The Product Version of Erdős-Ko-Rado Theorem

Huajun Zhang

Zhejiang Normal Univeristy

Introduction

Theorem (EKR Theorem)

If \mathcal{A} is an intersecting family of k-subsets of $[n]=\{1,2, \ldots, n\}$, i.e., $A \cap B \neq \emptyset$ for any $A, B \in \mathcal{A}$, then

$$
|\mathcal{A}| \leq\binom{ n-1}{k-1}
$$

subject to $n \geq 2 k$. Equality holds if and only if every subset in \mathcal{A} contains a common element of $[n]$ except for $n=2 k$.

- P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser., 2 (1961), 313-318.

Introduction

Suppose that $n=n_{1}+\ldots+n_{d}, k=k_{1}+\ldots+k_{d}$, and $X=X_{1} \cup \ldots \cup X_{d}$ with $\left|X_{i}\right|=n_{i}$. Define

$$
\mathcal{F}=\left\{A \in\binom{X}{k}:\left|A \cap X_{i}\right|=k_{i} \text { for } 1 \leq i \leq d\right\}=\binom{X_{1}}{k_{1}} \times \cdots \times\binom{ X_{d}}{k_{d}} .
$$

Introduction

Suppose that $n=n_{1}+\ldots+n_{d}, k=k_{1}+\ldots+k_{d}$, and $X=X_{1} \cup \ldots \cup X_{d}$ with $\left|X_{i}\right|=n_{i}$. Define

$$
\mathcal{F}=\left\{A \in\binom{X}{k}:\left|A \cap X_{i}\right|=k_{i} \text { for } 1 \leq i \leq d\right\}=\binom{X_{1}}{k_{1}} \times \cdots \times\binom{ X_{d}}{k_{d}} .
$$

Theorem (Direct-product Theorem on EKR

Theorem)

Suppose that \mathcal{A} is an intersecting family of \mathcal{F} and $\frac{1}{2} \geq \frac{k_{1}}{n_{1}} \geq \ldots \geq \frac{k_{d}}{n_{d}}$. Then

$$
\frac{|\mathcal{A}|}{|\mathcal{F}|} \leq \frac{k_{1}}{n_{1}}
$$

- P. Frankl, Erdős-Ko-RAdo Theorem for Direct Products, EuJC 17 (1996) 727-730.

Introduction

Theorem

Let $2 \leq n_{1}=\cdots=n_{p}<n_{p+1} \leq \ldots \leq n_{q}, 1 \leq p \leq q$. Let $G=S_{n_{1}} \times \ldots \times S_{n_{q}}$ be the direct products of the symmetric group $S_{n_{i}}$ on [n_{i}]. Suppose \mathcal{A} is an intersecting family in G. Then $|\mathcal{A}| \leq\left(n_{1}-1\right)$! $\prod_{2 \leq i \leq q} n_{i}!$. Moreover, except for the following cases:
(i) $n_{1}=\cdots=n_{p}<n_{p+1}=3 \leq n_{p+2} \leq \cdots \leq n_{q}$;
(ii) $n_{1}=n_{2}=3 \leq n_{3} \leq \cdots \leq n_{q}$;
(iii) $n_{1}=n_{2}=n_{3} \leq n_{4} \leq \cdots \leq n_{q}$,
equality holds if and only if $\mathcal{A}=\left\{\left(\alpha_{1}, \ldots, \alpha_{p}\right): \alpha_{i}(x)=y\right\}$ for some $i \in[p]$ and $x, y \in\left[n_{i}\right]$.

- C.Y. Ku and T.W.H. Wong, Intersecting families in the alternating group and direct

Introduction

- Kneser graph $K_{n, k}$: vertex set $\binom{[n]}{k}, A \sim B$ iff $A \cap B=\emptyset$. - $\alpha\left(K_{n, k}\right)=\binom{n-1}{k-1}$.

Introduction

Definition

The direct product of $G \times H$ of two graphs G and H is defined by

$$
V(G \times H)=\{(u, v): u \in V(G) \text { and } v \in V(H)\}
$$

and

$$
\left(u_{1}, v_{1}\right) \sim\left(u_{2}, v_{2}\right) \text { iff } u_{1} \sim u_{2} \text { and } v_{1} \sim v_{2} .
$$

Introduction

Definition

The direct product of $G \times H$ of two graphs G and H is defined by

$$
V(G \times H)=\{(u, v): u \in V(G) \text { and } v \in V(H)\}
$$

and

$$
\left(u_{1}, v_{1}\right) \sim\left(u_{2}, v_{2}\right) \text { iff } u_{1} \sim u_{2} \text { and } v_{1} \sim v_{2} .
$$

$$
I \times V(H) \text { and } V(G) \times S
$$

Introduction

Definition

The direct product of $G \times H$ of two graphs G and H is defined by

$$
V(G \times H)=\{(u, v): u \in V(G) \text { and } v \in V(H)\}
$$

and

$$
\left(u_{1}, v_{1}\right) \sim\left(u_{2}, v_{2}\right) \text { iff } u_{1} \sim u_{2} \text { and } v_{1} \sim v_{2} .
$$

$$
\begin{gathered}
I \times V(H) \text { and } V(G) \times S \\
\alpha(G \times H) \geq \max \{\alpha(G)|H|, \alpha(H)|G|\}
\end{gathered}
$$

Introduction

Theorem (H.J. Zhang 2012)

If G and H are vertex-transitive, then

$$
\alpha(G \times H)=\max \{\alpha(G)|H|, \alpha(H)|G|\} .
$$

Introduction

Let G be a graph, the set of all all independent set of G denoted by $I(G)$. For $u \in V(G)$, set $I_{u}(G)=\{S \in I(G): u \in I\}$.

- fractional coloring f : a map from $I(G)$ to $[0,1]$ with $\sum_{S \in I_{u}(G)} f(S)=1$.
- total weight: $\omega(f)=\sum_{s \in I(G)} f(S)$.
- fractional chromatic number $\chi_{f}(G)$: the minimum total weight of a fractional coloring of G.

Introduction

Let G be a graph, the set of all all independent set of G denoted by $I(G)$. For $u \in V(G)$, set $I_{u}(G)=\{S \in I(G): u \in I\}$.

- fractional coloring f : a map from $I(G)$ to $[0,1]$ with $\sum_{S \in I_{u}(G)} f(S)=1$.
- total weight: $\omega(f)=\sum_{s \in I(G)} f(S)$.
- fractional chromatic number $\chi_{f}(G)$: the minimum total weight of a fractional coloring of G.
- $\chi_{f}(G \times H) \leq \min \left\{\chi_{f}(G), \chi_{f}(H)\right\}$.
- if G is vertex-transitive, $\chi_{f}(G)=|V(G)| / \alpha(G)$.

Introduction

Let G be a graph, the set of all all independent set of G denoted by $I(G)$. For $u \in V(G)$, set $I_{u}(G)=\{S \in I(G): u \in I\}$.

- fractional coloring f : a map from $I(G)$ to $[0,1]$ with $\sum_{S \in I_{u}(G)} f(S)=1$.
- total weight: $\omega(f)=\sum_{s \in I(G)} f(S)$.
- fractional chromatic number $\chi_{f}(G)$: the minimum total weight of a fractional coloring of G.
- $\chi_{f}(G \times H) \leq \min \left\{\chi_{f}(G), \chi_{f}(H)\right\}$.
- if G is vertex-transitive, $\chi_{f}(G)=|V(G)| / \alpha(G)$.

Introduction

Theorem (X.D. Zhu, 2011)

For any graph G and H,

$$
\chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\} .
$$

Introduction

Theorem (X.D. Zhu, 2011)

For any graph G and H,

$$
\chi_{f}(G \times H)=\min \left\{\chi_{f}(G), \chi_{f}(H)\right\} .
$$

Conjecture

For any graph G and H,

$$
\chi(G \times H)=\min \{\chi(G), \chi(H)\} .
$$

Introduction

Definition

The tensor product $\left(G_{1}, G_{2}, G_{3}\right)$ of G_{1}, G_{2} and G_{3} is defined by

$$
V\left(G_{1}, G_{2}, G_{3}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right) \times V\left(G_{3}\right)=\left\{\left(u_{1}, u_{2}, u_{3}\right): u_{i} \in V\left(G_{i}\right)\right\}
$$

and

$$
E\left(G_{1}, G_{2}, G_{3}\right)=\left\{\left(\left(u_{1}, u_{2}, u_{3}\right),\left(v_{1}, v_{2}, v_{3}\right)\right):\left|\left\{i:\left(u_{i}, v_{i}\right) \in E\left(G_{i}\right)\right\}\right| \geq 2\right\} .
$$

Introduction

By definition, $I_{1} \times I_{2} \times V\left(G_{3}\right)$ is an independent set of $\left(G_{1}, G_{2}, G_{3}\right)$ if $I_{i} \in I\left(G_{i}\right)$, $i=1,2$. Hence

$$
\alpha\left(G_{1}, G_{2}, G_{3}\right) \geq \max \left\{\alpha\left(G_{1}\right) \alpha\left(G_{2}\right)\left|G_{3}\right|, \alpha\left(G_{1}\right) \alpha\left(G_{3}\right)\left|G_{2}\right|, \alpha\left(G_{2}\right) \alpha\left(G_{3}\right)\left|G_{1}\right|\right\} .
$$

Introduction

By definition, $I_{1} \times I_{2} \times V\left(G_{3}\right)$ is an independent set of $\left(G_{1}, G_{2}, G_{3}\right)$ if $I_{i} \in I\left(G_{i}\right)$, $i=1,2$. Hence

$$
\alpha\left(G_{1}, G_{2}, G_{3}\right) \geq \max \left\{\alpha\left(G_{1}\right) \alpha\left(G_{2}\right)\left|G_{3}\right|, \alpha\left(G_{1}\right) \alpha\left(G_{3}\right)\left|G_{2}\right|, \alpha\left(G_{2}\right) \alpha\left(G_{3}\right)\left|G_{1}\right|\right\} .
$$

Problem

For three vertex-transitive graphs G_{1}, G_{2} and G_{3}, does

$$
\alpha\left(G_{1}, G_{2}, G_{3}\right)=\max \left\{\alpha\left(G_{1}\right) \alpha\left(G_{2}\right)\left|G_{3}\right|, \alpha\left(G_{1}\right) \alpha\left(G_{3}\right)\left|G_{2}\right|, \alpha\left(G_{2}\right) \alpha\left(G_{3}\right)\left|G_{1}\right|\right\}
$$

holds?

Introduction

Problem

For three graphs G_{1}, G_{2} and G_{3}, does

$$
\chi_{f}\left(G_{1}, G_{2}, G_{3}\right)=\min \left\{\chi_{f}\left(G_{1}\right) \chi_{f}\left(G_{2}\right), \chi_{f}\left(G_{1}\right) \chi_{f}\left(G_{3}\right), \chi_{f}\left(G_{2}\right) \chi_{f}\left(G_{3}\right)\right\}
$$

always hold?

Shift operation

Definition

- Let \mathcal{A} be a family in $\binom{[n]}{k}$. For $i, j \in[n]$ with $i<j$ and $A \in \mathcal{A}$, define

$$
s_{i j}(A)= \begin{cases}(A \backslash\{j\}) \cup\{i\}, & \text { if } j \in A, i \notin A,(A \backslash\{j\}) \cup\{i\} \notin \mathcal{A} ; \\ A, & \text { otherwise },\end{cases}
$$

and let $s_{i j}(\mathcal{A})=\left\{s_{i j}(A): A \in \mathcal{A}\right\}$.

Shift operation

Definition

- Let \mathcal{A} be a family in $\binom{[n]}{k}$. For $i, j \in[n]$ with $i<j$ and $A \in \mathcal{A}$, define

$$
s_{i j}(A)= \begin{cases}(A \backslash\{j\}) \cup\{i\}, & \text { if } j \in A, i \notin A,(A \backslash\{j\}) \cup\{i\} \notin \mathcal{A} ; \\ A, & \text { otherwise },\end{cases}
$$

and let $s_{i j}(\mathcal{A})=\left\{s_{i j}(A): A \in \mathcal{A}\right\}$.

- $\left|s_{i j}(\mathcal{A})\right|=|\mathcal{A}|$ and $s_{i j}(\mathcal{A})$ is also an intersecting family if \mathcal{A} is so.

Shift operation

Definition

- Let \mathcal{A} be a family in $\binom{[n]}{k}$. For $i, j \in[n]$ with $i<j$ and $A \in \mathcal{A}$, define

$$
s_{i j}(A)= \begin{cases}(A \backslash\{j\}) \cup\{i\}, & \text { if } j \in A, i \notin A,(A \backslash\{j\}) \cup\{i\} \notin \mathcal{A} ; \\ A, & \text { otherwise },\end{cases}
$$

and let $s_{i j}(\mathcal{A})=\left\{s_{i j}(A): A \in \mathcal{A}\right\}$.

- $\left|s_{i j}(\mathcal{A})\right|=|\mathcal{A}|$ and $s_{i j}(\mathcal{A})$ is also an intersecting family if \mathcal{A} is so.
- \mathcal{A} is called left-compressed if $s_{i j}(\mathcal{A})=\mathcal{A}$ for all $i<j$.

Proof of EKR theorem

Proof. Let \mathcal{A} be a maximum intersecting family of $\left(\begin{array}{c}{\left[\begin{array}{c}{[n]} \\ 2 k\end{array}\right)(n>2 k) \text { with }, ~(n)}\end{array}\right.$ $s_{i j}(\mathcal{A})=\mathcal{A}$ for all $1 \leq i<j \leq n$.

Proof of EKR theorem

 $s_{i j}(\mathcal{A})=\mathcal{A}$ for all $1 \leq i<j \leq n$. Set $\mathcal{A}_{0}=\{A \in \mathcal{A}: n \notin A\}, \mathcal{A}_{1}=\{A \in \mathcal{A}: n \in A\}$ and $\mathcal{A}_{1}^{\prime}=\left\{A-n: A \in \mathcal{A}_{1}\right\}$.

Proof of EKR theorem

 $s_{i j}(\mathcal{A})=\mathcal{A}$ for all $1 \leq i<j \leq n$.
Set $\mathcal{A}_{0}=\{A \in \mathcal{A}: n \notin A\}, \mathcal{A}_{1}=\{A \in \mathcal{A}: n \in A\}$ and $\mathcal{A}_{1}^{\prime}=\left\{A-n: A \in \mathcal{A}_{1}\right\}$. \mathcal{A}_{0} is an intersecting family of $\binom{[n-1]}{k},\left|\mathcal{A}_{0}\right| \leq\binom{ n-2}{k-1}$ by induction.

Proof of EKR theorem

 $s_{i j}(\mathcal{A})=\mathcal{A}$ for all $1 \leq i<j \leq n$. Set $\mathcal{A}_{0}=\{A \in \mathcal{A}: n \notin A\}, \mathcal{A}_{1}=\{A \in \mathcal{A}: n \in A\}$ and $\mathcal{A}_{1}^{\prime}=\left\{A-n: A \in \mathcal{A}_{1}\right\}$. \mathcal{A}_{0} is an intersecting family of $\binom{[n-1]}{k},\left|\mathcal{A}_{0}\right| \leq\binom{ n-2}{k-1}$ by induction. \mathcal{A}_{1}^{\prime} is also an intersecting family of $\binom{[n-1]}{k-1},\left|\mathcal{A}_{1}^{\prime}\right| \leq\binom{ n-2}{k-2}$ by induction.

Proof of EKR theorem

 $s_{i j}(\mathcal{A})=\mathcal{A}$ for all $1 \leq i<j \leq n$.
Set $\mathcal{A}_{0}=\{A \in \mathcal{A}: n \notin A\}, \mathcal{A}_{1}=\{A \in \mathcal{A}: n \in A\}$ and $\mathcal{A}_{1}^{\prime}=\left\{A-n: A \in \mathcal{A}_{1}\right\}$. \mathcal{A}_{0} is an intersecting family of $\binom{[n-1]}{k},\left|\mathcal{A}_{0}\right| \leq\binom{ n-2}{k-1}$ by induction. \mathcal{A}_{1}^{\prime} is also an intersecting family of $\left(\begin{array}{c}{\left[\begin{array}{c}n-1] \\ k-1\end{array}\right),\left|\mathcal{A}_{1}^{\prime}\right| \leq\binom{ n-2}{k-2} \text { by induction. } \quad \text {. }}\end{array}\right.$
Therefore,

$$
|\mathcal{A}|=\left|\mathcal{A}_{0}\right|+\left|\mathcal{A}_{1}\right|=\left|\mathcal{A}_{0}\right|+\left|\mathcal{A}_{1}^{\prime}\right| \leq\binom{ n-2}{k-1}+\binom{n-2}{k-2}=\binom{n-1}{k-1} .
$$

Definition

Arrange the elements of [n] on a cycle,

$$
1,2, \ldots, n .
$$

Definition

Arrange the elements of [n] on a cycle,

$$
1,2, \ldots, n .
$$

Let X_{k}^{ℓ} denote the ℓ th k-interval in the cycle, that is,

$$
X_{k}^{\ell}=\{\ell, \ldots, \ell+k-1\} .
$$

Definition

Arrange the elements of [n] on a cycle,

$$
1,2, \ldots, n .
$$

Let X_{k}^{ℓ} denote the ℓ th k-interval in the cycle, that is,

$$
X_{k}^{\ell}=\{\ell, \ldots, \ell+k-1\} .
$$

Set

$$
\mathcal{X}_{n, k}=\left\{X_{k}^{1}, \ldots, X_{k}^{n}\right\} .
$$

Definition

Arrange the elements of [n] on a cycle,

$$
1,2, \ldots, n .
$$

Let X_{k}^{ℓ} denote the ℓ th k-interval in the cycle, that is,

$$
X_{k}^{\ell}=\{\ell, \ldots, \ell+k-1\} .
$$

Set

$$
\mathcal{X}_{n, k}=\left\{X_{k}^{1}, \ldots, X_{k}^{n}\right\} .
$$

Circular clique

- Circular clique $K_{n: k}$: vertex set $\mathcal{X}_{n, k}, A \sim B$ iff $A \cap B=\emptyset$.
- $\alpha\left(K_{n, k}\right)=k$.

Operation

Let S be a subset of $G \times K_{n: k}$. For $u \in V(G)$, set

$$
\partial_{u}(S)=\{i \in[n]:(u, i) \in S\} .
$$

Let I be a fixed maximum independent set of $K_{n: r}$. The subset $\triangle_{I}(S)$ of $V(G) \times V\left(K_{n: r}\right)$ is defined by:

$$
\partial_{u}\left(\triangle_{I}(S)\right)= \begin{cases}I, & \text { if } 0<\left|\partial_{u}(S)\right|<n ; \\ \partial_{u}(S), & \text { otherwise },\end{cases}
$$

for $u \in V(G)$.

Appication

Lemma (Geng,Wang and Zhang)

Let G be a vertex-transitive graph and I a maximum independent set of $K_{n: k}$. If S is a maximum independent set of $G \times K_{n: k}$, then $\triangle_{I}(S)$ is also a maximum independent set of $G \times K_{n: k}$.

Appication

Lemma (Geng,Wang and Zhang)

Let G be a vertex-transitive graph and I a maximum independent set of $K_{n: k}$. If S is a maximum independent set of $G \times K_{n: k}$, then $\triangle_{I}(S)$ is also a maximum independent set of $G \times K_{n: k}$.

Appication

Theorem (Geng, Wang and Zhang)

If G is vertex-transitive, then

$$
\alpha\left(G \times K_{n: k}\right)=\max \{n \alpha(G), k|V(G)|\} .
$$

Appication

Theorem (Geng, Wang and Zhang)

If G is vertex-transitive, then

$$
\alpha\left(G \times K_{n: k}\right)=\max \{n \alpha(G), k|V(G)|\} .
$$

$\triangle_{I}(S)=A \times I \cup B \times[n]$, where B is an independent set of G and $N(B) \cap A=\emptyset$.

Appication

Theorem (Geng, Wang and Zhang)

If G is vertex-transitive, then

$$
\alpha\left(G \times K_{n: k}\right)=\max \{n \alpha(G), k|V(G)|\} .
$$

$\triangle_{I}(S)=A \times I \cup B \times[n]$, where B is an independent set of G and $N(B) \cap A=\emptyset$.

$$
\frac{|B|}{|N[B]|}=\frac{k}{n}=\frac{\alpha(G)}{|V(G)|}
$$

Application

Lemma (Albertson and Collins)

Let G and H be two graphs such that G is vertex-transitive and there exists a homomorphism $\phi: H \mapsto G$. Then $\frac{\alpha(G)}{|V(G)|} \leq \frac{\alpha(H)}{|V(H)|}$, and equality holds if and only if for any independent set I of cardinality $\alpha(G)$ in $G, \phi^{-1}(I)$ is an independent set of cardinality $\alpha(H)$ in H.

Application

Lemma (Albertson and Collins)

Let G and H be two graphs such that G is vertex-transitive and there exists a homomorphism $\phi: H \mapsto G$. Then $\frac{\alpha(G)}{|V(G)|} \leq \frac{\alpha(H)}{|V(H)|}$, and equality holds if and only if for any independent set I of cardinality $\alpha(G)$ in $G, \phi^{-1}(I)$ is an independent set of cardinality $\alpha(H)$ in H.

Lemma
$\frac{\alpha(G)}{|V(G)|} \leq \frac{\alpha(G[B])}{|B|}$ holds for all $B \subseteq V(G)$. Equality implies that
$|I \cap B|=\alpha(G[B])$ for every maximum independent set I of G.

Application

Let X_{1}, \ldots, X_{m} be m pairwise disjoint sets with the same size n, and let $k_{1}, k_{2}, \ldots, k_{m}$ be positive integers with $k_{i} \leq n / 2 . X=X_{1} \cup \cdots \cup X_{m}$ and $k=k_{1}+\cdots+k_{m}$. Set

$$
\begin{aligned}
\Omega_{m}\left(n ; k_{1}, \ldots, k_{m}\right) & =\left\{A \in\binom{X}{k}:\left\{\left|A \cap X_{1}\right|, \ldots,\left|A \cap X_{m}\right|\right\}=\left\{k_{1}, \ldots, k_{m}\right\}\right\} \\
& =\bigcup_{\sigma \in S_{m}}\left\{A_{1} \cup \cdots \cup A_{m}: A_{i} \in\binom{X_{i}}{k_{\sigma(i)}}, i=1, \ldots, m\right\} \\
& =\bigcup_{\sigma \in S_{m}}\binom{X_{1}}{k_{\sigma(1)}} \times \cdots \times\binom{ X_{m}}{k_{\sigma(m)}} .
\end{aligned}
$$

Application

$$
\Omega^{\prime}=\bigcup_{\sigma \in S_{m}} K_{n: k_{\sigma(1)}} \times \cdots \times K_{n: k_{\sigma(m)}} .
$$

Let I_{j} be a fixed maximum independent set of $K_{n: k_{j}}$, and $\cup I_{j}$ is an independent set of $\cup K_{n: k_{j}}$.

Application

$$
\Omega^{\prime}=\bigcup_{\sigma \in S_{m}} K_{n: k_{\sigma(1)}} \times \cdots \times K_{n: k_{\sigma(m)}} .
$$

Let l_{j} be a fixed maximum independent set of $K_{n: k_{j}}$, and $\cup l_{j}$ is an independent set of $\cup K_{n: k_{j}}$. Let S be a maximum independent set of Ω^{\prime}.

$$
S_{\sigma}=S \cap K_{n: k_{\sigma(1)}} \times \cdots \times K_{n: k_{\sigma(m)}} .
$$

$$
\triangle_{i}(S)=\bigcup_{\sigma \in S_{m}} \triangle_{I_{\sigma(i)}}\left(S_{\sigma}\right)
$$

Application

Lemma

Let S be a maximum independent set of Ω^{\prime}, then $\triangle_{i}(S)$ is also a maximum independent set of Ω^{\prime} for all $1 \leq i \leq m$.

Application

$$
\triangle_{i}(S)=S
$$

$$
T_{1} \times T_{2} \times \cdots \times T_{m}, T_{i}=I \text { or } K_{n: k_{j}} \backslash I
$$

Application

$\triangle_{i}(S)=S$

$$
T_{1} \times T_{2} \times \cdots \times T_{m}, T_{i}=I \text { or } K_{n: k_{j}} \backslash I
$$

Theorem (Wang and Zhang SIAM 2018)

Let n and k_{1}, \ldots, k_{m} be positive integers satisfying $n \geq 2 k_{i}$. If \mathcal{F} is an intersecting family in $\Omega_{m}\left(n ; k_{1}, \ldots, k_{m}\right)$, then

$$
|\mathcal{F}| \leq \frac{k}{n m} p\left(k_{1}, \ldots, k_{m}\right) \prod_{i=1}^{m}\binom{n}{k_{i}},
$$

where $k=k_{1}+\cdots+k_{m}$. Also equality holds if and only if $\mathcal{F}=\{A \in \Omega: a \in A\}$ for some $a \in X$ except for $k_{1}=\cdots=k_{m}=\frac{n}{2}$.

Application

Theorem

Let G and H be two vertex-transitive graphs and $K_{n: r}$ be a circular graph. Then

$$
\alpha\left(G, H, K_{n: r}\right)=\max \{\alpha(G) \alpha(H) n, \alpha(G) r|H|, r \alpha(H)|G|\} .
$$

Application

Theorem (Xiao, Zhang and Zhang Disc 2018)

Let G and H be two graphs and $K_{n: r}$ be a circular graph. Then

$$
\chi_{f}\left(G, H, K_{n: r}\right)=\min \left\{\chi_{f}(G) \chi_{f}(H), \chi_{f}(G) r, r \chi_{f}(H)\right\} .
$$

Many Thanks!

