Cliques in graphs with given matching number

Xing Peng

Joint work with Xiujuan Duan，Bo Ning，Jian Wang，Weihua Yang

Tianjin University

10th Cross－Strait Conference on Graph Theory and Combinatorics National Chung Hsing University

August 20， 2019

A general question

Let \mathcal{P} be a graph property and T be a graph.

A general question

Let \mathcal{P} be a graph property and T be a graph.
Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

A general question

Let \mathcal{P} be a graph property and T be a graph.
Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- If the property \mathcal{P} is G being \mathcal{H}-free, then it is the generalized Turán problem $\operatorname{ex}(n, T, \mathcal{H})$.

A general question

Let \mathcal{P} be a graph property and T be a graph.
Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- If the property \mathcal{P} is G being \mathcal{H}-free, then it is the generalized Turán problem $\operatorname{ex}(n, T, \mathcal{H})$.
- Erdős (1962) first studied ex $\left(n, K_{s}, K_{t}\right)$ for $s<t$.

A general question

Let \mathcal{P} be a graph property and T be a graph.
Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- If the property \mathcal{P} is G being \mathcal{H}-free, then it is the generalized Turán problem $\operatorname{ex}(n, T, \mathcal{H})$.
- Erdős (1962) first studied ex $\left(n, K_{s}, K_{t}\right)$ for $s<t$.
- Hatami, Hladký, Král', Norine, and Razborov determined the asymptotic value of $\operatorname{ex}\left(n, C_{5}, C_{3}\right)$.

A general question

Let \mathcal{P} be a graph property and T be a graph.
Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- If the property \mathcal{P} is G being \mathcal{H}-free, then it is the generalized Turán problem $\operatorname{ex}(n, T, \mathcal{H})$.
- Erdős (1962) first studied ex $\left(n, K_{s}, K_{t}\right)$ for $s<t$.
- Hatami, Hladký, Král', Norine, and Razborov determined the asymptotic value of $\operatorname{ex}\left(n, C_{5}, C_{3}\right)$.
- Bollobás and Győri studied ex $\left(n, C_{3}, C_{2 k+1}\right)$.

A general question

Let \mathcal{P} be a graph property and T be a graph.
Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- If the property \mathcal{P} is G being \mathcal{H}-free, then it is the generalized Turán problem $\operatorname{ex}(n, T, \mathcal{H})$.
- Erdős (1962) first studied ex $\left(n, K_{s}, K_{t}\right)$ for $s<t$.
- Hatami, Hladký, Král', Norine, and Razborov determined the asymptotic value of $\operatorname{ex}\left(n, C_{5}, C_{3}\right)$.
- Bollobás and Győri studied ex $\left(n, C_{3}, C_{2 k+1}\right)$.
- A hard one: $\operatorname{ex}\left(n, C_{3}, C_{5}\right)$.

Example 1: nonhamiltonian graphs

- Erdős showed if G is nonhamiltonian and $\delta(G) \geq k$, then $e(G) \leq \max \left\{h(n, k), h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right\}\right.$, here

$$
h(n, k)=\binom{n-k}{2}+k^{2} .
$$

Example 1: nonhamiltonian graphs

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

Example 1: nonhamiltonian graphs

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

- Set $h_{s}(n, d)=\binom{n-d}{s}+d\binom{d}{s-1}$.

Example 1: nonhamiltonian graphs

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

- Set $h_{s}(n, d)=\binom{n-d}{s}+d\binom{d}{s-1}$.
- Füredi, Kostochka, and Luo if G is nonhamiltoniam with $\delta(G) \geq k$, then

$$
N_{s}(G) \leq \max \left\{h_{s}(n, k), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}
$$

Example 1: nonhamiltonian graphs

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

- Set $h_{s}(n, d)=\binom{n-d}{s}+d\binom{d}{s-1}$.
- Füredi, Kostochka, and Luo if G is nonhamiltoniam with $\delta(G) \geq k$, then
$N_{s}(G) \leq \max \left\{h_{s}(n, k), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$.
- For n large enough and a general graph F, $N(G, F) \leq N\left(H_{n, k}, F\right)$.

Example 2: no long cycles or paths

Erdős and Gallai

- If G is $\mathcal{C}_{\geq \ell}$-free, then $e(G) \leq \frac{n-1}{\ell-2}\binom{\ell-1}{2}$.

Example 2: no long cycles or paths

Erdős and Gallai

- If G is $\mathcal{C}_{\geq \ell}$-free, then $e(G) \leq \frac{n-1}{\ell-2}\binom{\ell-1}{2}$.
- If G is P_{ℓ}-free, then $e(G) \leq \frac{n}{\ell-1}\binom{\ell-1}{2}$.

Example 2: no long cycles or paths

Erdős and Gallai

- If G is $\mathcal{C}_{\geq \ell}$-free, then $e(G) \leq \frac{n-1}{\ell-2}\binom{\ell-1}{2}$.
- If G is P_{ℓ}-free, then $e(G) \leq \frac{n}{\ell-1}\binom{\ell-1}{2}$.

Luo, simple proofs by Ning and P.

- If G is $\mathcal{C}_{\geq \ell}$-free, then $N_{s}(G) \leq \frac{n-1}{\ell-2}\binom{\ell-1}{s}$.

Example 2: no long cycles or paths

Erdős and Gallai

- If G is $\mathcal{C}_{\geq \ell}$-free, then $e(G) \leq \frac{n-1}{\ell-2}\binom{\ell-1}{2}$.
- If G is P_{ℓ}-free, then $e(G) \leq \frac{n}{\ell-1}\binom{\ell-1}{2}$.

Luo, simple proofs by Ning and P.

- If G is $\mathcal{C}_{\geq \ell}$-free, then $N_{s}(G) \leq \frac{n-1}{\ell-2}\binom{\ell-1}{s}$.
- If G is P_{ℓ}-free, then $N_{s}(G) \leq \frac{n}{\ell-1}\binom{\ell-1}{s}$.

Example 3: non- ℓ-hamiltonian

A graph G is ℓ-hamiltonian if each linear forest with ℓ edges can be extended to a hamiltonian cycle in G.

Example 3: non- ℓ-hamiltonian

A graph G is ℓ-hamiltonian if each linear forest with ℓ edges can be extended to a hamiltonian cycle in G.

- Füredi, Kostochka, and Luo: Assume $0 \leq l<k \leq\left\lfloor\frac{n+l-1}{2}\right\rfloor$. If G is an n vertex graph with minimum degree $\delta(G) \geq k$, and G is not ℓ-hamiltonian, then $N_{s}(G) \leq \max \left\{h_{s}(n, k, \ell), h_{s}\left(n,\left\lfloor\frac{n+l-1}{2}\right\rfloor, \ell\right)\right\}$

t-stable properties

Let \mathcal{P} be a graph property. If whenever $G+u v$ has the property \mathcal{P} and $d_{G}(u)+d_{G}(v) \geq t$, then G itself also has the property \mathcal{P}.

t-stable properties

Let \mathcal{P} be a graph property. If whenever $G+u v$ has the property \mathcal{P} and $d_{G}(u)+d_{G}(v) \geq t$, then G itself also has the property \mathcal{P}.

- G contains $C_{s}(t=2 n-s)$.

t-stable properties

Let \mathcal{P} be a graph property. If whenever $G+u v$ has the property \mathcal{P} and $d_{G}(u)+d_{G}(v) \geq t$, then G itself also has the property \mathcal{P}.

- G contains $C_{s}(t=2 n-s)$.
- G contains a path $P_{s}(t=n-1)$.

t-stable properties

Let \mathcal{P} be a graph property. If whenever $G+u v$ has the property \mathcal{P} and $d_{G}(u)+d_{G}(v) \geq t$, then G itself also has the property \mathcal{P}.

- G contains $C_{s}(t=2 n-s)$.
- G contains a path $P_{s}(t=n-1)$.
- G contains a matching $s K_{2}(t=2 s-1)$.

t-stable properties

Let \mathcal{P} be a graph property. If whenever $G+u v$ has the property \mathcal{P} and $d_{G}(u)+d_{G}(v) \geq t$, then G itself also has the property \mathcal{P}.

- G contains $C_{s}(t=2 n-s)$.
- G contains a path $P_{s}(t=n-1)$.
- G contains a matching $s K_{2}(t=2 s-1)$.
- G contains a spanning s-regular graph $(t=n+2 s-4)$.

t-stable properties

Let \mathcal{P} be a graph property. If whenever $G+u v$ has the property \mathcal{P} and $d_{G}(u)+d_{G}(v) \geq t$, then G itself also has the property \mathcal{P}.

- G contains $C_{s}(t=2 n-s)$.
- G contains a path $P_{s}(t=n-1)$.
- G contains a matching $s K_{2}(t=2 s-1)$.
- G contains a spanning s-regular graph $(t=n+2 s-4)$.
- G is s-connected $(t=n+s-2)$.

t-stable properties

Let \mathcal{P} be a graph property. If whenever $G+u v$ has the property \mathcal{P} and $d_{G}(u)+d_{G}(v) \geq t$, then G itself also has the property \mathcal{P}.

- G contains $C_{s}(t=2 n-s)$.
- G contains a path $P_{s}(t=n-1)$.
- G contains a matching $s K_{2}(t=2 s-1)$.
- G contains a spanning s-regular graph $(t=n+2 s-4)$.
- G is s-connected $(t=n+s-2)$.

Question (Füredi, Kostochka, and Luo)

Determine the maximum number of copies of cliques in graphs having a stable property \mathcal{P}.

Our results

Let $h_{s}(n, k, r)=\binom{2 k+1-r}{s}+(n-2 k-1+r)\binom{r}{s-1}$.

Our results

Erdős and Gallai:

- Let G be a graph on n vertices. If $\nu(G) \leq k$, then $e(G) \leq \max \left\{\binom{2 k+1}{2}, h_{2}(n, k, k)\right\}$.

Our results

Erdős and Gallai:

- Let G be a graph on n vertices. If $\nu(G) \leq k$, then $e(G) \leq \max \left\{\binom{2 k+1}{2}, h_{2}(n, k, k)\right\}$.

Theorem (Duan, Ning, P., Wang, and Yang)

If G is a graph with $n \geq 2 k+2$ vertices, minimum degree δ, and $\nu(G) \leq k$, then $N_{s}(G) \leq \max \left\{h_{s}(n, k, \delta), h_{s}(n, k, k)\right\}$ for each $s \geq 2$.

Proof sketch: I

- Apply the technique by Kopylov.

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G^{\prime} be the $(2 k+1)$-closure of G.

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G^{\prime} be the $(2 k+1)$-closure of G.
- Observe $\nu\left(G^{\prime}\right) \leq k$.

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G^{\prime} be the $(2 k+1)$-closure of G.
- Observe $\nu\left(G^{\prime}\right) \leq k$.
- Step 1: Consider the $(k+1)$-core H_{1} of G^{\prime}.

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G^{\prime} be the $(2 k+1)$-closure of G.
- Observe $\nu\left(G^{\prime}\right) \leq k$.
- Step 1: Consider the $(k+1)$-core H_{1} of G^{\prime}.
- Claim 1: $H_{1} \neq \emptyset$.

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G^{\prime} be the $(2 k+1)$-closure of G.
- Observe $\nu\left(G^{\prime}\right) \leq k$.
- Step 1: Consider the $(k+1)$-core H_{1} of G^{\prime}.
- Claim 1: $H_{1} \neq \emptyset$.
- Otherwise,

$$
N_{s}\left(G^{\prime}\right) \leq(n-k)\binom{k}{s-1}+\binom{k}{s}=h_{s}(n, k, k) .
$$

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G^{\prime} be the $(2 k+1)$-closure of G.
- Observe $\nu\left(G^{\prime}\right) \leq k$.
- Step 1: Consider the $(k+1)$-core H_{1} of G^{\prime}.
- Claim 1: $H_{1} \neq \emptyset$.
- Otherwise,

$$
N_{s}\left(G^{\prime}\right) \leq(n-k)\binom{k}{s-1}+\binom{k}{s}=h_{s}(n, k, k) .
$$

- Claim 2: H_{1} is a clique.

Proof sketch: I

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G^{\prime} be the $(2 k+1)$-closure of G.
- Observe $\nu\left(G^{\prime}\right) \leq k$.
- Step 1: Consider the $(k+1)$-core H_{1} of G^{\prime}.
- Claim 1: $H_{1} \neq \emptyset$.
- Otherwise,

$$
N_{s}\left(G^{\prime}\right) \leq(n-k)\binom{k}{s-1}+\binom{k}{s}=h_{s}(n, k, k) .
$$

- Claim 2: H_{1} is a clique.
- G^{\prime} is the $(2 k+1)$-closure and $d_{H_{1}}(u), d_{H_{1}}(v) \geq k+1$.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.
- Claim $t \leq 2 k+1-\delta$.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.
- Claim $t \leq 2 k+1-\delta$.
- Otherwise, pick $u \in H_{1}$ and $v \in V\left(G^{\prime}\right) \backslash V\left(H_{1}\right)$ such that $u \nsim v$ 。

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.
- Claim $t \leq 2 k+1-\delta$.
- Otherwise, pick $u \in H_{1}$ and $v \in V\left(G^{\prime}\right) \backslash V\left(H_{1}\right)$ such that $u \nsim v$.
- As $d_{H_{1}}(u) \geq 2 k+1-\delta$ and $d_{G^{\prime}}(v) \geq \delta, G^{\prime}$ is the $(2 k+1)$-closure, we get $u \sim v$. Contradiction.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.
- Claim $t \leq 2 k+1-\delta$.
- Otherwise, pick $u \in H_{1}$ and $v \in V\left(G^{\prime}\right) \backslash V\left(H_{1}\right)$ such that $u \nsim v$.
- As $d_{H_{1}}(u) \geq 2 k+1-\delta$ and $d_{G^{\prime}}(v) \geq \delta, G^{\prime}$ is the $(2 k+1)$-closure, we get $u \sim v$. Contradiction.
- $k+2 \leq t \leq 2 k+1-\delta$.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.
- Claim $t \leq 2 k+1-\delta$.
- Otherwise, pick $u \in H_{1}$ and $v \in V\left(G^{\prime}\right) \backslash V\left(H_{1}\right)$ such that $u \nsim v$.
- As $d_{H_{1}}(u) \geq 2 k+1-\delta$ and $d_{G^{\prime}}(v) \geq \delta, G^{\prime}$ is the $(2 k+1)$-closure, we get $u \sim v$. Contradiction.
- $k+2 \leq t \leq 2 k+1-\delta$.
- Step 2: consider the $(2 k-t+2)$-core H_{2} of G^{\prime}.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.
- Claim $t \leq 2 k+1-\delta$.
- Otherwise, pick $u \in H_{1}$ and $v \in V\left(G^{\prime}\right) \backslash V\left(H_{1}\right)$ such that $u \nsim v$.
- As $d_{H_{1}}(u) \geq 2 k+1-\delta$ and $d_{G^{\prime}}(v) \geq \delta, G^{\prime}$ is the $(2 k+1)$-closure, we get $u \sim v$. Contradiction.
- $k+2 \leq t \leq 2 k+1-\delta$.
- Step 2: consider the $(2 k-t+2)$-core H_{2} of G^{\prime}.
- Claim $H_{1} \subsetneq H_{2}$.

Proof sketch: II

- Let $t=\left|H_{1}\right|$ and estimate t.
- Observe $t \geq k+2$ as $d_{H_{1}}(u) \geq k+1$.
- Claim $t \leq 2 k+1-\delta$.
- Otherwise, pick $u \in H_{1}$ and $v \in V\left(G^{\prime}\right) \backslash V\left(H_{1}\right)$ such that $u \nsim v$.
- As $d_{H_{1}}(u) \geq 2 k+1-\delta$ and $d_{G^{\prime}}(v) \geq \delta, G^{\prime}$ is the $(2 k+1)$-closure, we get $u \sim v$. Contradiction.
- $k+2 \leq t \leq 2 k+1-\delta$.
- Step 2: consider the $(2 k-t+2)$-core H_{2} of G^{\prime}.
- Claim $H_{1} \subsetneq H_{2}$.
- If $H_{1}=H_{2}$, then

$$
N_{s}\left(G^{\prime}\right) \leq\binom{ t}{s}+(n-t)\binom{2 k-t+1}{s-1}=h_{s}(n, k, 2 k+1-t)
$$

Proof sketch: III

- By the convexity of $h_{s}(n, k, r)$ and $\delta \leq 2 k-t+1 \leq k$, we get $N_{s}\left(G^{\prime}\right) \leq \max \left\{h_{s}(n, k, \delta), h_{s}(n, k, k)\right\}$.

Proof sketch: III

- By the convexity of $h_{s}(n, k, r)$ and $\delta \leq 2 k-t+1 \leq k$, we get $N_{s}\left(G^{\prime}\right) \leq \max \left\{h_{s}(n, k, \delta), h_{s}(n, k, k)\right\}$.
- $H_{1} \subsetneq H_{2}$ implies there are vertices $u \in H_{1}$ and $v \in H_{2} \backslash H_{1}$ such that $u \nsim v$.

Proof sketch: III

- By the convexity of $h_{s}(n, k, r)$ and $\delta \leq 2 k-t+1 \leq k$, we get $N_{s}\left(G^{\prime}\right) \leq \max \left\{h_{s}(n, k, \delta), h_{s}(n, k, k)\right\}$.
- $H_{1} \subsetneq H_{2}$ implies there are vertices $u \in H_{1}$ and $v \in H_{2} \backslash H_{1}$ such that $u \nsim v$.
- Note $d_{H_{1}}(u) \geq t-1$ and $d_{H_{2}}(v) \geq 2 k-t+2$.

Proof sketch: III

- By the convexity of $h_{s}(n, k, r)$ and $\delta \leq 2 k-t+1 \leq k$, we get $N_{s}\left(G^{\prime}\right) \leq \max \left\{h_{s}(n, k, \delta), h_{s}(n, k, k)\right\}$.
- $H_{1} \subsetneq H_{2}$ implies there are vertices $u \in H_{1}$ and $v \in H_{2} \backslash H_{1}$ such that $u \nsim v$.
- Note $d_{H_{1}}(u) \geq t-1$ and $d_{H_{2}}(v) \geq 2 k-t+2$.
- Then $d_{G}^{\prime}(u)+d_{G}^{\prime}(v) \geq 2 k+1$ and they are adjacent as G^{\prime} is the $(2 k+1)$-closure.

Known stability results: I

Theorem (Erdős)

Let n and d be integers with $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. If G is nonhamiltonian and $\delta(G) \geq k$, then $e(G) \leq \max \left\{h(n, k), h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$.

Known stability results: I

Theorem (Erdős)

Let n and d be integers with $1 \leq d \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. If G is nonhamiltonian and $\delta(G) \geq k$, then $e(G) \leq \max \left\{h(n, k), h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$.

Theorem (Füredi, Kostochka, and Luo)

Let n and d be integers with $1 \leq k \leq\left\lfloor\frac{n-1}{2}\right\rfloor$. If G is nonhamiltonian, $\delta(G) \geq k, e(G)>\max \left\{h(n, k+1), h\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$, then G is a subgraph of either $H_{n, k}$ or $H_{n, k}^{\prime}$.

Known stability results: II

Theorem (Füredi, Kostochka, and Luo)

If G is nonhamiltonian and $\delta(G) \geq k$, then
$N_{s}(G) \leq \max \left\{h_{s}(n, k), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$.

Known stability results: II

Theorem (Füredi, Kostochka, and Luo)
 If G is nonhamiltonian and $\delta(G) \geq k$, then
 $N_{s}(G) \leq \max \left\{h_{s}(n, k), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$.

Theorem (Stability version)

If G is nonhamiltonian, $\delta(G) \geq k$, and $N_{s}(G)>\max \left\{h_{s}(n, k+2), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$, then G is in a collection of graphs.

Known stability results: II

> Theorem (Füredi, Kostochka, and Luo)
> If G is nonhamiltonian and $\delta(G) \geq k$, then
> $N_{s}(G) \leq \max \left\{h_{s}(n, k), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$.

Theorem (Stability version)

If G is nonhamiltonian, $\delta(G) \geq k$, and $N_{s}(G)>\max \left\{h_{s}(n, k+2), h_{s}\left(n,\left\lfloor\frac{n-1}{2}\right\rfloor\right)\right\}$, then G is in a collection of graphs.

Question: Can we establish a stability version of the result on the number of copies of general graphs?

Known stability results: III

Theorem (Erdős and Gallai)

If G does not contain a cycle of length at least k, then $e(G) \leq \frac{n-1}{k-2}\binom{k-1}{2}$.

Known stability results: III

Theorem (Erdős and Gallai)

If G does not contain a cycle of length at least k, then $e(G) \leq \frac{n-1}{k-2}\binom{k-1}{2}$.

Theorem (Kopylov)

If G is 2-connected and does not contains a cycle of length at least k, then $e(G) \leq \max \left\{h(n, k, 2), h\left(n, k,\left\lfloor\frac{k-1}{2}\right\rfloor\right)\right\}$.

Known stability results: III

Theorem (Erdős and Gallai)

If G does not contain a cycle of length at least k, then $e(G) \leq \frac{n-1}{k-2}\binom{k-1}{2}$.

Theorem (Kopylov)

If G is 2-connected and does not contains a cycle of length at least k, then $e(G) \leq \max \left\{h(n, k, 2), h\left(n, k,\left\lfloor\frac{k-1}{2}\right\rfloor\right)\right\}$.

Theorem (Füredi, Kostochka, and Verstraëte)

Assume $n \geq \frac{3 k}{2}$. If G is 2-connected, does not contains a cycle of length at least k, and $\left.e(G)>h\left(n, k,\left\lfloor\frac{k-1}{2}\right\rfloor\right)-1\right)$, then G is in a family of graphs.

Known stability results: IV

Theorem (Füredi, Kostochka, Luo, and Verstraëte)

If G is 2-connected, does not contains a cycle of length at least k, and $e(G)>\max \left\{h(n, k, 3), h\left(n, k,\left\lfloor\frac{k-1}{2}\right\rfloor-1\right)\right\}$, then G is in a family of graphs.

Known stability results: IV

Theorem (Füredi, Kostochka, Luo, and Verstraëte)

If G is 2-connected, does not contains a cycle of length at least k, and $e(G)>\max \left\{h(n, k, 3), h\left(n, k,\left\lfloor\frac{k-1}{2}\right\rfloor-1\right)\right\}$, then G is in a family of graphs.

Theorem (Ma and Ning)

If G is 2-connected, $\delta(G) \geq d$, does not contains a cycle of length at least k, and $e(G)>\max \left\{h(n, k, d+1), h\left(n, k,\left\lfloor\frac{k}{2}\right\rfloor-1\right)\right\}$, then G is in a family of graphs.

Our result: stability versions

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \geq \delta$ and $\nu(G) \leq k$. If $n \geq 2 k+2$ and $e(G)>\max \left\{h_{2}(n, k, \delta), h_{2}(n, k, k-2)\right\}$, then G has to be a subgraph of $H(n, k, k)$ or $H(n, k, k-1)$.

Our result: stability versions

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \geq \delta$ and $\nu(G) \leq k$. If $n \geq 2 k+2$ and $e(G)>\max \left\{h_{2}(n, k, \delta), h_{2}(n, k, k-2)\right\}$, then G has to be a subgraph of $H(n, k, k)$ or $H(n, k, k-1)$.

Remark: Observe $h_{s}(n, k, k)-h_{s}(n, k, k-2)=\Theta\left(h_{s}(n, k, k)\right)$.

Our result: stability versions

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \geq \delta$ and $\nu(G) \leq k$. If $n \geq 2 k+2$ and $e(G)>\max \left\{h_{2}(n, k, \delta), h_{2}(n, k, k-2)\right\}$, then G has to be a subgraph of $H(n, k, k)$ or $H(n, k, k-1)$.

Remark: Observe $h_{s}(n, k, k)-h_{s}(n, k, k-2)=\Theta\left(h_{s}(n, k, k)\right)$.

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \geq \delta$ and $\nu(G) \leq k$. If $n \geq 2 k+11$ and $e(G)>\max \left\{h_{2}(n, k, \delta+2), h_{2}(n, k, k)\right\}$, then G has to be a subgraph of $H(n, k, \delta)$ or $H(n, k, \delta+1)$.

Thanks

