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A general question

Let P be a graph property and T be a graph.

Question: What is maximum number of copies of T in
graphs with n vertices and having the property P?

I If the property P is G being H-free, then it is the
generalized Turán problem ex(n, T,H).

I Erdős (1962) first studied ex(n,Ks, Kt) for s < t.

I Hatami, Hladký, Král’, Norine, and Razborov
determined the asymptotic value of ex(n,C5, C3).

I Bollobás and Győri studied ex(n,C3, C2k+1).

I A hard one: ex(n,C3, C5).
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I Bollobás and Győri studied ex(n,C3, C2k+1).

I A hard one: ex(n,C3, C5).



A general question

Let P be a graph property and T be a graph.

Question: What is maximum number of copies of T in
graphs with n vertices and having the property P?

I If the property P is G being H-free, then it is the
generalized Turán problem ex(n, T,H).

I Erdős (1962) first studied ex(n,Ks, Kt) for s < t.
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Example 1: nonhamiltonian graphs

I Erdős showed if G is nonhamiltonian and δ(G) ≥ k,
then e(G) ≤ max{h(n, k), h(n, bn−1

2
c}, here

h(n, k) =
(
n−k
2

)
+ k2.



Example 1: nonhamiltonian graphs

Copies of general graphs in a nonhamiltonian graphs with
large minimum degree:

I Set hs(n, d) =
(
n−d
s

)
+ d

(
d

s−1

)
.

I Füredi, Kostochka, and Luo if G is nonhamiltoniam
with δ(G) ≥ k, then
Ns(G) ≤ max{hs(n, k), hs(n, bn−12 c)}.

I For n large enough and a general graph F ,
N(G,F ) ≤ N(Hn,k, F ).
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Example 2: no long cycles or paths

Erdős and Gallai

I If G is C≥`-free, then e(G) ≤ n−1
`−2

(
`−1
2

)
.

I If G is P`-free, then e(G) ≤ n
`−1

(
`−1
2

)
.

Luo, simple proofs by Ning and P.

I If G is C≥`-free, then Ns(G) ≤ n−1
`−2

(
`−1
s

)
.

I If G is P`-free, then Ns(G) ≤ n
`−1

(
`−1
s

)
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Example 3: non-`-hamiltonian

A graph G is `-hamiltonian if each linear forest with `
edges can be extended to a hamiltonian cycle in G.

I Füredi, Kostochka, and Luo: Assume
0 ≤ l < k ≤ bn+l−1

2
c. If G is an n vertex graph with

minimum degree δ(G) ≥ k, and G is not `-hamiltonian,
then Ns(G) ≤ max{hs(n, k, `), hs(n, bn+l−1

2
c, `)}
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t–stable properties

Let P be a graph property. If whenever G+ uv has the
property P and dG(u) + dG(v) ≥ t, then G itself also has
the property P .

I G contains Cs (t = 2n− s).
I G contains a path Ps (t = n− 1).

I G contains a matching sK2 (t = 2s− 1).

I G contains a spanning s-regular graph (t = n+ 2s− 4).

I G is s-connected (t = n+ s− 2).

Question (Füredi, Kostochka, and Luo)

Determine the maximum number of copies of cliques in
graphs having a stable property P.



t–stable properties

Let P be a graph property. If whenever G+ uv has the
property P and dG(u) + dG(v) ≥ t, then G itself also has
the property P .

I G contains Cs (t = 2n− s).

I G contains a path Ps (t = n− 1).

I G contains a matching sK2 (t = 2s− 1).

I G contains a spanning s-regular graph (t = n+ 2s− 4).

I G is s-connected (t = n+ s− 2).
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Our results

Let hs(n, k, r) =
(
2k+1−r

s

)
+ (n− 2k − 1 + r)

(
r

s−1
)
.



Our results

Erdős and Gallai:

I Let G be a graph on n vertices. If ν(G) ≤ k, then
e(G) ≤ max

{(
2k+1
2

)
, h2(n, k, k)

}
.

Theorem (Duan, Ning, P., Wang, and Yang)

If G is a graph with n ≥ 2k + 2 vertices, minimum degree δ,
and ν(G) ≤ k, then Ns(G) ≤ max{hs(n, k, δ), hs(n, k, k)}
for each s ≥ 2.
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Proof sketch: I

I Apply the technique by Kopylov.

I Let G be a counterexample.

I G′ be the (2k + 1)-closure of G.

I Observe ν(G′) ≤ k.

I Step 1: Consider the (k + 1)-core H1 of G′.

I Claim 1: H1 6= ∅.
I Otherwise,

Ns(G
′) ≤ (n− k)

(
k

s−1
)

+
(
k
s

)
= hs(n, k, k).

I Claim 2: H1 is a clique.

I G′ is the (2k + 1)-closure and dH1(u), dH1(v) ≥ k + 1.
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Proof sketch: II

I Let t = |H1| and estimate t.

I Observe t ≥ k + 2 as dH1(u) ≥ k + 1.

I Claim t ≤ 2k + 1− δ.
I Otherwise, pick u ∈ H1 and v ∈ V (G′) \ V (H1) such

that u 6∼ v.

I As dH1(u) ≥ 2k + 1− δ and dG′(v) ≥ δ, G′ is the
(2k + 1)-closure, we get u ∼ v. Contradiction.

I k + 2 ≤ t ≤ 2k + 1− δ.
I Step 2: consider the (2k − t+ 2)-core H2 of G′.

I Claim H1 ( H2.

I If H1 = H2, then
Ns(G

′) ≤
(
t
s

)
+ (n− t)

(
2k−t+1
s−1

)
= hs(n, k, 2k + 1− t).
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Ns(G

′) ≤
(
t
s

)
+ (n− t)

(
2k−t+1
s−1

)
= hs(n, k, 2k + 1− t).



Proof sketch: II

I Let t = |H1| and estimate t.

I Observe t ≥ k + 2 as dH1(u) ≥ k + 1.

I Claim t ≤ 2k + 1− δ.
I Otherwise, pick u ∈ H1 and v ∈ V (G′) \ V (H1) such
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Proof sketch: III

I By the convexity of hs(n, k, r) and δ ≤ 2k − t+ 1 ≤ k,
we get Ns(G

′) ≤ max{hs(n, k, δ), hs(n, k, k)}.

I H1 ( H2 implies there are vertices u ∈ H1 and
v ∈ H2 \H1 such that u 6∼ v.

I Note dH1(u) ≥ t− 1 and dH2(v) ≥ 2k − t+ 2.

I Then d′G(u) + d′G(v) ≥ 2k + 1 and they are adjacent as
G′ is the (2k + 1)-closure.
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Known stability results: I

Theorem (Erdős)

Let n and d be integers with 1 ≤ d ≤ bn−1
2
c. If G is

nonhamiltonian and δ(G) ≥ k, then
e(G) ≤ max{h(n, k), h(n, bn−1

2
c)}.

Theorem (Füredi, Kostochka, and Luo)

Let n and d be integers with 1 ≤ k ≤ bn−1
2
c. If G is

nonhamiltonian, δ(G) ≥ k, e(G) > max{h(n, k+ 1), h(n, bn−12 c)},
then G is a subgraph of either Hn,k or H ′n,k.
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Known stability results: II

Theorem (Füredi, Kostochka, and Luo)

If G is nonhamiltonian and δ(G) ≥ k, then
Ns(G) ≤ max{hs(n, k), hs(n, bn−12 c)}.

Theorem (Stability version)

If G is nonhamiltonian, δ(G) ≥ k, and
Ns(G) > max{hs(n, k + 2), hs(n, bn−12 c)}, then G is in a
collection of graphs.

Question: Can we establish a stability version of the result
on the number of copies of general graphs?
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Ns(G) ≤ max{hs(n, k), hs(n, bn−12 c)}.
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Known stability results: III

Theorem (Erdős and Gallai)

If G does not contain a cycle of length at least k, then
e(G) ≤ n−1

k−2

(
k−1
2

)
.

Theorem (Kopylov)

If G is 2-connected and does not contains a cycle of length
at least k, then e(G) ≤ max{h(n, k, 2), h(n, k, bk−1

2
c)}.

Theorem (Füredi, Kostochka, and Verstraëte)

Assume n ≥ 3k
2
. If G is 2-connected, does not contains a

cycle of length at least k, and e(G) > h(n, k, bk−1
2
c)− 1),

then G is in a family of graphs.
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Known stability results: IV

Theorem (Füredi, Kostochka, Luo, and Verstraëte)

If G is 2-connected, does not contains a cycle of length at
least k, and e(G) > max{h(n, k, 3), h(n, k, bk−1

2
c − 1)}, then

G is in a family of graphs.

Theorem (Ma and Ning)

If G is 2-connected, δ(G) ≥ d, does not contains a cycle of
length at least k, and
e(G) > max{h(n, k, d+ 1), h(n, k, bk

2
c − 1)}, then G is in a

family of graphs.



Known stability results: IV

Theorem (Füredi, Kostochka, Luo, and Verstraëte)

If G is 2-connected, does not contains a cycle of length at
least k, and e(G) > max{h(n, k, 3), h(n, k, bk−1

2
c − 1)}, then

G is in a family of graphs.

Theorem (Ma and Ning)

If G is 2-connected, δ(G) ≥ d, does not contains a cycle of
length at least k, and
e(G) > max{h(n, k, d+ 1), h(n, k, bk

2
c − 1)}, then G is in a

family of graphs.



Our result: stability versions

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with δ(G) ≥ δ and ν(G) ≤ k.
If n ≥ 2k + 2 and e(G) > max{h2(n, k, δ), h2(n, k, k − 2)},
then G has to be a subgraph of H(n, k, k) or H(n, k, k − 1).

Remark: Observe hs(n, k, k)− hs(n, k, k − 2) = Θ(hs(n, k, k)).

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with δ(G) ≥ δ and ν(G) ≤ k.
If n ≥ 2k + 11 and e(G) > max{h2(n, k, δ + 2), h2(n, k, k)},
then G has to be a subgraph of H(n, k, δ) or H(n, k, δ + 1).
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