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Introduction

Theorem (EKR Theorem)
If A is an intersecting family of k-subsets of [n] = {1, 2, . . . , n}, i.e., A ∩ B 6= ∅
for any A,B ∈ A, then

|A| ≤
(
n − 1

k − 1

)
subject to n ≥ 2k. Equality holds if and only if every subset in A contains a

common element of [n] except for n = 2k.

P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart.

J. Math. Oxford Ser., 2 (1961), 313-318.
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Introduction

Suppose that n = n1 + . . .+ nd , k = k1 + . . .+ kd , and X = X1 ∪ . . . ∪ Xd with

|Xi | = ni . Define

F =
{
A ∈

(
X

k

)
: |A ∩ Xi | = ki for 1 ≤ i ≤ d

}
=

(
X1

k1

)
× · · · ×

(
Xd

kd

)
.

Theorem ( Direct-product Theorem on EKR

Theorem)
Suppose that A is an intersecting family of F and 1

2 ≥
k1

n1
≥ . . . ≥ kd

nd
. Then

|A|
|F|
≤ k1

n1
.

P. Frankl, Erdős-Ko-RAdo Theorem for Direct Products, EuJC 17 (1996) 727-730.
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Introduction

Theorem
Let 2 ≤ n1 = · · · = np < np+1 ≤ . . . ≤ nq, 1 ≤ p ≤ q. Let G = Sn1 × . . .× Snq

be the direct products of the symmetric group Sni on [ni ]. Suppose A is an

intersecting family in G. Then |A| ≤ (n1 − 1)!
∏

2≤i≤q ni !. Moreover, except for

the following cases:

(i) n1 = · · · = np < np+1 = 3 ≤ np+2 ≤ · · · ≤ nq;

(ii) n1 = n2 = 3 ≤ n3 ≤ · · · ≤ nq;

(iii) n1 = n2 = n3 ≤ n4 ≤ · · · ≤ nq,

equality holds if and only if A = {(α1, . . . , αp) : αi (x) = y} for some i ∈ [p] and

x , y ∈ [ni ].

C.Y. Ku and T.W.H. Wong, Intersecting families in the alternating group and direct

product of symmetric groups, EJC 14 (2007).Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 4 / 27



Introduction

Kneser graph Kn,k : vertex set
(

[n]
k

)
, A ∼ B iff A ∩ B = ∅.

α(Kn,k) =
(
n−1
k−1

)
.
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Introduction

Definition
The direct product of G × H of two graphs G and H is defined by

V (G × H) = {(u, v) : u ∈ V (G ) and v ∈ V (H)}

and

(u1, v1) ∼ (u2, v2) iff u1 ∼ u2 and v1 ∼ v2.

I × V (H) and V (G )× S

α(G × H) ≥ max{α(G )|H|, α(H)|G |}
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Introduction

Theorem (H.J. Zhang 2012)
If G and H are vertex-transitive, then

α(G × H) = max{α(G )|H|, α(H)|G |}.
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Introduction

Let G be a graph, the set of all all independent set of G denoted by I (G ). For

u ∈ V (G ), set Iu(G ) = {S ∈ I (G ) : u ∈ I}.

fractional coloring f : a map from I (G ) to [0, 1] with
∑

S∈Iu(G) f (S) = 1.

total weight: ω(f ) =
∑

s∈I (G) f (S).

fractional chromatic number χf (G ): the minimum total weight of a

fractional coloring of G .

χf (G × H) ≤ min{χf (G ), χf (H)}.

if G is vertex-transitive, χf (G ) = |V (G )|/α(G ).
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Introduction

Theorem (X.D. Zhu, 2011)
For any graph G and H,

χf (G × H) = min{χf (G ), χf (H)}.

Conjecture
For any graph G and H,

χ(G × H) = min{χ(G ), χ(H)}.
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Introduction

Definition
The tensor product (G1,G2,G3) of G1, G2 and G3 is defined by

V (G1,G2,G3) = V (G1)× V (G2)× V (G3) = {(u1, u2, u3) : ui ∈ V (Gi )}

and

E (G1,G2,G3) =
{(

(u1, u2, u3), (v1, v2, v3)
)

: |{i : (ui , vi ) ∈ E (Gi )}| ≥ 2
}
.

Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 10 / 27



Introduction

By definition, I1 × I2 × V (G3) is an independent set of (G1,G2,G3) if Ii ∈ I (Gi ),

i = 1, 2. Hence

α(G1,G2,G3) ≥ max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}.

Problem
For three vertex-transitive graphs G1, G2 and G3, does

α(G1,G2,G3) = max{α(G1)α(G2)|G3|, α(G1)α(G3)|G2|, α(G2)α(G3)|G1|}

holds?
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Introduction

Problem

For three graphs G1, G2 and G3, does

χf (G1,G2,G3) = min{χf (G1)χf (G2), χf (G1)χf (G3), χf (G2)χf (G3)}

always hold?

Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 12 / 27



Shift operation

Definition
Let A be a family in

(
[n]
k

)
. For i , j ∈ [n] with i < j and A ∈ A, define

sij(A) =

{
(A \ {j}) ∪ {i}, if j ∈ A, i 6∈ A, (A \ {j}) ∪ {i} 6∈ A;

A, otherwise,

and let sij(A) = {sij(A) : A ∈ A}.

|sij(A)| = |A| and sij(A) is also an intersecting family if A is so.

A is called left-compressed if sij(A) = A for all i < j .

Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 13 / 27



Shift operation

Definition
Let A be a family in

(
[n]
k

)
. For i , j ∈ [n] with i < j and A ∈ A, define

sij(A) =

{
(A \ {j}) ∪ {i}, if j ∈ A, i 6∈ A, (A \ {j}) ∪ {i} 6∈ A;

A, otherwise,

and let sij(A) = {sij(A) : A ∈ A}.

|sij(A)| = |A| and sij(A) is also an intersecting family if A is so.

A is called left-compressed if sij(A) = A for all i < j .

Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 13 / 27



Shift operation

Definition
Let A be a family in

(
[n]
k

)
. For i , j ∈ [n] with i < j and A ∈ A, define

sij(A) =

{
(A \ {j}) ∪ {i}, if j ∈ A, i 6∈ A, (A \ {j}) ∪ {i} 6∈ A;

A, otherwise,

and let sij(A) = {sij(A) : A ∈ A}.

|sij(A)| = |A| and sij(A) is also an intersecting family if A is so.

A is called left-compressed if sij(A) = A for all i < j .

Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 13 / 27



Proof of EKR theorem

Proof. Let A be a maximum intersecting family of
(

[n]
2k

)
(n > 2k) with

sij(A) = A for all 1 ≤ i < j ≤ n.

Set A0 = {A ∈ A : n 6∈ A}, A1 = {A ∈ A : n ∈ A} and A′1 = {A− n : A ∈ A1}.
A0 is an intersecting family of

(
[n−1]

k

)
, |A0| ≤

(
n−2
k−1

)
by induction.

A′1 is also an intersecting family of
(

[n−1]
k−1

)
, |A′1| ≤

(
n−2
k−2

)
by induction.

Therefore,

|A| = |A0|+ |A1| = |A0|+ |A′1| ≤
(
n − 2

k − 1

)
+

(
n − 2

k − 2

)
=

(
n − 1

k − 1

)
.
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Definition

Arrange the elements of [n] on a cycle,

1, 2, . . . , n.

Let X `
k denote the `th k-interval in the cycle, that is,

X `
k = {`, . . . , `+ k − 1}.

Set

Xn,k = {X 1
k , . . . ,X

n
k }.
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Circular clique

Circular clique Kn:k : vertex set Xn,k , A ∼ B iff A ∩ B = ∅.

α(Kn,k) = k .
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Operation

Let S be a subset of G × Kn:k . For u ∈ V (G ), set

∂u(S) = {i ∈ [n] : (u, i) ∈ S}.

Let I be a fixed maximum independent set of Kn:r . The subset 4I (S) of

V (G )× V (Kn:r ) is defined by:

∂u(4I (S)) =

I , if 0 < |∂u(S)| < n;

∂u(S), otherwise,

for u ∈ V (G ).
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Appication

Lemma (Geng,Wang and Zhang)
Let G be a vertex-transitive graph and I a maximum independent set of Kn:k . If

S is a maximum independent set of G × Kn:k , then 4I (S) is also a maximum

independent set of G × Kn:k .
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Appication

Theorem (Geng,Wang and Zhang)
If G is vertex-transitive, then

α(G × Kn:k) = max{nα(G ), k |V (G )|}.

4I (S) = A× I ∪B × [n], where B is an independent set of G and N(B)∩A = ∅.

|B|
|N[B]|

=
k

n
=

α(G )

|V (G )|
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Application

Lemma (Albertson and Collins)
Let G and H be two graphs such that G is vertex-transitive and there exists a

homomorphism φ : H 7→ G. Then α(G)
|V (G)| ≤

α(H)
|V (H)| , and equality holds if and only

if for any independent set I of cardinality α(G ) in G, φ−1(I ) is an independent

set of cardinality α(H) in H.

Lemma
α(G)
|V (G)| ≤

α(G [B])
|B| holds for all B ⊆ V (G ). Equality implies that

|I ∩ B| = α(G [B]) for every maximum independent set I of G .
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Application

Let X1, . . . ,Xm be m pairwise disjoint sets with the same size n, and let

k1, k2, . . . , km be positive integers with ki ≤ n/2. X = X1 ∪ · · · ∪ Xm and

k = k1 + · · ·+ km. Set

Ωm(n; k1, . . . , km) =

{
A ∈

(
X

k

)
: {|A ∩ X1|, . . . , |A ∩ Xm|} = {k1, . . . , km}

}
=

⋃
σ∈Sm

{
A1 ∪ · · · ∪ Am : Ai ∈

(
Xi

kσ(i)

)
, i = 1, . . . ,m

}
=

⋃
σ∈Sm

(
X1

kσ(1)

)
× · · · ×

(
Xm

kσ(m)

)
.

Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 21 / 27



Application

Ω′ =
⋃
σ∈Sm

Kn:kσ(1)
× · · · × Kn:kσ(m)

.

Let Ij be a fixed maximum independent set of Kn:kj , and ∪Ij is an independent

set of ∪Kn:kj .

Let S be a maximum independent set of Ω′.

Sσ = S ∩ Kn:kσ(1)
× · · · × Kn:kσ(m)

.

4i (S) =
⋃
σ∈Sm

4Iσ(i)
(Sσ)
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Application

Lemma
Let S be a maximum independent set of Ω′, then 4i (S) is also a maximum

independent set of Ω′ for all 1 ≤ i ≤ m.
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Application

4i (S) = S

T1 × T2 × · · · × Tm,Ti = I or Kn:kj\I

Theorem (Wang and Zhang SIAM 2018)
Let n and k1, . . . , km be positive integers satisfying n ≥ 2ki . If F is an

intersecting family in Ωm(n; k1, . . . , km), then

|F| ≤ k

nm
p(k1, . . . , km)

m∏
i=1

(
n

ki

)
,

where k = k1 + · · ·+ km. Also equality holds if and only if F = {A ∈ Ω : a ∈ A}
for some a ∈ X except for k1 = · · · = km = n

2 .

Huajun Zhang (Zhejiang Normal Univeristy) Product Version of EKR Theorem 24 / 27



Application
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Application

Theorem
Let G and H be two vertex-transitive graphs and Kn:r be a circular graph. Then

α(G ,H,Kn:r ) = max{α(G )α(H)n, α(G )r |H|, rα(H)|G |}.
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Application

Theorem (Xiao, Zhang and Zhang Disc 2018)
Let G and H be two graphs and Kn:r be a circular graph. Then

χf (G ,H,Kn:r ) = min{χf (G )χf (H), χf (G )r , rχf (H)}.
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Many Thanks!
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