二值自相关的二元周期序列

曹海涛

南京师范大学

第十届海峡两岸图论与组合学研讨会，台湾，8月18－23， 2019

Outline：

－Introduction
－$n \equiv 1(\bmod 4)$
－$n \equiv 2(\bmod 4)$
－$n \equiv 3(\bmod 4)$
－$n \equiv 0(\bmod 4)$

Introduction

Definition

For a binary periodical sequence $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}, \ldots\right)$ with period n and $a_{j} \in\{-1,1\}, j \geq 0$ ，the autocorrelation values of \mathbf{a} are defined by

$$
C_{\mathbf{a}}(t)=\sum_{i=0}^{n-1} a_{i} a_{i+t}, \quad t=0,1, \ldots, n-1
$$

It is obvious that $C_{\mathrm{a}}(0)=n$ ，and it is called trivial autocorrelation value．These $C_{\mathbf{a}}(t), 1 \leq t \leq n-1$ ，are called nontrivial autocorrelation values．

A simple necessary condition for the existence of a binary sequence is

$$
\begin{equation*}
C_{\mathbf{a}}(t) \equiv n \quad(\bmod 4) \tag{1}
\end{equation*}
$$

for $0 \leq t \leq n-1$ ．
Binary sequences with 2－level autocorrelation values：all nontrivial autocorrelation values are equal to some constant d $\left(C_{\mathbf{a}}(t)=d\right.$ for $\left.1 \leq t \leq n-1\right)$ ．

A binary sequence with 2－level autocorrelation values is called perfect if the nontrivial autocorrelation value d is as small as possible in absolute value．

Definition

Let G be an additive group of order n ．A k－subset D of G is an （ n, k, λ ）－difference set（briefly（ n, k, λ ）－DS）if any nonzero element $g \in G, d-d_{0}=g$ has exactly λ solutions $\left(d, d_{0}\right)$ with $d, d_{0} \in D$ ．The difference set D is cyclic（briefly（ n, k, λ ）－CDS），if the group G has the property．

Example
Let $G=\mathbb{Z}_{7}$ and $D=\{0,1,3\}$ ．Then D is a $(7,3,1)$－CDS．

$$
\begin{array}{ll}
1-0=1, & 3-1=2, \\
0-3=4-0=3 \\
0-3=5, & 0-1=6
\end{array}
$$

Theorem（Jungnickel and Pott，1999）

A binary sequence with 2－level autocorrelation values（with all nontrivial autocorrelation values equal to d ）is equivalent to an (n, k, λ)－CDS，where $d=n-4(k-\lambda)$ ．

Let $\mathbf{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}, \ldots\right)$ be a binary periodical sequence and $G=\mathbb{Z}_{n}$ ．Let $D=\left\{0 \leq i \leq n-1: a_{i}=-1\right\}$ ．

$$
C_{\mathrm{a}}(t)=d, 0<t \leq n-1 \Longleftrightarrow D \text { is an }(n, k, \lambda) \text {-CDS, where }
$$

$d=n-4(k-\lambda)$ ．

Example

$\mathbf{a}=(-1,-1,1,-1,1,1,1,1,1,-1,1,1,1, \ldots)(d=1)$ ．
Let $G=\mathbb{Z}_{13}$ and $D=\{0,1,3,9\}$ ．Then D is a $(13,4,1)$－CDS．

Let a be a binary sequence with $C_{\mathbf{a}}(t)=d, 0<t \leq n-1$. By above theorem，a corresponds to an（ n, k, λ ）－CDS．Since $k(k-1)=(n-1) \lambda$ ，we have

$$
\begin{equation*}
(n, k, \lambda)=\left(n, \frac{n-\sqrt{d n+n-d}}{2}, \frac{n+d-2 \sqrt{d n+n-d}}{4}\right) . \tag{2}
\end{equation*}
$$

So $d n+n-d \geq 0$ is a perfect square number．Then $d>-2$ when $n>2$ and $d=-2$ when $n=2$ ．For the later case there exists a perfect binary sequence with $(n, d)=(2,2)$ ，for example， $(-1,1,-1,1, \ldots)$ ．

$n \equiv 1(\bmod 4)$ and $d=1$

A perfect binary sequence with $d=1$ corresponds to an $\left(n, \frac{1}{2}(n-\sqrt{2 n-1}), \frac{1}{4}(n+1-2 \sqrt{2 n-1})\right)$－CDS，by（2）．$n=5$ and $n=13$ are the only known perfect binary sequences since there exist（5，1，0）－CDS and（13，4，1）－CDS．

Theorem

1．There are no perfect binary sequences for $13<n<266$ ．
（Turyn，1965）
2．There are no perfect binary sequences for $13<n<20605$ ， except $n=181,4901,5101,13613$ ．（Eliahou，Kervaire，1992）
3．There are no perfect binary sequences for $13<n<20605$ ．
（Broughton，1994）

Conjecture（Schmidt，2016）

There are no perfect binary sequences with $n>13$ and $d=1$ ．
If a and b are integers，we say that a is semiprimitive modulo b if there exists an integer c such that $a^{c} \equiv-1(\bmod b)$ ．

Let p be a prime．For any nonzero integer $m, v_{p}(m)=l$ if and only if $p^{\prime} \mid m$ and $p^{\prime+1} \nmid m$ ．

Theorem（Lander，1983）

Suppose that there exists an (n, k, λ)－CDS．Let $e \geq 2$ be a divisor of n ，and p be a prime number，and p be semiprimitive modulo e ． Then $v_{p}(k-\lambda)$ is even．

$$
\begin{aligned}
& \text { An }\left(n, \frac{1}{2}(n-\sqrt{2 n-1}), \frac{1}{4}(n+1-2 \sqrt{2 n-1})\right)-\text { CDS is a } \\
& \left(\frac{1}{2}\left(u^{2}+1\right), \frac{1}{4}(u-1)^{2}, \frac{1}{8}(u-1)(u-3)\right)-\text { CDS if } 2 n-1=u^{2} .
\end{aligned}
$$

Theorem

Let $u \equiv 3,7(\bmod 10)$ ．There does not exist a
$\left(\frac{1}{2}\left(u^{2}+1\right), \frac{1}{4}(u-1)^{2}, \frac{1}{8}(u-1)(u-3)\right)$－CDS if one of the following two conditions is satisfied：
1．$v_{2}\left(u^{2}-1\right)$ is even．
2．There exists a prime $p \equiv 2,3,4(\bmod 5)$ such that $v_{p}(u+1)$ or $v_{p}(u-1)$ is odd．
Equivalently there do not exist perfect binary sequences with $(n, d)=\left(\frac{1}{2}\left(u^{2}+1\right), 1\right)$ ．

Example

1．Let $u \equiv \pm 7, \pm 23(\bmod 80)$ or $u \equiv \pm 33, \pm 97(\bmod 320)$ ．There do not exist perfect binary sequences with $(n, d)=\left(\frac{u^{2}+1}{2}, 1\right)$ ．
（ $p=2$ ）

2．Let $u \equiv \pm 13, \pm 23, \pm 43, \pm 83(\bmod 90)$ ．There do not exist perfect binary sequences with $(n, d)=\left(\frac{u^{2}+1}{2}, 1\right) .(p=3)$

Theorem

Let e be a prime with $e \equiv 1(\bmod 4)$ ．If there exists an integer u satisfying the following two conditions：
1． $2 \nmid u$ and $u^{2} \equiv-1(\bmod e)$ ．
2．$u \equiv 2^{\prime} \cdot c^{2} r \pm 1\left(\bmod 2^{I+1} \cdot c^{2} e\right)$ ，where $c>0, I \geq 0,2 \mid\left(2^{\prime} \cdot c\right)$ ， $2 \nmid r$ and r is a nonsquared elements．
Then there do not exist perfect binary sequences with $(n, d)=\left(\frac{u^{2}+1}{2}, 1\right)$ ．

Example

1．Let $u \equiv \pm 7(\bmod 20)$ or $u \equiv \pm 55(\bmod 180)$ ．Then there do not exist perfect binary sequences with $(n, d)=\left(\frac{u^{2}+1}{2}, 1\right) .(e=5)$

2．Let $u \equiv \pm 21(\bmod 52)$ ．Then there do not exist perfect binary sequences with $(n, d)=\left(\frac{u^{2}+1}{2}, 1\right) .(e=13)$

$n \equiv 2(\bmod 4)$ and $d=2$

A perfect binary sequence with $d=2$ corresponds to a

$$
\left(2 u, \frac{1}{2}(2 u-\sqrt{6 u-2}), \frac{1}{2}(u+1-\sqrt{6 u-2})\right)-\text { CDS, by (2). }
$$

Theorem（Jungnickel and Pott，1999）

There are no perfect binary sequences with $d=2$ for $6<n<10^{9}$ except $n=12546$ ，$n=174726$ ，$n=2433602$ and $n=33895686$ ．

We use the algebraic number theory to obtain a necessary condition of $\left(2 u, \frac{1}{2}(2 u-\sqrt{6 u-2}), \frac{1}{2}(u+1-\sqrt{6 u-2})\right)$－CDS．

Lemma

If there exists a $\left(2 u, \frac{1}{2}(2 u-\sqrt{6 u-2}), \frac{1}{2}(u+1-\sqrt{6 u-2})\right)$－CDS with odd integer $u \geq 3$ ，then $u=2 B_{i}^{2}+1$ ，where $\varepsilon=2+\sqrt{3}$ and $\varepsilon^{i}=A_{i}+\sqrt{3} B_{i}$ for $i \geq 1$ ．

Lemma

There are no perfect binary sequences with $d=2$ for $n=12546$ ， 174726， 2433602.

$n \equiv 3(\bmod 4)$ and $d=3$

By（2），a binary sequence with $n \equiv 3(\bmod 4)$ and $d=3$ corresponds to $\left(n, \frac{1}{2}(n-\sqrt{4 n-3}), \frac{1}{4}(n+3-2 \sqrt{4 n-3})\right)$－CDS． Let $u=\sqrt{4 n-3}$ ．Since $n \equiv 3(\bmod 4)$ ，we have $4 n-3=u^{2}$ ， $u \equiv \pm 3(\bmod 8), u \geq 5$ and $(n, k-\lambda)=\left(\frac{1}{4}\left(u^{2}+3\right), \frac{1}{16}\left(u^{2}-9\right)\right)$ ．

Theorem

Let $u \equiv \pm 3(\bmod 24)$ ．If there exists a prime $p \equiv 2(\bmod 3)$ such that $v_{p}\left(u^{2}-9\right)$ is odd，then there does not exist a binary sequence with $(n, d)=\left(\frac{1}{4}\left(u^{2}+3\right), 3\right)$ ．

Example

Let $u \equiv 27,45,51,69(\bmod 72)$ ．There does not exist a binary sequences with $(n, d)=\left(\frac{u^{2}+3}{4}, 3\right)$ ．

Theorem

Let e and p be two prime numbers such that $e \equiv 1(\bmod 6)$ and p is semiprimitive modulo e ．Let $u \equiv \pm 3(\bmod 8)$ such that the following two conditions are satisfied：
1．$u^{2} \equiv-3(\bmod e)$ ．
2．one of the following three conditions is satisfied：
（i）$p=2$ and $v_{2}\left(u^{2}-9\right)$ is odd．
（ii）$p=3, v_{3}\left(u^{\prime}-1\right)$ or $v_{3}\left(u^{\prime}+1\right)$ is odd，where $u=3 u^{\prime}$ ．
（iii）$p \geq 5$ and $v_{p}(u+3)$ or $v_{p}(u-3)$ is odd．
Then there does not exist a binary sequence with $(n, d)=\left(\frac{1}{4}\left(u^{2}+3\right), 3\right)$ ．

Example

1．There does not exist a binary sequence with $(n, d)=\left(\frac{u^{2}+3}{4}, 3\right)$ for $u \equiv 75,93(\bmod 1512)$ ．
2．There does not exist a binary sequence with $(n, d)=\left(\frac{u^{2}+3}{4}, 3\right)$ for $u \in\{37,59,85\}$ ．

Table 1 Cyclic difference sets for $n \equiv 3(\bmod 4), n=\frac{u^{2}+3}{4}$ and $u \leq 100$

$u \equiv 3(\bmod 8)$	11	19	27	35	43	51	59	67	75	83	91	99
n	31	91	183	307	463	651	871	1123	1407	1723	2071	2451
k	10	36	78	136	210	300	406	528	666	820	990	1176
λ	3	14	33	60	95	138	189	248	315	390	473	564
$k-\lambda$	7	22	45	76	115	162	217	280	351	430	517	612
Existence	\times	\times	\times	$?$	\times							
$u \equiv-3(\bmod 8)$	5	13	21	29	37	45	53	61	69	77	85	93
n	7	43	111	211	343	507	703	931	1191	1483	1807	2163
k	1	15	45	91	153	231	325	435	561	703	861	1035
λ	0	5	18	39	68	105	150	203	264	333	410	495
$k-\lambda$	1	10	27	52	85	126	175	232	297	370	451	540
Existence	$\sqrt{2}$	\times	\times	\times	\times	\times	$?$	\times	\times	\times	\times	\times

Question

the nonexistence of binary sequence with $d=3$ and $n \in\{307,703\}$ ．

$n \equiv 0(\bmod 4)$ and $d=4$

By（2），a binary sequence is equivalent to an

$$
\left(n, \frac{1}{2}(n-\sqrt{5 n-4}), \frac{1}{4}(n+4-2 \sqrt{5 n-4})\right)-\mathrm{CDS} .
$$

We obtain two binary sequences with $d=4$ and $n \in\{8,40\}$ from $(8,1,0)$－CDS and $(40,13,4)-C D S$ ．Since $n \equiv 0(\bmod 4)$ ，we may assume that $n=4 u$ ．Then we have
$(n, k, \lambda)=(4 u, 2 u-\sqrt{5 u-1}, u+1-\sqrt{5 u-1})$.

Lemma

If there exists a $(4 u, 2 u-\sqrt{5 u-1}, u+1-\sqrt{5 u-1})$－CDS，then
$u=B_{i}^{2}+1$ ，where $\varepsilon=\frac{3+\sqrt{5}}{2}$ and $\varepsilon^{i}=\frac{A_{i}+\sqrt{5} B_{i}}{2}$ for $i \geq 1$ ．

Theorem

There do not exist binary sequences with $n \neq 8,40$ and $d=4$ ．

References

R L．D．Baumert．Cyclic difference sets．Springer－Verlag，Berlin， 1971.

围 W．J．Broughton．A note on Table I of：Barker sequences and difference sets．Enseign．Math． 240 （1994）105－107．

S．Eliahou and M．Kervaire．Barker sequences and difference sets．Enseign．Math． 238 （1992）345－382．

L．Hua．Introduction to number theory．Springer－Verlag，New York，Pacific Grove，CA，USA， 1982.

R D．Jungnickel and A．Pott．Perfect and almost perfect sequences．Discrete Appl．Math． 95 （1999），331－359．

E．S．Lander．Symmetric designs：an algebraic approach． Cambridge University Press，Cambridge， 1983.

R H．Liu and K．Feng．New results on nonexistence of perfect p－ary sequences and almost perfect p－ary sequences．Acta Math．Sin． 32 （2016），2－10．

R K．U．Schmidt．Sequences with small correlation．Des．Codes Cryptogr． 78 （2016），237－267．

國 R．J．Turyn．Character sums and difference sets．Pac．J．Math． 15 （1965），319－346．

Thank you！

