The Product Version of Erdős-Ko-Rado Theorem

Huajun Zhang

Zhejiang Normal Univeristy

Huajun Zhang (Zhejiang Normal University) Product Version of EKR Theorem

Theorem (EKR Theorem)

If A is an intersecting family of k-subsets of $[n] = \{1, 2, ..., n\}$, i.e., $A \cap B \neq \emptyset$ for any $A, B \in A$, then

$$|\mathcal{A}| \leq \binom{n-1}{k-1}$$

subject to $n \ge 2k$. Equality holds if and only if every subset in A contains a common element of [n] except for n = 2k.

 P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser., 2 (1961), 313-318.

< 日 > < 同 > < 三 > < 三 > <

Suppose that $n = n_1 + \ldots + n_d$, $k = k_1 + \ldots + k_d$, and $X = X_1 \cup \ldots \cup X_d$ with $|X_i| = n_i$. Define

$$\mathcal{F} = \left\{ A \in \binom{X}{k} : |A \cap X_i| = k_i \text{ for } 1 \le i \le d \right\} = \binom{X_1}{k_1} \times \cdots \times \binom{X_d}{k_d}.$$

<ロ> <問> <問> < 回> < 回> < 回> < 回</td>

Suppose that $n = n_1 + \ldots + n_d$, $k = k_1 + \ldots + k_d$, and $X = X_1 \cup \ldots \cup X_d$ with $|X_i| = n_i$. Define

$$\mathcal{F} = ig\{ A \in ig(ig X \ k ig) : |A \cap X_i| = k_i ext{ for } 1 \leq i \leq d ig\} = ig(ig X_1 \ k_1 ig) imes \cdots imes ig(ig X_d \ k_d ig).$$

Theorem (Direct-product Theorem on EKR Theorem)

Suppose that \mathcal{A} is an intersecting family of \mathcal{F} and $\frac{1}{2} \geq \frac{k_1}{n_1} \geq \ldots \geq \frac{k_d}{n_d}$. Then

$$\frac{|\mathcal{A}|}{|\mathcal{F}|} \leq \frac{k_1}{n_1}$$

P. Frankl, Erdős-Ko-RAdo Theorem for Direct Products, EuJC 17 (1996) 727-730.

Theorem

Let $2 \le n_1 = \cdots = n_p < n_{p+1} \le \cdots \le n_q$, $1 \le p \le q$. Let $G = S_{n_1} \times \cdots \times S_{n_q}$ be the direct products of the symmetric group S_{n_i} on $[n_i]$. Suppose A is an intersecting family in G. Then $|A| \le (n_1 - 1)! \prod_{2 \le i \le q} n_i!$. Moreover, except for the following cases:

(i)
$$n_1 = \cdots = n_p < n_{p+1} = 3 \le n_{p+2} \le \cdots \le n_q;$$

(ii) $n_1 = n_2 = 3 \le n_3 \le \cdots \le n_q;$
(iii) $n_1 = n_2 = n_3 \le n_4 \le \cdots \le n_q,$
equality holds if and only if $\mathcal{A} = \{(\alpha_1, \dots, \alpha_p) : \alpha_i(x) = y\}$ for some $i \in [p]$ and $x, y \in [n_i].$

• C.Y. Ku and T.W.H. Wong, Intersecting families in the alternating group and direct

- Kneser graph $K_{n,k}$: vertex set $\binom{[n]}{k}$, $A \sim B$ iff $A \cap B = \emptyset$.
- $\alpha(K_{n,k}) = \binom{n-1}{k-1}$.

3

・ロト ・回ト ・ヨト ・ヨト

Definition

The direct product of $G \times H$ of two graphs G and H is defined by

$$V(G imes H)=\{(u,v):u\in V(G) ext{ and } v\in V(H)\}$$

and

$$(u_1, v_1) \sim (u_2, v_2)$$
 iff $u_1 \sim u_2$ and $v_1 \sim v_2$.

Definition

The direct product of $G \times H$ of two graphs G and H is defined by

$$V(G imes H)=\{(u,v):u\in V(G) ext{ and } v\in V(H)\}$$

and

$$(u_1, v_1) \sim (u_2, v_2)$$
 iff $u_1 \sim u_2$ and $v_1 \sim v_2$.

 $I \times V(H)$ and $V(G) \times S$

· · · · · · · · ·

Definition

The direct product of $G \times H$ of two graphs G and H is defined by

$$V(G imes H)=\{(u,v):u\in V(G) ext{ and } v\in V(H)\}$$

and

$$(u_1,v_1)\sim (u_2,v_2)$$
 iff $u_1\sim u_2$ and $v_1\sim v_2.$

 $I \times V(H)$ and $V(G) \times S$

$$\alpha(G \times H) \geq \max\{\alpha(G)|H|, \alpha(H)|G|\}$$

A 回 > A 回 > A 回 >

Theorem (H.J. Zhang 2012)

If G and H are vertex-transitive, then

$$\alpha(G \times H) = \max\{\alpha(G)|H|, \alpha(H)|G|\}.$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Let G be a graph, the set of all all independent set of G denoted by I(G). For $u \in V(G)$, set $I_u(G) = \{S \in I(G) : u \in I\}$.

• fractional coloring f: a map from I(G) to [0,1] with $\sum_{S \in I_u(G)} f(S) = 1$.

• total weight:
$$\omega(f) = \sum_{s \in I(G)} f(S)$$
.

fractional chromatic number χ_f(G): the minimum total weight of a fractional coloring of G.

Let G be a graph, the set of all all independent set of G denoted by I(G). For $u \in V(G)$, set $I_u(G) = \{S \in I(G) : u \in I\}$.

• fractional coloring f: a map from I(G) to [0,1] with $\sum_{S \in I_u(G)} f(S) = 1$.

• total weight:
$$\omega(f) = \sum_{s \in I(G)} f(S)$$
.

- fractional chromatic number χ_f(G): the minimum total weight of a fractional coloring of G.
- $\chi_f(G \times H) \leq \min\{\chi_f(G), \chi_f(H)\}.$
- if G is vertex-transitive, $\chi_f(G) = |V(G)|/\alpha(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let G be a graph, the set of all all independent set of G denoted by I(G). For $u \in V(G)$, set $I_u(G) = \{S \in I(G) : u \in I\}$.

• fractional coloring f: a map from I(G) to [0,1] with $\sum_{S \in I_u(G)} f(S) = 1$.

• total weight:
$$\omega(f) = \sum_{s \in I(G)} f(S)$$
.

- fractional chromatic number χ_f(G): the minimum total weight of a fractional coloring of G.
- $\chi_f(G \times H) \leq \min\{\chi_f(G), \chi_f(H)\}.$
- if G is vertex-transitive, $\chi_f(G) = |V(G)|/\alpha(G)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (X.D. Zhu, 2011)

For any graph G and H,

 $\chi_f(G \times H) = \min\{\chi_f(G), \chi_f(H)\}.$

・ロト ・日下・ ・ ヨト・

Theorem (X.D. Zhu, 2011)

For any graph G and H,

$$\chi_f(G \times H) = \min\{\chi_f(G), \chi_f(H)\}.$$

Conjecture

For any graph G and H,

 $\chi(G \times H) = \min\{\chi(G), \chi(H)\}.$

The tensor product (G_1, G_2, G_3) of G_1 , G_2 and G_3 is defined by

$$V(G_1, G_2, G_3) = V(G_1) \times V(G_2) \times V(G_3) = \{(u_1, u_2, u_3) : u_i \in V(G_i)\}$$

and

$$E(G_1, G_2, G_3) = \left\{ \left((u_1, u_2, u_3), (v_1, v_2, v_3) \right) : |\{i : (u_i, v_i) \in E(G_i)\}| \ge 2 \right\}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

By definition, $I_1 \times I_2 \times V(G_3)$ is an independent set of (G_1, G_2, G_3) if $I_i \in I(G_i)$, i = 1, 2. Hence

 $\alpha(\mathsf{G}_1,\mathsf{G}_2,\mathsf{G}_3) \geq \max\{\alpha(\mathsf{G}_1)\alpha(\mathsf{G}_2)|\mathsf{G}_3|,\alpha(\mathsf{G}_1)\alpha(\mathsf{G}_3)|\mathsf{G}_2|,\alpha(\mathsf{G}_2)\alpha(\mathsf{G}_3)|\mathsf{G}_1|\}.$

By definition, $I_1 \times I_2 \times V(G_3)$ is an independent set of (G_1, G_2, G_3) if $I_i \in I(G_i)$, i = 1, 2. Hence

 $\alpha(\mathsf{G}_1,\mathsf{G}_2,\mathsf{G}_3) \geq \max\{\alpha(\mathsf{G}_1)\alpha(\mathsf{G}_2)|\mathsf{G}_3|,\alpha(\mathsf{G}_1)\alpha(\mathsf{G}_3)|\mathsf{G}_2|,\alpha(\mathsf{G}_2)\alpha(\mathsf{G}_3)|\mathsf{G}_1|\}.$

Problem

For three vertex-transitive graphs G_1 , G_2 and G_3 , does

 $\alpha(\mathbf{G}_1,\mathbf{G}_2,\mathbf{G}_3) = \max\{\alpha(\mathbf{G}_1)\alpha(\mathbf{G}_2)|\mathbf{G}_3|,\alpha(\mathbf{G}_1)\alpha(\mathbf{G}_3)|\mathbf{G}_2|,\alpha(\mathbf{G}_2)\alpha(\mathbf{G}_3)|\mathbf{G}_1|\}$

holds?

3

イロト 人間 ト イヨト イヨト

Problem

For three graphs G_1 , G_2 and G_3 , does

 $\chi_f(G_1, G_2, G_3) = \min\{\chi_f(G_1)\chi_f(G_2), \chi_f(G_1)\chi_f(G_3), \chi_f(G_2)\chi_f(G_3)\}$

always hold?

< □ > < □ > < □ > < □ > < □ > < □ >

Shift operation

Definition

• Let \mathcal{A} be a family in $\binom{[n]}{k}$. For $i, j \in [n]$ with i < j and $A \in \mathcal{A}$, define

 $s_{ij}(A) = \begin{cases} (A \setminus \{j\}) \cup \{i\}, & \text{if } j \in A, \ i \notin A, (A \setminus \{j\}) \cup \{i\} \notin A; \\ A, & \text{otherwise,} \end{cases}$

and let $s_{ij}(\mathcal{A}) = \{s_{ij}(\mathcal{A}) : \mathcal{A} \in \mathcal{A}\}.$

• Let \mathcal{A} be a family in $\binom{[n]}{k}$. For $i, j \in [n]$ with i < j and $A \in \mathcal{A}$, define

 $s_{ij}(A) = \begin{cases} (A \setminus \{j\}) \cup \{i\}, & \text{if } j \in A, \ i \notin A, (A \setminus \{j\}) \cup \{i\} \notin A; \\ A, & \text{otherwise,} \end{cases}$

and let $s_{ij}(\mathcal{A}) = \{s_{ij}(\mathcal{A}) : \mathcal{A} \in \mathcal{A}\}.$

• $|s_{ij}(A)| = |A|$ and $s_{ij}(A)$ is also an intersecting family if A is so.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let \mathcal{A} be a family in $\binom{[n]}{k}$. For $i, j \in [n]$ with i < j and $A \in \mathcal{A}$, define

 $s_{ij}(A) = \begin{cases} (A \setminus \{j\}) \cup \{i\}, & \text{if } j \in A, \ i \notin A, (A \setminus \{j\}) \cup \{i\} \notin A; \\ A, & \text{otherwise,} \end{cases}$

and let $s_{ij}(\mathcal{A}) = \{s_{ij}(\mathcal{A}) : \mathcal{A} \in \mathcal{A}\}.$

• $|s_{ij}(A)| = |A|$ and $s_{ij}(A)$ is also an intersecting family if A is so.

• \mathcal{A} is called *left-compressed* if $s_{ij}(\mathcal{A}) = \mathcal{A}$ for all i < j.

Proof. Let A be a maximum intersecting family of $\binom{[n]}{2k}$ (n > 2k) with $s_{ij}(A) = A$ for all $1 \le i < j \le n$.

メロト メロト メヨト・

Proof. Let \mathcal{A} be a maximum intersecting family of $\binom{[n]}{2k}$ (n > 2k) with $s_{ij}(\mathcal{A}) = \mathcal{A}$ for all $1 \le i < j \le n$. Set $\mathcal{A}_0 = \{A \in \mathcal{A} : n \notin A\}$, $\mathcal{A}_1 = \{A \in \mathcal{A} : n \in A\}$ and $\mathcal{A}'_1 = \{A - n : A \in \mathcal{A}_1\}$.

< ロ > < 同 > < 三 > < 三 > 、

Proof. Let \mathcal{A} be a maximum intersecting family of $\binom{[n]}{2k}$ (n > 2k) with $s_{ij}(\mathcal{A}) = \mathcal{A}$ for all $1 \le i < j \le n$. Set $\mathcal{A}_0 = \{A \in \mathcal{A} : n \notin A\}$, $\mathcal{A}_1 = \{A \in \mathcal{A} : n \in A\}$ and $\mathcal{A}'_1 = \{A - n : A \in \mathcal{A}_1\}$. \mathcal{A}_0 is an intersecting family of $\binom{[n-1]}{k}$, $|\mathcal{A}_0| \le \binom{n-2}{k-1}$ by induction. Proof. Let \mathcal{A} be a maximum intersecting family of $\binom{[n]}{2k}$ (n > 2k) with $s_{ij}(\mathcal{A}) = \mathcal{A}$ for all $1 \le i < j \le n$. Set $\mathcal{A}_0 = \{A \in \mathcal{A} : n \notin A\}$, $\mathcal{A}_1 = \{A \in \mathcal{A} : n \in A\}$ and $\mathcal{A}'_1 = \{A - n : A \in \mathcal{A}_1\}$. \mathcal{A}_0 is an intersecting family of $\binom{[n-1]}{k}$, $|\mathcal{A}_0| \le \binom{n-2}{k-1}$ by induction. \mathcal{A}'_1 is also an intersecting family of $\binom{[n-1]}{k-1}$, $|\mathcal{A}'_1| \le \binom{n-2}{k-2}$ by induction. Proof. Let \mathcal{A} be a maximum intersecting family of $\binom{[n]}{2k}$ (n > 2k) with $s_{ij}(\mathcal{A}) = \mathcal{A}$ for all $1 \le i < j \le n$. Set $\mathcal{A}_0 = \{A \in \mathcal{A} : n \notin A\}$, $\mathcal{A}_1 = \{A \in \mathcal{A} : n \in A\}$ and $\mathcal{A}'_1 = \{A - n : A \in \mathcal{A}_1\}$. \mathcal{A}_0 is an intersecting family of $\binom{[n-1]}{k}$, $|\mathcal{A}_0| \le \binom{n-2}{k-1}$ by induction. \mathcal{A}'_1 is also an intersecting family of $\binom{[n-1]}{k-1}$, $|\mathcal{A}'_1| \le \binom{n-2}{k-2}$ by induction. Therefore,

$$|\mathcal{A}| = |\mathcal{A}_0| + |\mathcal{A}_1| = |\mathcal{A}_0| + |\mathcal{A}_1'| \le \binom{n-2}{k-1} + \binom{n-2}{k-2} = \binom{n-1}{k-1}.$$

Arrange the elements of [n] on a cycle,

 $1, 2, \ldots, n.$

臣

Arrange the elements of [n] on a cycle,

 $1, 2, \ldots, n.$

Let X_k^{ℓ} denote the ℓ th *k*-interval in the cycle, that is,

$$X_k^\ell = \{\ell, \ldots, \ell + k - 1\}.$$

< 回 > < 三 > < 三 >

Arrange the elements of [n] on a cycle,

$$1, 2, \ldots, n.$$

Let X_k^{ℓ} denote the ℓ th *k*-interval in the cycle, that is,

$$X_k^\ell = \{\ell,\ldots,\ell+k-1\}.$$

Set

$$\mathcal{X}_{n,k} = \{X_k^1, \ldots, X_k^n\}.$$

4 3 4 3 4 3 4

Arrange the elements of [n] on a cycle,

$$1, 2, \ldots, n.$$

Let X_k^{ℓ} denote the ℓ th *k*-interval in the cycle, that is,

$$X_k^\ell = \{\ell,\ldots,\ell+k-1\}.$$

Set

$$\mathcal{X}_{n,k} = \{X_k^1, \ldots, X_k^n\}.$$

4 3 4 3 4 3 4

- Circular clique $K_{n:k}$: vertex set $\mathcal{X}_{n,k}$, $A \sim B$ iff $A \cap B = \emptyset$.
- $\alpha(K_{n,k}) = k$.

3

Operation

Let S be a subset of $G \times K_{n:k}$. For $u \in V(G)$, set

$$\partial_u(S) = \{i \in [n] : (u, i) \in S\}.$$

Let *I* be a fixed maximum independent set of $K_{n:r}$. The subset $\triangle_I(S)$ of $V(G) \times V(K_{n:r})$ is defined by:

$$\partial_u(riangle_I(S)) = egin{cases} I, & ext{if } 0 < |\partial_u(S)| < n; \ \partial_u(S), & ext{otherwise}, \end{cases}$$

for $u \in V(G)$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・

Lemma (Geng, Wang and Zhang)

Let G be a vertex-transitive graph and I a maximum independent set of $K_{n:k}$. If S is a maximum independent set of $G \times K_{n:k}$, then $\triangle_I(S)$ is also a maximum independent set of $G \times K_{n:k}$.

Lemma (Geng, Wang and Zhang)

Let G be a vertex-transitive graph and I a maximum independent set of $K_{n:k}$. If S is a maximum independent set of $G \times K_{n:k}$, then $\triangle_I(S)$ is also a maximum independent set of $G \times K_{n:k}$.

Theorem (Geng, Wang and Zhang)

If G is vertex-transitive, then

 $\alpha(G \times K_{n:k}) = \max\{n\alpha(G), k|V(G)|\}.$

メロト メロト メヨト

Theorem (Geng, Wang and Zhang)

If G is vertex-transitive, then

$$\alpha(G \times K_{n:k}) = \max\{n\alpha(G), k|V(G)|\}.$$

 $\triangle_{I}(S) = A \times I \cup B \times [n], \text{ where } B \text{ is an independent set of } G \text{ and } N(B) \cap A = \emptyset.$

イロト 不同 ト イヨト イヨト

Theorem (Geng, Wang and Zhang)

If G is vertex-transitive, then

$$\alpha(G \times K_{n:k}) = \max\{n\alpha(G), k|V(G)|\}.$$

 $\triangle_{I}(S) = A \times I \cup B \times [n], \text{ where } B \text{ is an independent set of } G \text{ and } N(B) \cap A = \emptyset.$

$$\frac{|B|}{|N[B]|} = \frac{k}{n} = \frac{\alpha(G)}{|V(G)|}$$

Lemma (Albertson and Collins)

Let G and H be two graphs such that G is vertex-transitive and there exists a homomorphism $\phi : H \mapsto G$. Then $\frac{\alpha(G)}{|V(G)|} \leq \frac{\alpha(H)}{|V(H)|}$, and equality holds if and only if for any independent set I of cardinality $\alpha(G)$ in G, $\phi^{-1}(I)$ is an independent set of cardinality $\alpha(H)$ in H.

Lemma (Albertson and Collins)

Let G and H be two graphs such that G is vertex-transitive and there exists a homomorphism $\phi : H \mapsto G$. Then $\frac{\alpha(G)}{|V(G)|} \leq \frac{\alpha(H)}{|V(H)|}$, and equality holds if and only if for any independent set I of cardinality $\alpha(G)$ in G, $\phi^{-1}(I)$ is an independent set of cardinality $\alpha(H)$ in H.

Lemma

 $\frac{\alpha(G)}{|V(G)|} \leq \frac{\alpha(G[B])}{|B|} \text{ holds for all } B \subseteq V(G). \text{ Equality implies that } |I \cap B| = \alpha(G[B]) \text{ for every maximum independent set } I \text{ of } G.$

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let X_1, \ldots, X_m be *m* pairwise disjoint sets with the same size *n*, and let k_1, k_2, \ldots, k_m be positive integers with $k_i \leq n/2$. $X = X_1 \cup \cdots \cup X_m$ and $k = k_1 + \cdots + k_m$. Set

$$\Omega_m(n; k_1, \dots, k_m) = \left\{ A \in \binom{X}{k} : \{ |A \cap X_1|, \dots, |A \cap X_m| \} = \{k_1, \dots, k_m \} \right\}$$
$$= \bigcup_{\sigma \in S_m} \left\{ A_1 \cup \dots \cup A_m : A_i \in \binom{X_i}{k_{\sigma(i)}}, i = 1, \dots, m \right\}$$
$$= \bigcup_{\sigma \in S_m} \binom{X_1}{k_{\sigma(1)}} \times \dots \times \binom{X_m}{k_{\sigma(m)}}.$$

<ロト (四) (三) (三) (三) (三)

$$\Omega' = \bigcup_{\sigma \in S_m} K_{n:k_{\sigma(1)}} \times \cdots \times K_{n:k_{\sigma(m)}}.$$

Let I_j be a fixed maximum independent set of $K_{n:k_j}$, and $\cup I_j$ is an independent set of $\cup K_{n:k_j}$.

臣

(日)

$$\Omega' = \bigcup_{\sigma \in S_m} K_{n:k_{\sigma(1)}} \times \cdots \times K_{n:k_{\sigma(m)}}.$$

Let I_j be a fixed maximum independent set of $K_{n:k_j}$, and $\cup I_j$ is an independent set of $\cup K_{n:k_j}$.Let S be a maximum independent set of Ω' . $S_{\sigma} = S \cap K_{n:k_{\sigma(1)}} \times \cdots \times K_{n:k_{\sigma(m)}}$.

$$\triangle_i(S) = \bigcup_{\sigma \in S_m} \triangle_{I_{\sigma(i)}}(S_{\sigma})$$

< 回 > < 三 > < 三 > 、

Lemma

Let S be a maximum independent set of Ω' , then $\triangle_i(S)$ is also a maximum independent set of Ω' for all $1 \le i \le m$.

· · · · · · · · ·

$$\triangle_i(S) = S$$

$$T_1 \times T_2 \times \cdots \times T_m, T_i = I \text{ or } K_{n:k_i} \setminus I$$

臣

* ロ > * 個 > * 注 > * 注 >

 $\triangle_i(S) = S$

$$T_1 \times T_2 \times \cdots \times T_m, T_i = I \text{ or } K_{n:k_i} \setminus I$$

Theorem (Wang and Zhang SIAM 2018)

Let n and k_1, \ldots, k_m be positive integers satisfying $n \ge 2k_i$. If \mathcal{F} is an intersecting family in $\Omega_m(n; k_1, \ldots, k_m)$, then

$$|\mathcal{F}| \leq \frac{k}{nm} p(k_1, \ldots, k_m) \prod_{i=1}^m \binom{n}{k_i},$$

where $k = k_1 + \cdots + k_m$. Also equality holds if and only if $\mathcal{F} = \{A \in \Omega : a \in A\}$ for some $a \in X$ except for $k_1 = \cdots = k_m = \frac{n}{2}$.

Theorem

Let G and H be two vertex-transitive graphs and $K_{n:r}$ be a circular graph. Then

 $\alpha(G, H, K_{n:r}) = \max\{\alpha(G)\alpha(H)n, \alpha(G)r|H|, r\alpha(H)|G|\}.$

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Xiao, Zhang and Zhang Disc 2018)

Let G and H be two graphs and $K_{n:r}$ be a circular graph. Then

 $\chi_f(G, H, K_{n:r}) = \min\{\chi_f(G)\chi_f(H), \chi_f(G)r, r\chi_f(H)\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Many Thanks!

3

イロト 不得 ト イヨト イヨト