Applying the automorphism ϕa of the cyclotomic field Q(ζ), we get

∏
16j<k6(p−1)/2

(ζaj
2−ζak2

) = εϕa(
√
p i)(p−3)/4 = ε

((
a

p

)
√
p i

)(p−3)/4
.

Thus, for any r = 1, . . . , (p − 1)/2 we have∏
16j<k6(p−1)/2

(
ζr

2j2 − ζr2k2
)

= ε(
√
p i)(p−3)/4;

on the other hand,∏
16j<k6(p−1)/2

(
ζr

2j2 − ζr2k2
)

=
∏

16j<k6(p−1)/2

(1− ζr2(k2−j2)).
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Determine ε

Therefore(
ε(
√
p i)(p−3)/4

)(p−1)/2
=

∏
16j<k6(p−1)/2

(p−1)/2∏
r=1

(1− ζ(k2−j2)r2)

=
∏

16j<k6(p−1)/2

(
(−1)(h(−p)+1)/2

(
k2 − j2

p

)
√
p i

)
.

and hence

ε =ε(p−1)/2 = (−1)
h(−p)+1

2
· (p−1)(p−3)

8

∏
16j<k6(p−1)/2

(
k2 − j2

p

)
=(−1)

h(−p)+1
2
· p−3

4 .
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Two related theorems
Theorem (Z.-W. Sun [Finite Fields Appl. 59(2019), 246-283]).
Let p be an odd prime and let ζ = e2πi/p. Let a ∈ Z with p - a.
Then

(−1)a
p+1
2
b p−1

4
c2(p−1)(p−3)/8

∏
16j<k6(p−1)/2

cosπ
a(k2 − j2)

p

=
∏

16j<k6(p−1)/2

(ζaj
2

+ ζak
2
) =

1 if p ≡ 3 (mod 4),

±ε
( a
p
)h(p)(( 2

p
)−1)/2

p if p ≡ 1 (mod 4).

Theorem (Fedor Petrov and Z.-W. Sun [arXiv:1907.12981]). Let p
be a prime with p ≡ 1 (mod 4), and let ζ = e2πi/p. Let a be an
integer not divisible by p. Then

(−1)|{16k<p/4: ( k
p
)=−1}| ∏

16j<k6(p−1)/2

(ζaj
2

+ ζak
2
)

=

{
1 if p ≡ 1 (mod 8),

( a
p )ε
−( a

p
)h(p)

p if p ≡ 5 (mod 8).
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Part II. Permutations related to Permanents or Groups
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Cloitre’s problem and related results
For an n × n matrix A = [aij ]16i ,j6n with aij ∈ C, its permanent is
defined by

per(A) =
∑
σ∈Sn

n∏
i=1

ai ,σ(i).

Theorem (conjectured by B. Cloitre in 2002 and proved by P.
Bradley [arXiv:1809.01012]). For any n ∈ Z+, there is a
permutation π ∈ Sn with k + π(k) prime for all k = 1, . . . , n.

Remark. Note that the number of the desired permutations π ∈ Sn
is just the permanent of the matrix A of order n whose (i , j)-entry
(1 6 i , j 6 n) is 1 or 0 according as i + j is prime or not.

Theorem (Z.-W. Sun, arXiv:1811.10503). For any n ∈ Z+, there
is a unique permutation π of {1, . . . , n} such that all the numbers
k + π(k) (k = 1, . . . , n) are powers of two. In other words, for the
n × n matrix A whose (i , j)-entry is 1 or 0 according as i + j is a
power of two or not, we have per(A) = 1.

These theorems can be proved by induction on n.
26 / 38



Some conjectures on permutations of {1, . . . , n}
Conjecture (Z.-W. Sun, arXiv:1811.10503). (i) For any n ∈ Z+,
there is a permutation σn ∈ Sn such that kσn(k) + 1 is prime for
every k = 1, . . . , n.

(ii) For any integer n > 2, there is a permutation τn ∈ Sn such
that kτn(k)− 1 is prime for every k = 1, . . . , n.

Remark. See [OEIS, A321597] for related data and examples.

Note that
n−1∑
k=1

1

k(k + 1)
=

n−1∑
k=1

(
1

k
− 1

k + 1

)
= 1− 1

n
.

Conjecture (Z.-W. Sun, arXiv:1811.10503). (i) For any integer
n > 5, there is a permutation π ∈ Sn with

∑n−1
k=1

1
π(k)π(k+1) = 1.

(ii) For any integer n > 6, there is a permutation π ∈ Sn such that∑n−1
k=1

1
π(k)+π(k+1) = 1. For any integer n > 5, there exists a

permutation π ∈ Sn such that
∑n−1

k=1
1

π(k)−π(k+1) = 0.
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On the permanent per[i j−1]16i ,j6n

It is well-known that

det[i j−1]16i ,j6n =
∏

16i<j6n

(j − i) = 1!2! . . . (n − 1)!

and in particular

det[i j−1]16i ,j6p−1, det[i j−1]16i ,j6p 6≡ 0 (mod p)

for any odd prime p.

Theorem (Z.-W. Sun, arXiv:1811.10503). (i) Let p be any odd
prime. Then there is no π ∈ Sp−1 such that all the p − 1 numbers
kπ(k) (k = 1, . . . , p − 1) are pairwise incongruent modulo p.

(ii) We have

per[i j−1]16i ,j6n ≡ 0 (mod n) for all n = 3, 4, 5, . . . .
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Proof of the First Part of the Theorem

Let g be a primitive root modulo p. Then, there is a permutation
π ∈ Sp−1 such that the numbers kπ(k) (k = 1, . . . , p − 1) are
pairwise incongruent modulo p, if and only if there is a
permutation ρ ∈ Sn such that g i+ρ(i) (i = 1, . . . , p − 1) are
pairwise incongruent modulo p (i.e., the numbers
i + ρ(i) (i = 1, . . . , p− 1) are pairwise incongruent modulo p− 1).

Suppose that ρ ∈ Sp−1 and all the numbers
i + ρ(i) (i = 1, . . . , p − 1) are pairwise incongruent modulo p − 1.
Then

p−1∑
i=1

(i + ρ(i)) ≡
p−1∑
j=1

j (mod p − 1),

and hence
∑p−1

i=1 i = p(p − 1)/2 ≡ 0 (mod p − 1) which is
impossible. This contradiction proves the first part of the Theorem.
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Two Lemmas

To prove the second part of the Theorem, we need some lemmas.

Lemma 1. (Alon’s Combinatorial Nullstellensatz) Let A1, . . . ,An

be finite subsets of a field F with |Ai | > ki for i = 1, . . . , n where
k1, . . . , kn ∈ {0, 1, 2, . . .}. If the coefficient of the monomial
xk11 · · · xknn in P(x1, . . . , xn) ∈ F [x1, . . . , xn] is nonzero and
k1 + · · ·+ kn is the total degree of P, then there are
a1 ∈ A1, . . . , an ∈ An such that P(a1, . . . , an) 6= 0.

Lemma 2. Let a1, . . . , an be elements of a field F . Then the
coefficient of xn−11 . . . xn−1n in the polynomial∏

16i<j6n

(xj − xi )(ajxj − aixi ) ∈ F [x1, . . . , xn]

is (−1)n(n−1)/2per[aj−1i ]16i ,j6n.

Remark. Lemma 2 can be easily proved by using Vandermonde
determinants.

30 / 38



Proof of the Second Part of the Theorem
Let n > 2 be an integer. Then

per[i j−1]16i ,j≤n =
∑
σ∈Sn

n∏
k=1

kσ(k)−1

≡
∑
σ∈S(n)
σ(n)=1

(n − 1)!
n−1∏
k=1

kσ(k)−2 = (n − 1)!
∑

τ∈Sn−1

n−1∏
k=1

kτ(k)−1

=(n − 1)! per[i j−1]16i ,j6n−1 (mod n).

For n = 4, it is easy to check that per[i j−1]16i ,j≤4 ≡ 0 (mod 4)

Now assume that n > 4 is composite. By the above, it suffices to
show that (n − 1)! ≡ 0 (mod n). Let p be the smallest prime
divisor of n. Then n = pq for some integer q > p. If p < q, then
n = pq divides (n − 1)!. If q = p, then p2 = n > 4 and hence
2p < p2, thus 2n = p(2p) divides (n − 1)!.

In view of the above, it remains to show p | per[i j−1]16i ,j6p−1 for
any odd prime p.
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Proof of the Second Part of the Theorem (continued)

Suppose that per[i j−1]1≤i ,j≤p−1 6≡ 0 (mod p) for some odd prime

p. Then, by Lemma 2, the coefficient of xp−21 . . . xp−2p−1 in the
polynomial ∏

16i<j6p−1
(xj − xi )(jxj − ixi )

is not congruent to zero modulo p.

Applying Lemma 1 with F = Z/pZ and

A = {k + pZ : k = 1, . . . , p − 1},

we see that there are a1, . . . , ap−1 ∈ A such that∏
16i<j6p−1

(aj − ai )(jaj − iai ) 6≡ 0 (mod p).

So, there is a permutation π ∈ Sp−1 such that all those
kπ(k) (k = 1, . . . , p − 1) are pairwise incongruent modulo p,
which contradicts the first part of the Theorem.
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A conjecture on per[i j−1]16i ,j6n−1

Conjecture (Z.-W. Sun, arXiv:1811.10503). (i) For any n ∈ Z+,
we have

per[i j−1]16i ,j6n−1 6≡ 0 (mod n) ⇐⇒ n ≡ 2 (mod 4).

(ii) If p is a Fermat prime (i.e., a prime of the form 2k + 1), then

per[i j−1]16i ,j6p−1 ≡ p × p − 1

2
! (mod p2).

If a positive integer n 6≡ 2 (mod 4) is not a Fermat prime, then

per[i j−1]16i ,j6n−1 ≡ 0 (mod n2).

Remark. The sequence an = per[i j−1]16i ,j6n (n = 1, 2, 3, . . .) is
available from http://oeis.org/A322363.
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A theorem on torsion-free abelian groups

For an element a of an additive group G , we let ka be the sum of
k copies of a for all k = 1, 2, 3, . . ..

Theorem (Z.-W. Sun, arXiv:1811.10503). Let a1, . . . , an be
distinct elements of a torsion-free abelian group G . Then there is a
permutation π ∈ Sn such that all those kaπ(k) (k = 1, . . . , n) are
pairwise distinct.

Proof. The subgroup H of G generated by a1, . . . , an is finitely
generated and torsion-free. As H is isomorphic to Zr for some
positive integer r , if we take an algebraic number field K with
[K : Q] = n then H is isomorphic to the additive group OK of
algebraic integers in K . Thus, without any loss of generality, we
may simply assume that G is the additive group C of all complex
numbers.
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Proof of the theorem (continued)

As mentioned before, the coefficient of xn−11 . . . xn−1n in the
polynomial

P(x1, . . . , xn) :=
∏

16i<j6n

(xj − xi )(jxj − ixi ) ∈ C[x1, . . . , xn]

is (−1)n(n−1)/2per[i j−1]16i ,j6n, which is nonzero since
per[i j−1]16i ,j6n > 0. Applying Alon’s Combinatorial
Nullstellensatz, we see that there are

x1, . . . , xn ∈ A = {a1, . . . , an}

with P(x1, . . . , xn) 6= 0. Thus, for some π ∈ Sn all the numbers
kaσ(k) (k = 1, . . . , n) are distinct. This ends the proof.
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A conjecture for general groups

Conjecture (Z.-W. Sun, arXiv:1811.10503). If a group G contains
no element of order among 2, . . . , n + 1, then any A ⊆ G with
|A| = n can be written as {a1, . . . , an} with a1, a

2
2, . . . , a

n
n pairwise

distinct.

Remark. We have proved this when n 6 3 or G is a torsion-free
abelian group. We even don’t know how to prove the conjecture
for G = Z/pZ with p an odd prime.
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On the permanent per[( i+j
2n+1)]06i ,j6n

Conjecture (Z.-W. Sun, 2018). For each n = 0, 1, 2, . . . we have

per

[(
i + j

2n + 1

)]
06i ,j6n

> 0, (∗)

where ( ·
2n+1) is the Jacobi symbol.

Let an denote the permanent in (∗). Via Mathematica I find that

a0 = a1 = 1, a2 = a3 = 2, a4 = 20, a5 = 16, a6 = 48, a7 = 55,

a8 = 128, a9 = 320, a10 = 1206, a11 = 768, a12 = 406446336,

a13 = 43545600, a14 = 141312, a15 = 2267136, a16 = 389112,

a17 = 1624232, a18 = 138739712, a19 = 122605392, a20 = 2262695936,

a21 = 20313407488, a22 = 17060393728, a23 = 189261676544,

a24 = 374345132371011500507136, a25 = 669835780976.
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Thank you!
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