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The vertex sum at accompany 
with is the sum of the labels assigned to 
edges incident to .
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Antimagic Labeling

If is an injective 
function such that all vertex sums are pairwise 
distinct, then is called an antimagic labeling 
on .

If has an antimagic labeling, then is called 
antimagic.
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History

Conjecture 1: Every connected graph other than 
is antimagic.

Conjecture 2: Every tree other than is antimagic.

The two conjectures are still open now.

N. Hartsfield and G. Ringel. Pearls in Graph Theory, Academic 
Press, INC., Boston,1990 (revised version, 1994), 108-109.
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Complete graphs, cycles, wheels and complete 
bipartite graphs are antimagic.

 Alon, Kaplan, Lev, Roditty and Yuster [2004]

Graphs with minimum degree or 
maximum degree are antimagic.

N. Alon, G. Kaplan, A. Lev, Y. Roditty, and R. Yuster. 
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Journal of Graph Theory, 47(4), (2004), 297-309.
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 Liang and Zhu [2014]

3-regular graphs are antimagic.

 Cranston, Liang and Zhu [2015]

Odd regular graphs are antimagic.

Regular graphs are antimagic. [2015,2016]
K. Berczi, A. Bernath, and M. Vizer.  Regular graphs are antimagic. 
The Electronic Journal of Combinatorics 22 (2015)
F. Chang, Y.-Ch. Liang, Z. Pan, and X. Zhu.  Antimagic labeling of regular graphs. 
J. Graph Theory 82 (2016), 339-349.
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Well Known Results

 For conjecture 2:

Paths and stars are antimagic.
 Kaplan, Lev and Roditty [2009]

Every tree with at most one vertex of degree 2 is antimagic.
However, their proof contains an error. 

 Liang, Wong and Zhu [2014] corrected this error.

G. Kaplan, A. Lev, and Y. Roditty. On zero-sum partitions and antimagic trees. 
Discrete Math., 309, (2009), 2010-2014. 
Y.-Ch. Liang, T.-L. Wong and X. Zhu. Antimagic labeling of trees. 
Discrete Math.,331, (2014), 9-14.



Well Known Results
 Shang [2015] proved spiders are antimagic.

A spider is a tree with one vertex of degree at least 3.

J.-L. Shang, Spiders are antimagic, Ars Combinatoria, 118 (2015), 367-372.
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Strongly Antimagic Graph

For an antimagic labeling on G,
if , 
then is called a strongly antimagic labeling.
And is called strongly antimagic. 

T.-M. Wang and C. C. Hsiao, On anti-magic labeling for graph 
products, Discrete Math. 308(16), (2008), 3624-3633.

T.-Y. Huang, Antimagic Labeling on Spiders, Master Thesis, 
Department of Mathematics, National Taiwan University.(2015) 
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-shifted Antimagic Labeling

Theorem: If is strongly antimagic, 
then , is -shifted antimagic.

If is an injective function 
such that all vertex sums are pairwise distinct, 
then is called an -shifted antimagic labeling on . 
And is called -shifted antimagic. 
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Question 1 ?

Is there a -shifted antimagic graph 
but not -shifted antimagic? 

-shifted antimagic −shifted antimagic ?
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Every tree except with at most one vertex of degree 2 is 
antimagic.

Question 2 ?

Is a tree with at most one vertex of degree 2 strongly antimagic?

Question 3 ?

Is there a connected graph except not strongly antimagic?
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Antimagic graphs

Strongly antimagic graphs k-shifted antimagic graphs

k-antimagic graphs

k+1-shifted antimagic graphs ?



Our Results
 Chang, Kin, Li and Pan [ ]

Double spiders are antimagic. (strongly)

 Guo, Li and Chang [preprint]

Complete multipartite graphs are strongly antimagic. 



Question ?

Is every connected graph other than shifted-antimagic?

Theorem: Trees are shifted-antimagic. 

 Chang, Chen, Li, Pan [2018 ]
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Proof of Lemma 6:
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