Antimagic Labeling Problems on Graphs

National Taiwan Normal University
僑生先修部數學科
Chang，Feihuang 張飛黃
2019／08／20
2019年圖論與組合數學國際研討會 暨 第十屆海峽兩岸圖論與組合數學研討會

2005．06．23 台灣新竹 黃光明老師與我的家人

2017．08．10 匈牙利陳宏賓（台灣中興大學），李渭天（台灣中興大學）

2013．09．台灣花蓮 黃瑜培（北京師範大學珠海校區），郭君逸（台灣師範大學）

2018．08．24 台灣花蓮 六十石山金針花季 潘志實 與其夫人（台灣淡江大學）

2019.07 黃光明老師與我合影於舊金山

- All graphs in this talk are finite, simple.
- All graphs in this talk are finite, simple. Edge Labeling on this talk
- All graphs in this talk are finite, simple.

Edge Labeling on this talk

- $f: E(G) \rightarrow N$
- All graphs in this talk are finite, simple.

Edge Labeling on this talk

- $f: E(G) \rightarrow N$

Vertex Sum accompany with an edge labeling

- All graphs in this talk are finite, simple.

Edge Labeling on this talk
> $f: E(G) \rightarrow N$
Vertex Sum accompany with an edge labeling
The vertex sum at $u \in V(G)$ accompany with f is the sum of the labels assigned to edges incident to u.

Antimagic Labeling

Antimagic Labeling

>If $f: E(G) \rightarrow\{1,2, \cdots,|E(G)|=m\}$ is an injective function

Antimagic Labeling

-If $f: E(G) \rightarrow\{1,2, \cdots,|E(G)|=m\}$ is an injective function such that all vertex sums are pairwise distinct,

Antimagic Labeling

-If $f: E(G) \rightarrow\{1,2, \cdots,|E(G)|=m\}$ is an injective function such that all vertex sums are pairwise distinct, then f is called an antimagic labeling on G.

Antimagic Labeling

-If $f: E(G) \rightarrow\{1,2, \cdots,|E(G)|=m\}$ is an injective function such that all vertex sums are pairwise distinct, then f is called an antimagic labeling on G.

Antimagic Graph

Antimagic Labeling

-If $f: E(G) \rightarrow\{1,2, \cdots,|E(G)|=m\}$ is an injective function such that all vertex sums are pairwise distinct, then f is called an antimagic labeling on G.

Antimagic Graph

- If G has an antimagic labeling, then G is called antimagic.

Non-antimagic Labeling

$f: E(G) \rightarrow\{1,2, \cdots, 6\}$ is not an antimagic labeling.

Non-antimagic Labeling

$f: E(G) \rightarrow\{1,2, \cdots, 6\}$ is not an antimagic labeling.

An Antimagic Graph

History

$>$ This problem was introduced by Hartsfield and Ringel in 1990.
N. Hartsfield and G. Ringel. Pearls in Graph Theory, Academic Press, INC., Boston, 1990 (revised version, 1994), 108-109.

History

$>$ This problem was introduced by Hartsfield and Ringel in 1990.

They put two conjectures concerning antimagic labeling of graphs.
N. Hartsfield and G. Ringel. Pearls in Graph Theory, Academic Press, INC., Boston, 1990 (revised version, 1994), 108-109.

History

>Conjecture 1: Every connected graph other than K_{2} is antimagic.
N. Hartsfield and G. Ringel. Pearls in Graph Theory, Academic Press, INC., Boston, 1990 (revised version, 1994), 108-109.

History

>Conjecture 1: Every connected graph other than K_{2} is antimagic.
$>$ Conjecture 2: Every tree other than K_{2} is antimagic.
N. Hartsfield and G. Ringel. Pearls in Graph Theory, Academic Press, INC., Boston,1990 (revised version, 1994), 108-109.

History

$>$ Conjecture 1: Every connected graph other than K_{2} is antimagic.
$>$ Conjecture 2: Every tree other than K_{2} is antimagic.
The two conjectures are still open now.
N. Hartsfield and G. Ringel. Pearls in Graph Theory, Academic Press, INC., Boston, 1990 (revised version, 1994), 108-109.

Well Known Results

- For conjecture 1:

Complete graphs, cycles, wheels and complete bipartite graphs are antimagic.
N. Hartsfield and G. Ringel. Pearls in Graph Theory, Academic Press, INC., Boston, 1990 (revised version, 1994), 108-109.

Well Known Results

- For conjecture 1:

Complete graphs, cycles, wheels and complete bipartite graphs are antimagic.

- Alon, Kaplan, Lev, Roditty and Yuster [2004]
N. Alon, G. Kaplan, A. Lev, Y. Roditty, and R. Yuster. Dense graphs are antimagic. Journal of Graph Theory, 47(4), (2004), 297-309.

Well Known Results

- For conjecture 1:

Complete graphs, cycles, wheels and complete bipartite graphs are antimagic.

- Alon, Kaplan, Lev, Roditty and Yuster [2004]

Graphs with minimum degree $\delta(G)>\Omega(\log |V(G)|)$ or maximum degree $\Delta(G)>|V(G)|-2$ are antimagic.
N. Alon, G. Kaplan, A. Lev, Y. Roditty, and R. Yuster. Dense graphs are antimagic. Journal of Graph Theory, 47(4), (2004), 297-309.

Well Known Results

- Liang and Zhu [2014]

Well Known Results

- Liang and Zhu [2014]

3-regular graphs are antimagic.

Well Known Results

- Liang and Zhu [2014]

3 -regular graphs are antimagic.

- Cranston, Liang and Zhu [2015]

Well Known Results

- Liang and Zhu [2014]

3 -regular graphs are antimagic.

- Cranston, Liang and Zhu [2015]

Odd regular graphs are antimagic.

Well Known Results

- Liang and Zhu [2014]

3-regular graphs are antimagic.

- Cranston, Liang and Zhu [2015]

Odd regular graphs are antimagic.

Regular graphs are antimagic. [2015,2016]
K. Berczi, A. Bernath, and M. Vizer. Regular graphs are antimagic.

The Electronic Journal of Combinatorics 22 (2015)
F. Chang, Y.-Ch. Liang, Z. Pan, and X. Zhu. Antimagic labeling of regular graphs.
J. Graph Theory 82 (2016), 339-349.

Well Known Results

- For conjecture 2:

Paths and stars are antimagic.

Well Known Results

- For conjecture 2:

Paths and stars are antimagic.

- Kaplan, Lev and Roditty [2009]

Every tree with at most one vertex of degree 2 is antimagic.
G. Kaplan, A. Lev, and Y. Roditty. On zero-sum partitions and antimagic trees. Discrete Math., 309, (2009), 2010-2014.

Well Known Results

- For conjecture 2:

Paths and stars are antimagic.

- Kaplan, Lev and Roditty [2009]

Every tree with at most one vertex of degree 2 is antimagic. However, their proof contains an error.
G. Kaplan, A. Lev, and Y. Roditty. On zero-sum partitions and antimagic trees. Discrete Math., 309, (2009), 2010-2014.

Well Known Results

- For conjecture 2:

Paths and stars are antimagic.

- Kaplan, Lev and Roditty [2009]

Every tree with at most one vertex of degree 2 is antimagic. However, their proof contains an error.

- Liang, Wong and Zhu [2014] corrected this error.
G. Kaplan, A. Lev, and Y. Roditty. On zero-sum partitions and antimagic trees. Discrete Math., 309, (2009), 2010-2014. Y.-Ch. Liang, T.-L. Wong and X. Zhu. Antimagic labeling of trees. Discrete Math.,331, (2014), 9-14.

Well Known Results

- Shang [2015] proved spiders are antimagic.

A spider is a tree with one vertex of degree at least 3.

J.-L. Shang, Spiders are antimagic, Ars Combinatoria, 118 (2015), 367-372.

Strongly Antimagic Graph

T.-M. Wang and C. C. Hsiao, On anti-magic labeling for graph products, Discrete Math. 308(16), (2008), 3624-3633.
T.-Y. Huang, Antimagic Labeling on Spiders, Master Thesis, Department of Mathematics, National Taiwan University. (2015)

Strongly Antimagic Graph

For an antimagic labeling f on G,
T.-M. Wang and C. C. Hsiao, On anti-magic labeling for graph products, Discrete Math. 308(16), (2008), 3624-3633.
T.-Y. Huang, Antimagic Labeling on Spiders, Master Thesis, Department of Mathematics, National Taiwan University. (2015)

Strongly Antimagic Graph

For an antimagic labeling f on G, if $\operatorname{deg}(u)<\operatorname{deg}(v) \Rightarrow \varphi_{f}(u)<\varphi_{f}(v)$,
T.-M. Wang and C. C. Hsiao, On anti-magic labeling for graph products, Discrete Math. 308(16), (2008), 3624-3633.
T.-Y. Huang, Antimagic Labeling on Spiders, Master Thesis, Department of Mathematics, National Taiwan University. (2015)

Strongly Antimagic Graph

For an antimagic labeling f on G, if $\operatorname{deg}(u)<\operatorname{deg}(v) \Rightarrow \varphi_{f}(u)<\varphi_{f}(v)$, then f is called a strongly antimagic labeling.
T.-M. Wang and C. C. Hsiao, On anti-magic labeling for graph products, Discrete Math. 308(16), (2008), 3624-3633.
T.-Y. Huang, Antimagic Labeling on Spiders, Master Thesis, Department of Mathematics, National Taiwan University. (2015)

Strongly Antimagic Graph

For an antimagic labeling f on G, if $\operatorname{deg}(u)<\operatorname{deg}(v) \Rightarrow \varphi_{f}(u)<\varphi_{f}(v)$, then f is called a strongly antimagic labeling. And G is called strongly antimagic.
T.-M. Wang and C. C. Hsiao, On anti-magic labeling for graph products, Discrete Math. 308(16), (2008), 3624-3633.
T.-Y. Huang, Antimagic Labeling on Spiders, Master Thesis, Department of Mathematics, National Taiwan University. (2015)

Strongly Antimagic Graph
 $$
\operatorname{deg}(u)<\operatorname{deg}(v) \Longrightarrow \varphi_{f}(u)<\varphi_{f}(v)
$$

An antimagic labeling, but Non-strongly antimagic labeling

\boldsymbol{k}-shifted Antimagic Labeling

If $f: E(G) \rightarrow\{k+1, \cdots, m+k\}$ is an injective function

\boldsymbol{k}-shifted Antimagic Labeling

If $f: E(G) \rightarrow\{k+1, \cdots, m+k\}$ is an injective function such that all vertex sums are pairwise distinct,

\boldsymbol{k}-shifted Antimagic Labeling

If $f: E(G) \rightarrow\{k+1, \cdots, m+k\}$ is an injective function such that all vertex sums are pairwise distinct, then f is called an k-shifted antimagic labeling on G.

\boldsymbol{k}-shifted Antimagic Labeling

If $f: E(G) \rightarrow\{k+1, \cdots, m+k\}$ is an injective function such that all vertex sums are pairwise distinct, then f is called an k-shifted antimagic labeling on G. And G is called k-shifted antimagic.

\boldsymbol{k}-shifted Antimagic Labeling

If $f: E(G) \rightarrow\{k+1, \cdots, m+k\}$ is an injective function such that all vertex sums are pairwise distinct, then f is called an k-shifted antimagic labeling on G. And G is called k-shifted antimagic.

Theorem: If G is strongly antimagic, then $\forall k \in N, G$ is k-shifted antimagic.
k-shifted antimagic \Rightarrow ? $(k+1)$-shifted antimagic ?

Question 1 ?
k-shifted antimagic $\Rightarrow ?(k+1)$-shifted antimagic ?

Question 1 ?

Is there a k-shifted antimagic graph but not $(k+1)$-shifted antimagic?

- Kaplan, Lev and Roditty [2009]

Every tree except K_{2} with at most one vertex of degree 2 is antimagic.

Question 2 ?

- Kaplan, Lev and Roditty [2009]

Every tree except K_{2} with at most one vertex of degree 2 is antimagic.

Question 2 ?

Is a tree with at most one vertex of degree 2 strongly antimagic?

Question 3 ?

- Kaplan, Lev and Roditty [2009]

Every tree except K_{2} with at most one vertex of degree 2 is antimagic.

Question 2 ?

Is a tree with at most one vertex of degree 2 strongly antimagic?
Question 3 ?

Is there a connected graph except K_{2} not strongly antimagic?

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis

Antimagic Labelings on Disconnected Graphs.

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis Antimagic Labelings on Disconnected Graphs.

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis Antimagic Labelings on Disconnected Graphs.

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis Antimagic Labelings on Disconnected Graphs.

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis Antimagic Labelings on Disconnected Graphs.

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis Antimagic Labelings on Disconnected Graphs.

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis Antimagic Labelings on Disconnected Graphs.

Disconnected graphs?

$3 P_{3} \cup C_{3}$ is not strongly antimagic

- Li and Silalahi, Master Thesis Antimagic Labelings on Disconnected Graphs.

Strongly antimagic graphs
k-shifted antimagic graphs
Antimagic graphs

Our Results

- Chang, Kin, Li and Pan [2018 ${ }^{+}$]

Double spiders are antimagic. (strongly)

- Guo, Li and Chang [preprint]

Complete multipartite graphs are strongly antimagic.

Question?

Is every connected graph other than K_{2} shifted-antimagic?
> Chang, Chen, Li, Pan [2018 ${ }^{+}$]
Theorem: Trees are shifted-antimagic.

Thank you for your attention!!

For a double spider, we decompose its edge set into three subsets: The core path $P^{\text {core }}$,

Figure 1: A double spider $D S\left(L, P^{\text {core }}, R\right)$.

For a double spider, we decompose its edge set into three subsets: The core path $P^{\text {core }}$,

Figure 1: A double spider $D S\left(L, P^{\text {core }}, R\right)$.

For a double spider, we decompose its edge set into three subsets: The core path $P^{\text {core }}, L$ and

Figure 1: A double spider $D S\left(L, P^{\text {core }}, R\right)$.

For a double spider, we decompose its edge set into three subsets: The core path $P^{\text {core }}, L$ and R.

Figure 1: A double spider $D S\left(L, P^{\text {core }}, R\right)$.

For a double spider, we decompose its edge set into three subsets: The core path $P^{\text {core }, ~} L$ and R.
We denote the endpoints of $P^{\text {core }}$ by v_{l} and v_{r}, respectively and assume L contains at least as many paths as R, hence $\operatorname{deg}\left(v_{l}\right) \geq \operatorname{deg}\left(v_{r}\right)$.

Figure 1: A double spider $D S\left(L, P^{\text {core }}, R\right)$.

For a double spider, we decompose its edge set into three subsets: The core path $P^{\text {core }, ~} L$ and R.
We denote the endpoints of $P^{\text {core }}$ by v_{l} and v_{r}, respectively and assume L contains at least as many paths as R, hence $\operatorname{deg}\left(v_{l}\right) \geq \operatorname{deg}\left(v_{r}\right)$.

$$
a=2, b=1
$$

Figure 1: A double spider $D S\left(L, P^{\text {core }}, R\right)$.

Lemma 4 If $\operatorname{deg}\left(v_{l}\right)=\operatorname{deg}\left(v_{r}\right)=3$

then $D S\left(L, P^{\text {core }}, R\right)$ is strongly antimagic.

Lemma 5 If $\operatorname{deg}\left(v_{l}\right)>\operatorname{deg}\left(v_{r}\right) \geq 3, b=0$,
and R has no odd path of length at least 3 ,
then $D S\left(L, P^{\text {core }}, R\right)$ is strongly antimagic.

Lemma 6 If $\operatorname{deg}\left(v_{l}\right)>\operatorname{deg}\left(v_{r}\right) \geq 3, b=0$, and R has at least one odd path of length at least 3 , then $D S\left(L, P^{\text {core }}, R\right)$ is strongly antimagic.

Lemma 7 If $\operatorname{deg}\left(v_{l}\right)>\operatorname{deg}\left(v_{r}\right) \geq 3$ and $b \geqslant 1$, then $D S\left(L, P^{\text {core }}, R\right)$ is strongly antimagic.

Lemma 6 If $\operatorname{deg}\left(v_{l}\right)>\operatorname{deg}\left(v_{r}\right) \geq 3, b=0$,
and R has at least one odd path of length at least 3,

$$
\text { then } D S\left(L, P^{\text {core }}, R\right) \text { is strongly antimagic. }
$$

Proof of Lemma 6:

We construct a bijective mapping f by assigning $1,2, \ldots, m$ to the edges accordingly in the following steps.

Step 1. Label the odd edges of the odd paths in R

Step 1. Label the odd edges of the odd paths in R

Step 1. Label the odd edges of the odd paths in R

Step 1. Label the odd edges of the odd paths in R

Step 1. Label the odd edges of the odd paths in R

 We will label the edge $e_{a, 1}^{r, o d d}$ later in order to ensure that the vertex sum at v_{r} is large enough.

Step 1. Label the odd edges of the odd paths in R

 We will label the edge $e_{a, 1}^{r, o d d}$ later in order to ensure that the vertex sum at v_{r} is large enough.

Step 2.

Label the odd edges of the odd paths with length at least 3 in L.
We also leave the c edges $e_{i, 2 w_{i}+1}^{l, o d d}$ for $1 \leq i \leq c$ to enlarge the vertex sum at v_{l}.

Step 2.

Label the odd edges of the odd paths with length at least 3 in L.
We also leave the c edges $e_{i, 2 w_{i}+1}^{l, o d d}$ for $1 \leq i \leq c$ to enlarge the vertex sum at v_{l}.

Step 2.

Label the odd edges of the odd paths with length at least 3 in L.
We also leave the c edges $e_{i, 2 w_{i}+1}^{l, o d d}$ for $1 \leq i \leq c$ to enlarge the vertex sum at v_{l}.

Step 3. If $s \geq 4$, label the edges of $P^{\text {core }}$

Step 4. If $d \geq 1$, label the odd edges of the even paths in L

Step 5. If $t \geq 1$, for $i \in[t]$, label the paths of length one in L

Step 5. If $t \geq 1$, for $i \in[t]$, label the paths of length one in L

Step 5. If $t \geq 1$, for $i \in[t]$, label the paths of length one in L

Step 6. label the even edges of the odd paths in R

Step 6. label the even edges of the odd paths in R

Step 6. label the even edges of the odd paths in R

Step 6. label the even edges of the odd paths in R

Step 7. If $c \geq 1$, label the even edges of the odd paths in L

Step 7. If $c \geq 1$, label the even edges of the odd paths in L

Step 7. If $c \geq 1$, label the even edges of the odd paths in L

Step 8. If $s \geq 2$, label the edges in $P^{\text {core }}$

Step 8. If $s \geq 2$, label the edges in $P^{\text {core }}$

Step 8. If $s \geq 2$, label the edges in $P^{\text {core }}$

Step 9. If $d \geq 1$, label the even edges of the even paths in L

Step 9. If $d \geq 1$, label the even edges of the even paths in L

Step 9. If $d \geq 1$, label the even edges of the even paths in L

Step 9. If $d \geq 1$, label the even edges of the even paths in L

Step 10. Label the edge $e_{a, 1}^{r, o d d}$

Step 10. Label the edge $e_{a, 1}^{r, o d d}$

Step 11. If $c \geq 1$, for $i \in[c]$, label the edges $e_{i, 2 w_{i}+1}^{l, \text { odd }}$

Step 11. If $c \geq 1$, for $i \in[c]$, label the edges $e_{i, 2 w_{i}+1}^{l, \text { odd }}$

Step 11. If $c \geq 1$, for $i \in[c]$, label the edges $e_{i, 2 w_{i}+1}^{l, \text { odd }}$

Step 12. Label the remaining edges in $P^{\text {core }}$

Step 12. Label the remaining edges in $P^{\text {core }}$

Step 12. Label the remaining edges in $P^{\text {core }}$

Thank you for your attention!!

