Some Spectral extremal results for hypergraphs

An Chang
Joint work with Yuan Hou, Joshua Cooper
Center for Discrete Mathematics, Fuzhou University

10th Cross-strait Conference on Graph Theory and Combinatorics
Aug. 20, 2019, National Chung Hsing University

Contents

(1) Definitions

2 Turán problems on graphs or hypergraphs
(3) Main results

Contents

2 Turán problems on graphs or hypergraphs

(3) Main results

- A hypergraph H is a pair $H=(V, E)$ where the vertex set V is a set of elements, and the edge set E is a set of non-empty subsets of V.
- A hypergraph H is a pair $H=(V, E)$ where the vertex set V is a set of elements, and the edge set E is a set of non-empty subsets of V.
- A hypergraph is called k-uniform if each edge is a k element subset of V.
- A hypergraph H is a pair $H=(V, E)$ where the vertex set V is a set of elements, and the edge set E is a set of non-empty subsets of V.
- A hypergraph is called k-uniform if each edge is a k element subset of V.
- Two vertices x and y are said to be adjacent, if there is an edge that contains both of these vertices.
- A hypergraph H is a pair $H=(V, E)$ where the vertex set V is a set of elements, and the edge set E is a set of non-empty subsets of V.
- A hypergraph is called k-uniform if each edge is a k element subset of V.
- Two vertices x and y are said to be adjacent, if there is an edge that contains both of these vertices.
- The degree of a vertex v, which is denoted by $d(v)$, is defined as the number of edges containing v.
- In 2005 , Qi and Lim independently introduced the concept of eigenvalues for tensors.
- In 2005 , Qi and Lim independently introduced the concept of eigenvalues for tensors.
- An k th-order n-dimensional real tensor $\mathcal{T}=\left(\mathcal{T}_{i_{1} \cdots i_{k}}\right)$ consists of n^{k} real entries $\mathcal{T}_{i_{1} \cdots i_{k}}$ for $1 \leq i_{1}, i_{2}, \cdots, i_{k} \leq n$.
- In 2005 , Qi and Lim independently introduced the concept of eigenvalues for tensors.
- An k th-order n-dimensional real tensor $\mathcal{T}=\left(\mathcal{T}_{i_{1} \cdots i_{k}}\right)$ consists of n^{k} real entries $\mathcal{T}_{i_{1} \cdots i_{k}}$ for $1 \leq i_{1}, i_{2}, \cdots, i_{k} \leq n$.
- In 2005, Qi and Lim independently introduced the concept of eigenvalues for tensors.
- An k th-order n-dimensional real tensor $\mathcal{T}=\left(\mathcal{T}_{i_{1} \cdots i_{k}}\right)$ consists of n^{k} real entries $\mathcal{T}_{i_{1} \cdots i_{k}}$ for $1 \leq i_{1}, i_{2}, \cdots, i_{k} \leq n$. Obviously,
a vector of dimension n is a tensor of order 1 and a matrix is a tensor of order 2 .
- \mathcal{T} is called symmetric if the value of $\mathcal{T}_{i_{1} \cdots i_{k}}$ is invariant under any permutation of its indices $i_{1}, i_{2}, \cdots, i_{k}$.
- Given a vector $x \in R^{n}, \mathcal{T} x^{k}$ is a real number and $\mathcal{T} x^{k-1}$ is an n-dimensional vector defined as follows.

$$
\mathcal{T} x^{k}=\sum_{i_{1}, i_{2}, \cdots, i_{k} \in[n]} \mathcal{T}_{i_{1} i_{2} \cdots i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},
$$

and the i th component of $\mathcal{T} x^{k-1}$ is given by:

$$
\left(\mathcal{T} x^{k-1}\right)_{i}=\sum_{i_{2}, \cdots, i_{k} \in[n]} \mathcal{T}_{i i_{2} \cdots i_{k}} x_{i_{2}} \cdots x_{i_{k}} .
$$

- Given a vector $x \in R^{n}, \mathcal{T} x^{k}$ is a real number and $\mathcal{T} x^{k-1}$ is an n-dimensional vector defined as follows.

$$
\mathcal{T} x^{k}=\sum_{i_{1}, i_{2}, \cdots, i_{k} \in[n]} \mathcal{T}_{i_{1} i_{2} \cdots i_{k}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},
$$

and the i th component of $\mathcal{T} x^{k-1}$ is given by:

$$
\left(\mathcal{T} x^{k-1}\right)_{i}=\sum_{i_{2}, \cdots, i_{k} \in[n]} \mathcal{T}_{i i_{2} \cdots i_{k}} x_{i_{2}} \cdots x_{i_{k}} .
$$

- For some $\lambda \in \mathbb{C}$, if there exists a nonzero vector $x \in \mathbb{C}^{n}$ satisfying

$$
\mathcal{T} x^{k-1}=\lambda x^{[k-1]} .
$$

Then λ is an eigenvalue of \mathcal{T} and x is its corresponding eigenvector.

- The maximal absolute value of the eigenvalues of \mathcal{T} is called the spectral radius of \mathcal{T}, denoted by $\rho(\mathcal{T})$.
- The maximal absolute value of the eigenvalues of \mathcal{T} is called the spectral radius of \mathcal{T}, denoted by $\rho(\mathcal{T})$.
- The maximal absolute value of the eigenvalues of \mathcal{T} is called the spectral radius of \mathcal{T}, denoted by $\rho(\mathcal{T})$.

In 2012, Cooper and Dutle defined the adjacency tensor of a k-uniform hypergraph.

- The adjacency tensor $\mathcal{A}(H)$ is a k-th order n-dimensional symmetric tensor, where:

$$
\mathcal{A}(H)_{i_{1} \cdots i_{k}}= \begin{cases}\frac{1}{(k-1)!} & \text { if }\left\{i_{1}, \cdots, i_{k}\right\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Contents

(1) Definitions

(2) Turán problems on graphs or hypergraphs
(3) Main results

Problems

For a fixed family \mathcal{F}, recall that the classical Turán problem is of the following type:

Problem A. What is the maximum number of edges of a graph of order n, not containing a given \mathcal{F} ?

Problems

For a fixed family \mathcal{F}, recall that the classical Turán problem is of the following type:

Problem A. What is the maximum number of edges of a graph of order n, not containing a given \mathcal{F} ?

The following is the natural spectral analog to the Turán problem of graphs:

Problem B. What is the maximum spectral radius of a graph of order n, not containing a given \mathcal{F} ?

Spectral versions on Turán problems

Let $\lambda(G)$ be the spectral radius of the adjacency matrix of the graph G.

Theorem 1 (Guiduli, 1998; Nikiforov, 2002)

If G is a graph of order n with no complete subgraph of order $r+1$, then $\lambda(G) \leq \lambda\left(T_{r}(n)\right)$. Equality holds if and only if $G=T_{r}(n)$.

Corollary 2 (Spectral version of Mantel's Theorem)

If G is a graph of order n without C_{3}, then $\lambda(G) \leq\left\lceil\frac{n}{2}\right\rceil$. Equality holds if and only if $G=T_{2}(n)$.

Spectral versions on Turán problems

Theorem 3 (Nikiforov, 2007)

If G is a graph of order n without C_{4}, then

$$
\lambda^{2}(G)-\lambda(G) \leq n-1 .
$$

Equality holds if and only if every two vertices of G have exactly one common neighbor, i.e., when G is the friendship graph.

Theorem 4 (Favaron, Mahéo and Saclé, 1993)

If G is a graph of order n with neither C_{3} nor C_{4}, then $\lambda(G) \leq \sqrt{n-1}$.

Turán extremal problem on hypergraphs

- Given a fixed k-uniform family \mathcal{F}, the Turán number of \mathcal{F}, denoted by $e x_{k}(n, \mathcal{F})$, is the maximum number of edges of an \mathcal{F}-free hypergraph on n vertices.

Turán extremal problem on hypergraphs

- Given a fixed k-uniform family \mathcal{F}, the Turán number of \mathcal{F}, denoted by $e x_{k}(n, \mathcal{F})$, is the maximum number of edges of an \mathcal{F}-free hypergraph on n vertices.
- A hypergraph H is called linear if every two edges have at most one vertex in common. Given a family of k uniform linear hypergraphs \mathcal{F}, the linear Turán number of \mathcal{F}, denoted by $e x_{k}^{l i n}(n, \mathcal{F})$, is the maximum number of edges in an \mathcal{F}-free k-uniform linear hypergraph on n vertices.

What is the maximum spectral radius of the adjacency tensor of a uniform hypergraph of order n, not containing a given \mathcal{F} ?

Contents

(1) Definitions

(2) Turán problems on graphs or hypergraphs

(3) Main results

Useful tools

- For a vertex v, let N_{v} be the neighborhood of v, i.e., $N_{v}=\{x \in V \backslash\{v\} \mid v, x \in e$ for some $e \in E\}$.

Useful tools

- For a vertex v, let N_{v} be the neighborhood of v, i.e., $N_{v}=\{x \in V \backslash\{v\} \mid v, x \in e$ for some $e \in E\}$.
- The codegree of two vertices u and v, denoted by $d(u, v)$, is the number of edges containing both u and v.

Useful tools

- For a vertex v, let N_{v} be the neighborhood of v, i.e., $N_{v}=\{x \in V \backslash\{v\} \mid v, x \in e$ for some $e \in E\}$.
- The codegree of two vertices u and v, denoted by $d(u, v)$, is the number of edges containing both u and v.
- For a set $X \subseteq V$, let $E_{t}(X)=\{e \mid e \in E$ and $|e \cap X|=t\}$ and $e_{t}(X)$ be the number of edges in $E_{t}(X)$, respectively.

Useful tools

Lemma 5 (Hou, Chang and Cooper, 2019+)

Let H be a connected simple k-uniform hypergraph and ρ be the spectral radius of the adjacency tensor of H. Then

$$
\begin{equation*}
\rho^{2} \leq \frac{1}{k-1} \sum_{t=1}^{k} \sum_{e \in E_{t}\left(N_{u}\right)} \sum_{v \in N_{u} \cap e} d(u, v) \tag{1}
\end{equation*}
$$

where u is the vertex corresponding to a maximum entry of the principal eigenvector.

Note that above Lemma illustrates a relationship between spectral radius of the adjacency tensor and structural properties of hypergraphs.

Useful tools

It is clear that the codegree of each pair of adjacent vertices in H is exactly 1 if H is a linear hypergraph.

Corollary 6 (Hou, Chang and Cooper, 2019+)

Let H be a connected simple k-uniform linear hypergraph and ρ be the spectral radius of the adjacency tensor of H. Let u be the vertex with maximum eigenvector entry. Then (1) $\rho^{2} \leq \frac{1}{k-1}\left[e_{1}\left(N_{u}\right)+2 e_{2}\left(N_{u}\right)+\cdots+k e_{k}\left(N_{u}\right)\right]$;
(2) $\rho^{2} \leq \frac{1}{k-1} \sum_{v \in N_{u}} d(v)$.

Linear hypergraphs without $F a n^{k}$

Definition 7 (Mubayi and Pikhurko, 2007)

For $k \geq 2$, the k-fan $F a n^{k}$ is the k-uniform linear hypergraph having k edges $f_{1}, f_{2}, \cdots, f_{k}$ pairwise intersecting in the same vertex v and an additional edge g intersecting all f_{i} in a vertex different from v.

Figure: Fan 3

Linear hypergraphs without $F a n^{k}$

Theorem 8 (Füredi, Gyárfás, 2017)

One has ex ${ }_{k}^{l i n}\left(n, F a n^{k}\right) \leq \frac{n^{2}}{k^{2}}$ for all $k \geq 2$. The only extremal hypergraphs are the transversal designs on n vertices with k groups.

Theorem 9 (Hou, Chang and Cooper, 2019+)

Let \mathcal{H} denote the set of linear k-uniform hypergraphs of order $n(n \equiv 0 \bmod (k))$ with forbidden $F a n^{k}$ and ρ be the maximum spectral radius of hypergraphs in \mathcal{H}. For n sufficiently large, we have $\rho=\frac{n}{k}$.

- After using the well-known inequality $\rho \geq \frac{k m}{n}$, this result implies $m \leq \frac{n^{2}}{k^{2}}$.

Definition 10 (Gerbner and Palmer, 2017)

Let $F=(V(F), E(F))$ be a graph and $\mathcal{B}=(V(\mathcal{B}), E(\mathcal{B}))$ be a hypergraph. We say \mathcal{B} is Berge F if there is a bijection $\phi: E(F) \rightarrow E(\mathcal{B})$ such that $e \subseteq \phi(e)$ for all $e \in E(F)$. In other words, given a graph F, we can obtain a Berge F by replacing each edge of F with a hyperedge that contains it.

Figure: C_{4} and Berge C_{4}

Linear hypergraphs without Berge C_{4}

Theorem 11 (Ergemlidze, Győri and Methuku, 2018)

$e x_{3}^{l i n}\left(n,\left\{C_{4}\right\}\right) \leq \frac{1}{6} n^{\frac{3}{2}}+O(n)$.

Theorem 12 (Hou, Chang and Cooper, 2019+)

Let \mathcal{H} denote the set of linear k-uniform hypergraphs of order n with forbidden Berge C_{4} and ρ be the maximum spectral radius among hypergraphs in \mathcal{H}. For n sufficiently large, we have $\rho \leq \frac{\sqrt{n}}{k-1}+O(1)$.

- After using the well-known inequality $\rho \geq \frac{k m}{n}$, this result implies $m \leq \frac{1}{k(k-1)} n^{\frac{3}{2}}+O(n)$.

Linear hypergraphs with girth at least five

Theorem 13 (Lazebnik and Verstraëte, 2003)

$e x_{3}^{l i n}\left(n,\left\{C_{3}, C_{4}\right\}\right)=\frac{1}{6} n^{\frac{3}{2}}+O(n)$.

Theorem 14 (Hou, Chang and Cooper, 2019+)

Let \mathcal{H} denote the set of linear k-uniform hypergraphs of order n with neither Berge C_{3} nor Berge C_{4} and ρ be the maximum spectral radius of hypergraphs in \mathcal{H}. For n sufficiently large, we have $\rho \leq \frac{\sqrt{n}}{k-1}+O(1)$.

- After using the well-known inequality $\rho \geq \frac{k m}{n}$, this result implies $m \leq \frac{1}{k(k-1)} n^{\frac{3}{2}}+O(n)$.
（R．Favaron，M．Mahéo and J．－F．Saclé，Some eigenvalue properties in graphs（conjectures of Graffti．II），Discrete Math． 111 （1993），197－220．

國 V．Nikiforov，Bounds on graph eigenvalues II，Linear Algebra Appl． 427 （2007），183－189．

围 B．Guiduli，Spectral extrema for graphs，Ph．D thesis， University of Chicago， 1998.

围 K．Chang，K．Pearson，T．Zhang，Perron－Frobenius theorem for nonnegative tensors，Commun．Math．Sci． $6(2008)$ 507－520．

嗇 J．Cooper，A．Dutle，Spectra of uniform hypergraphs， Linear Algebra Appl． 436 （2012）3268－3292．

䍰 C．Collier－Cartaino，N．Graber，T．Jiang，Linear Turán numbers of r－uniform linear cycles and related Ram－ sey numbers，Combinatorics，Probability and Comput－ ing 27（2018）358－386．

䍰 P．Erdős，Some recent progress on extremal problems in graph theory，Congr．Numer．14（1975）3－14．

围 B．Ergemlidze，E．Győri，A．Methuku，Asymptotics for Turán numbers of cycles in 3－uniform linear hypergraphs． arXiv preprint arXiv：1705．03561（2018）．

图 Z．Füredi，L．Özkahya，On 3－uniform hypergraphs with－ out a cycle of a given length，Discrete Appl．Math． 216（2017）582－588．

固 Z．Füredi，A．Gyárfás，The linear Turán number of the k－fan，arXiv：1710．03042（2017）．
© S．Friedland，A．Gaubert，L．Han，Perron－Frobenius the－ orems for nonnegative multilinear forms and extensions， Linear Algebra Appl．438（2013）738－749．
围 D．Gerbner，C．Palmer，Extremal results for Berge－ hypergraphs，SIAM Journal on Discrete Mathematics 31（4）（2017）2314－2327．

囯 D．Gerbner，A．Methuku，M．Vizer，Asymptotics for the Turán number of Berge $K_{2, t}$ ，arXiv：1705．04134（2018）．

固 F．Lazebnik，J．Verstraëte，On hypergraphs of girth five， Electron．J．Combin．10（2003）R25．

国 L．Lim，Singular values and eigenvalues of tensors：a vari－ ational approach，in：Proceedings of the IEEE Interna－ tional Workshop on Computational Advances in Multi－ Sensor Adaptive Processing（CAMSAP 05），1（2005）129－ 132.

国 V．Nikiforov，Some new results in extremal graph the－ ory，in：Surveys in Combinatorics，London Math．Soc． Lecture Notes，392（2011）141－181．

E L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symb. Comput. 40(2005) 1302-1324.
居 C. Timmons, On r-uniform linear hypergraphs with no Berge- $K_{2, t}$, Electron. J. Combin. 244(2017) 4-34.

目 Y. Yang, Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31(2010) 2517-2530.

Thank You For Your Attention!

