Cliques in graphs with given matching number

Xing Peng

Joint work with Xiujuan Duan, Bo Ning, Jian Wang, Weihua Yang

Tianjin University

10th Cross-Strait Conference on Graph Theory and Combinatorics National Chung Hsing University

August 20, 2019

Let \mathcal{P} be a graph property and T be a graph.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let \mathcal{P} be a graph property and T be a graph. Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

Let \mathcal{P} be a graph property and T be a graph.

Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

▶ If the property \mathcal{P} is *G* being \mathcal{H} -free, then it is the generalized Turán problem $ex(n, T, \mathcal{H})$.

Let \mathcal{P} be a graph property and T be a graph.

Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- ► If the property \mathcal{P} is G being \mathcal{H} -free, then it is the generalized Turán problem $ex(n, T, \mathcal{H})$.
- ▶ Erdős (1962) first studied $ex(n, K_s, K_t)$ for s < t.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Let \mathcal{P} be a graph property and T be a graph.

Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- ▶ If the property \mathcal{P} is *G* being \mathcal{H} -free, then it is the generalized Turán problem $ex(n, T, \mathcal{H})$.
- ▶ Erdős (1962) first studied $ex(n, K_s, K_t)$ for s < t.
- ▶ Hatami, Hladký, Král', Norine, and Razborov determined the asymptotic value of $ex(n, C_5, C_3)$.

Let \mathcal{P} be a graph property and T be a graph.

Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- ▶ If the property \mathcal{P} is G being \mathcal{H} -free, then it is the generalized Turán problem $ex(n, T, \mathcal{H})$.
- ▶ Erdős (1962) first studied $ex(n, K_s, K_t)$ for s < t.
- ▶ Hatami, Hladký, Král', Norine, and Razborov determined the asymptotic value of $ex(n, C_5, C_3)$.

▶ Bollobás and Győri studied $ex(n, C_3, C_{2k+1})$.

Let \mathcal{P} be a graph property and T be a graph.

Question: What is maximum number of copies of T in graphs with n vertices and having the property \mathcal{P} ?

- ▶ If the property \mathcal{P} is G being \mathcal{H} -free, then it is the generalized Turán problem $ex(n, T, \mathcal{H})$.
- ▶ Erdős (1962) first studied $ex(n, K_s, K_t)$ for s < t.
- ▶ Hatami, Hladký, Král', Norine, and Razborov determined the asymptotic value of $ex(n, C_5, C_3)$.

- ▶ Bollobás and Győri studied $ex(n, C_3, C_{2k+1})$.
- A hard one: $ex(n, C_3, C_5)$.

• Erdős showed if G is nonhamiltonian and $\delta(G) \ge k$, then $e(G) \le \max\{h(n,k), h(n, \lfloor \frac{n-1}{2} \rfloor\}$, here $h(n,k) = \binom{n-k}{2} + k^2$.

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

・ロト ・個ト ・ヨト ・ヨト ヨ ・ のへで

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

・ロト ・個ト ・ヨト ・ヨト ヨ ・ のへで

• Set
$$h_s(n,d) = \binom{n-d}{s} + d\binom{d}{s-1}$$
.

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

- Set $h_s(n,d) = \binom{n-d}{s} + d\binom{d}{s-1}$.
- ► Füredi, Kostochka, and Luo if G is nonhamiltoniam with $\delta(G) \ge k$, then $N_s(G) \le \max\{h_s(n,k), h_s(n, \lfloor \frac{n-1}{2} \rfloor)\}.$

Copies of general graphs in a nonhamiltonian graphs with large minimum degree:

- Set $h_s(n,d) = \binom{n-d}{s} + d\binom{d}{s-1}$.
- ► Füredi, Kostochka, and Luo if G is nonhamiltoniam with $\delta(G) \ge k$, then $N_s(G) \le \max\{h_s(n,k), h_s(n, \lfloor \frac{n-1}{2} \rfloor)\}.$

► For *n* large enough and a general graph *F*, $N(G, F) \leq N(H_{n,k}, F).$

Erdős and Gallai

• If G is $\mathcal{C}_{\geq \ell}$ -free, then $e(G) \leq \frac{n-1}{\ell-2} \binom{\ell-1}{2}$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Erdős and Gallai

- If G is $\mathcal{C}_{\geq \ell}$ -free, then $e(G) \leq \frac{n-1}{\ell-2} \binom{\ell-1}{2}$.
- If G is P_{ℓ} -free, then $e(G) \leq \frac{n}{\ell-1} {\ell-1 \choose 2}$.

Erdős and Gallai

- If G is $\mathcal{C}_{\geq \ell}$ -free, then $e(G) \leq \frac{n-1}{\ell-2} \binom{\ell-1}{2}$.
- If G is P_{ℓ} -free, then $e(G) \leq \frac{n}{\ell-1} {\ell-1 \choose 2}$.

Luo, simple proofs by Ning and P.

• If G is
$$\mathcal{C}_{\geq \ell}$$
-free, then $N_s(G) \leq \frac{n-1}{\ell-2} {\ell-1 \choose s}$.

Erdős and Gallai

- If G is $\mathcal{C}_{\geq \ell}$ -free, then $e(G) \leq \frac{n-1}{\ell-2} \binom{\ell-1}{2}$.
- If G is P_{ℓ} -free, then $e(G) \leq \frac{n}{\ell-1} \binom{\ell-1}{2}$.

Luo, simple proofs by Ning and P.

- If G is $\mathcal{C}_{\geq \ell}$ -free, then $N_s(G) \leq \frac{n-1}{\ell-2} {\ell-1 \choose s}$.
- If G is P_{ℓ} -free, then $N_s(G) \leq \frac{n}{\ell-1} {\ell-1 \choose s}$.

Example 3: non- ℓ -hamiltonian

A graph G is ℓ -hamiltonian if each linear forest with ℓ edges can be extended to a hamiltonian cycle in G.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Example 3: non- ℓ -hamiltonian

A graph G is ℓ -hamiltonian if each linear forest with ℓ edges can be extended to a hamiltonian cycle in G.

► Füredi, Kostochka, and Luo: Assume $0 \le l < k \le \lfloor \frac{n+l-1}{2} \rfloor$. If G is an n vertex graph with minimum degree $\delta(G) \ge k$, and G is not ℓ -hamiltonian, then $N_s(G) \le \max\{h_s(n,k,\ell), h_s(n, \lfloor \frac{n+l-1}{2} \rfloor, \ell)\}$

Let \mathcal{P} be a graph property. If whenever G + uv has the property \mathcal{P} and $d_G(u) + d_G(v) \ge t$, then G itself also has the property \mathcal{P} .

ション ふゆ マ キャット キャット しょう

Let \mathcal{P} be a graph property. If whenever G + uv has the property \mathcal{P} and $d_G(u) + d_G(v) \ge t$, then G itself also has the property \mathcal{P} .

ション ふゆ マ キャット キャット しょう

• G contains C_s (t = 2n - s).

Let \mathcal{P} be a graph property. If whenever G + uv has the property \mathcal{P} and $d_G(u) + d_G(v) \ge t$, then G itself also has the property \mathcal{P} .

- G contains C_s (t = 2n s).
- G contains a path P_s (t = n 1).

Let \mathcal{P} be a graph property. If whenever G + uv has the property \mathcal{P} and $d_G(u) + d_G(v) \ge t$, then G itself also has the property \mathcal{P} .

- G contains C_s (t = 2n s).
- G contains a path P_s (t = n 1).
- G contains a matching sK_2 (t = 2s 1).

Let \mathcal{P} be a graph property. If whenever G + uv has the property \mathcal{P} and $d_G(u) + d_G(v) \ge t$, then G itself also has the property \mathcal{P} .

- G contains C_s (t = 2n s).
- G contains a path P_s (t = n 1).
- G contains a matching sK_2 (t = 2s 1).
- G contains a spanning s-regular graph (t = n + 2s 4).

Let \mathcal{P} be a graph property. If whenever G + uv has the property \mathcal{P} and $d_G(u) + d_G(v) \ge t$, then G itself also has the property \mathcal{P} .

- G contains C_s (t = 2n s).
- G contains a path P_s (t = n 1).
- G contains a matching sK_2 (t = 2s 1).
- G contains a spanning s-regular graph (t = n + 2s 4).

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

• G is s-connected (t = n + s - 2).

Let \mathcal{P} be a graph property. If whenever G + uv has the property \mathcal{P} and $d_G(u) + d_G(v) \ge t$, then G itself also has the property \mathcal{P} .

- G contains C_s (t = 2n s).
- G contains a path P_s (t = n 1).
- G contains a matching sK_2 (t = 2s 1).
- G contains a spanning s-regular graph (t = n + 2s 4).
- G is s-connected (t = n + s 2).

Question (Füredi, Kostochka, and Luo)

Determine the maximum number of copies of cliques in graphs having a stable property \mathcal{P} .

Our results

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $h_s(n,k,r) = \binom{2k+1-r}{s} + (n-2k-1+r)\binom{r}{s-1}$.

Our results

Erdős and Gallai:

► Let G be a graph on n vertices. If $\nu(G) \le k$, then $e(G) \le \max\left\{\binom{2k+1}{2}, h_2(n,k,k)\right\}$.

ション ふゆ マ キャット キャット しょう

Our results

Erdős and Gallai:

• Let G be a graph on n vertices. If $\nu(G) \le k$, then $e(G) \le \max\left\{\binom{2k+1}{2}, h_2(n,k,k)\right\}$.

Theorem (Duan, Ning, P., Wang, and Yang)

If G is a graph with $n \ge 2k + 2$ vertices, minimum degree δ , and $\nu(G) \le k$, then $N_s(G) \le \max\{h_s(n,k,\delta), h_s(n,k,k)\}$ for each $s \ge 2$.

▶ Apply the technique by Kopylov.

• Apply the technique by Kopylov.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Let G be a counterexample.

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G' be the (2k + 1)-closure of G.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G' be the (2k + 1)-closure of G.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

• Observe $\nu(G') \leq k$.

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G' be the (2k + 1)-closure of G.
- Observe $\nu(G') \leq k$.
- Step 1: Consider the (k + 1)-core H_1 of G'.

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G' be the (2k + 1)-closure of G.
- Observe $\nu(G') \leq k$.
- Step 1: Consider the (k + 1)-core H_1 of G'.

うして ふゆう ふほう ふほう ふしつ

• Claim 1: $H_1 \neq \emptyset$.

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G' be the (2k + 1)-closure of G.
- Observe $\nu(G') \leq k$.
- Step 1: Consider the (k + 1)-core H_1 of G'.
- Claim 1: $H_1 \neq \emptyset$.
- ► Otherwise,

$$N_s(G') \le (n-k)\binom{k}{s-1} + \binom{k}{s} = h_s(n,k,k).$$

ション ふゆ マ キャット キャット しょう

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G' be the (2k + 1)-closure of G.
- Observe $\nu(G') \leq k$.
- Step 1: Consider the (k + 1)-core H_1 of G'.
- Claim 1: $H_1 \neq \emptyset$.
- ► Otherwise,

$$N_s(G') \le (n-k)\binom{k}{s-1} + \binom{k}{s} = h_s(n,k,k).$$

うして ふゆう ふほう ふほう ふしつ

• Claim 2: H_1 is a clique.

- Apply the technique by Kopylov.
- Let G be a counterexample.
- G' be the (2k + 1)-closure of G.
- Observe $\nu(G') \leq k$.
- Step 1: Consider the (k + 1)-core H_1 of G'.
- Claim 1: $H_1 \neq \emptyset$.
- ► Otherwise,

$$N_s(G') \le (n-k)\binom{k}{s-1} + \binom{k}{s} = h_s(n,k,k).$$

- Claim 2: H_1 is a clique.
- G' is the (2k+1)-closure and $d_{H_1}(u), d_{H_1}(v) \ge k+1$.

(日) (日) (日) (日) (日) (日) (日) (日)

• Let $t = |H_1|$ and estimate t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Claim $t \leq 2k + 1 - \delta$.

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.
- Claim $t \leq 2k + 1 \delta$.
- Otherwise, pick $u \in H_1$ and $v \in V(G') \setminus V(H_1)$ such that $u \not\sim v$.

ション ふゆ マ キャット マックシン

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.
- Claim $t \leq 2k + 1 \delta$.
- Otherwise, pick $u \in H_1$ and $v \in V(G') \setminus V(H_1)$ such that $u \not\sim v$.

うして ふゆう ふほう ふほう ふしつ

► As $d_{H_1}(u) \ge 2k + 1 - \delta$ and $d_{G'}(v) \ge \delta$, G' is the (2k+1)-closure, we get $u \sim v$. Contradiction.

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.
- Claim $t \leq 2k + 1 \delta$.
- Otherwise, pick $u \in H_1$ and $v \in V(G') \setminus V(H_1)$ such that $u \not\sim v$.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- ► As $d_{H_1}(u) \ge 2k + 1 \delta$ and $d_{G'}(v) \ge \delta$, G' is the (2k+1)-closure, we get $u \sim v$. Contradiction.
- $\blacktriangleright \ k+2 \le t \le 2k+1-\delta.$

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.
- Claim $t \leq 2k + 1 \delta$.
- Otherwise, pick $u \in H_1$ and $v \in V(G') \setminus V(H_1)$ such that $u \not\sim v$.
- ► As $d_{H_1}(u) \ge 2k + 1 \delta$ and $d_{G'}(v) \ge \delta$, G' is the (2k+1)-closure, we get $u \sim v$. Contradiction.
- $\blacktriangleright \ k+2 \leq t \leq 2k+1-\delta.$
- ▶ Step 2: consider the (2k t + 2)-core H_2 of G'.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.
- Claim $t \leq 2k + 1 \delta$.
- Otherwise, pick $u \in H_1$ and $v \in V(G') \setminus V(H_1)$ such that $u \not\sim v$.
- ► As $d_{H_1}(u) \ge 2k + 1 \delta$ and $d_{G'}(v) \ge \delta$, G' is the (2k+1)-closure, we get $u \sim v$. Contradiction.
- $\blacktriangleright \ k+2 \leq t \leq 2k+1-\delta.$
- ▶ Step 2: consider the (2k t + 2)-core H_2 of G'.

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

• Claim $H_1 \subsetneq H_2$.

- Let $t = |H_1|$ and estimate t.
- Observe $t \ge k+2$ as $d_{H_1}(u) \ge k+1$.
- Claim $t \leq 2k + 1 \delta$.
- Otherwise, pick $u \in H_1$ and $v \in V(G') \setminus V(H_1)$ such that $u \not\sim v$.
- ► As $d_{H_1}(u) \ge 2k + 1 \delta$ and $d_{G'}(v) \ge \delta$, G' is the (2k+1)-closure, we get $u \sim v$. Contradiction.
- $\blacktriangleright \ k+2 \le t \le 2k+1-\delta.$
- ▶ Step 2: consider the (2k t + 2)-core H_2 of G'.
- Claim $H_1 \subsetneq H_2$.
- If $H_1 = H_2$, then $N_s(G') \le {t \choose s} + (n-t){2k-t+1 \choose s-1} = h_s(n,k,2k+1-t).$

▶ By the convexity of $h_s(n, k, r)$ and $\delta \le 2k - t + 1 \le k$, we get $N_s(G') \le \max\{h_s(n, k, \delta), h_s(n, k, k)\}.$

ション ふゆ マ キャット マックシン

▶ By the convexity of $h_s(n, k, r)$ and $\delta \le 2k - t + 1 \le k$, we get $N_s(G') \le \max\{h_s(n, k, \delta), h_s(n, k, k)\}.$

うして ふゆう ふほう ふほう ふしつ

• $H_1 \subsetneq H_2$ implies there are vertices $u \in H_1$ and $v \in H_2 \setminus H_1$ such that $u \not\sim v$.

▶ By the convexity of $h_s(n, k, r)$ and $\delta \le 2k - t + 1 \le k$, we get $N_s(G') \le \max\{h_s(n, k, \delta), h_s(n, k, k)\}.$

- $H_1 \subsetneq H_2$ implies there are vertices $u \in H_1$ and $v \in H_2 \setminus H_1$ such that $u \not\sim v$.
- Note $d_{H_1}(u) \ge t 1$ and $d_{H_2}(v) \ge 2k t + 2$.

- ▶ By the convexity of $h_s(n, k, r)$ and $\delta \le 2k t + 1 \le k$, we get $N_s(G') \le \max\{h_s(n, k, \delta), h_s(n, k, k)\}.$
- $H_1 \subsetneq H_2$ implies there are vertices $u \in H_1$ and $v \in H_2 \setminus H_1$ such that $u \not\sim v$.
- Note $d_{H_1}(u) \ge t 1$ and $d_{H_2}(v) \ge 2k t + 2$.
- ▶ Then $d'_G(u) + d'_G(v) \ge 2k + 1$ and they are adjacent as G' is the (2k + 1)-closure.

◆□ → ◆□ → ▲ □ → ▲ □ → ◆ □ → ◆ ○ ◆

Known stability results: I

Theorem (Erdős)

Let n and d be integers with $1 \le d \le \lfloor \frac{n-1}{2} \rfloor$. If G is nonhamiltonian and $\delta(G) \ge k$, then $e(G) \le \max\{h(n,k), h(n, \lfloor \frac{n-1}{2} \rfloor)\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● ○○○

Known stability results: I

Theorem (Erdős)

Let n and d be integers with $1 \le d \le \lfloor \frac{n-1}{2} \rfloor$. If G is nonhamiltonian and $\delta(G) \ge k$, then $e(G) \le \max\{h(n,k), h(n, \lfloor \frac{n-1}{2} \rfloor)\}.$

Theorem (Füredi, Kostochka, and Luo)

Let n and d be integers with $1 \le k \le \lfloor \frac{n-1}{2} \rfloor$. If G is nonhamiltonian, $\delta(G) \ge k$, $e(G) > \max\{h(n, k+1), h(n, \lfloor \frac{n-1}{2} \rfloor)\}$, then G is a subgraph of either $H_{n,k}$ or $H'_{n,k}$.

Known stability results: II

Theorem (Füredi, Kostochka, and Luo)

If G is nonhamiltonian and $\delta(G) \ge k$, then $N_s(G) \le \max\{h_s(n,k), h_s(n, \lfloor \frac{n-1}{2} \rfloor)\}.$

Known stability results: II

Theorem (Füredi, Kostochka, and Luo)

If G is nonhamiltonian and $\delta(G) \ge k$, then $N_s(G) \le \max\{h_s(n,k), h_s(n, \lfloor \frac{n-1}{2} \rfloor)\}.$

Theorem (Stability version)

If G is nonhamiltonian, $\delta(G) \geq k$, and $N_s(G) > \max\{h_s(n, k+2), h_s(n, \lfloor \frac{n-1}{2} \rfloor)\}$, then G is in a collection of graphs.

うして ふゆう ふほう ふほう ふしつ

Known stability results: II

Theorem (Füredi, Kostochka, and Luo)

If G is nonhamiltonian and $\delta(G) \ge k$, then $N_s(G) \le \max\{h_s(n,k), h_s(n, \lfloor \frac{n-1}{2} \rfloor)\}.$

Theorem (Stability version)

If G is nonhamiltonian, $\delta(G) \geq k$, and $N_s(G) > \max\{h_s(n, k+2), h_s(n, \lfloor \frac{n-1}{2} \rfloor)\}$, then G is in a collection of graphs.

Question: Can we establish a stability version of the result on the number of copies of general graphs?

Known stability results: III

Theorem (Erdős and Gallai)

If G does not contain a cycle of length at least k, then $e(G) \leq \frac{n-1}{k-2} \binom{k-1}{2}$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Known stability results: III

Theorem (Erdős and Gallai)

If G does not contain a cycle of length at least k, then $e(G) \leq \frac{n-1}{k-2} \binom{k-1}{2}$.

Theorem (Kopylov)

If G is 2-connected and does not contains a cycle of length at least k, then $e(G) \leq \max\{h(n,k,2), h(n,k,\lfloor\frac{k-1}{2}\rfloor)\}.$

うして ふゆう ふほう ふほう ふしつ

Known stability results: III

Theorem (Erdős and Gallai)

If G does not contain a cycle of length at least k, then $e(G) \leq \frac{n-1}{k-2} \binom{k-1}{2}$.

Theorem (Kopylov)

If G is 2-connected and does not contains a cycle of length at least k, then $e(G) \leq \max\{h(n,k,2), h(n,k,\lfloor\frac{k-1}{2}\rfloor)\}.$

Theorem (Füredi, Kostochka, and Verstraëte)

Assume $n \geq \frac{3k}{2}$. If G is 2-connected, does not contains a cycle of length at least k, and $e(G) > h(n, k, \lfloor \frac{k-1}{2} \rfloor) - 1)$, then G is in a family of graphs.

Known stability results: IV

Theorem (Füredi, Kostochka, Luo, and Verstraëte)

If G is 2-connected, does not contains a cycle of length at least k, and $e(G) > \max\{h(n, k, 3), h(n, k, \lfloor \frac{k-1}{2} \rfloor - 1)\}$, then G is in a family of graphs.

うつう 山田 エル・エー・ 山田 うらう

Known stability results: IV

Theorem (Füredi, Kostochka, Luo, and Verstraëte)

If G is 2-connected, does not contains a cycle of length at least k, and $e(G) > \max\{h(n, k, 3), h(n, k, \lfloor \frac{k-1}{2} \rfloor - 1)\}$, then G is in a family of graphs.

Theorem (Ma and Ning)

If G is 2-connected, $\delta(G) \ge d$, does not contains a cycle of length at least k, and $e(G) > \max\{h(n, k, d+1), h(n, k, \lfloor \frac{k}{2} \rfloor - 1)\}$, then G is in a family of graphs.

Our result: stability versions

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \geq \delta$ and $\nu(G) \leq k$. If $n \geq 2k + 2$ and $e(G) > \max\{h_2(n, k, \delta), h_2(n, k, k - 2)\}$, then G has to be a subgraph of H(n, k, k) or H(n, k, k - 1).

うして 山口 マイビマ エリマ ション

Our result: stability versions

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \ge \delta$ and $\nu(G) \le k$. If $n \ge 2k + 2$ and $e(G) > \max\{h_2(n, k, \delta), h_2(n, k, k - 2)\}$, then G has to be a subgraph of H(n, k, k) or H(n, k, k - 1).

Remark: Observe $h_s(n,k,k) - h_s(n,k,k-2) = \Theta(h_s(n,k,k)).$

シック・ 川 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Our result: stability versions

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \geq \delta$ and $\nu(G) \leq k$. If $n \geq 2k + 2$ and $e(G) > \max\{h_2(n, k, \delta), h_2(n, k, k - 2)\}$, then G has to be a subgraph of H(n, k, k) or H(n, k, k - 1).

Remark: Observe $h_s(n,k,k) - h_s(n,k,k-2) = \Theta(h_s(n,k,k))$.

Theorem (Duan, Ning, P., Wang, and Yang)

Let G be a graph on n vertices with $\delta(G) \geq \delta$ and $\nu(G) \leq k$. If $n \geq 2k + 11$ and $e(G) > \max\{h_2(n, k, \delta + 2), h_2(n, k, k)\}$, then G has to be a subgraph of $H(n, k, \delta)$ or $H(n, k, \delta + 1)$.

Thanks

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの