二值自相关的二元周期序列

曹海涛

南京师范大学

第十届海峡两岸图论与组合学研讨会,台湾,8月18-23, 2019

曹海涛 二值自相关的二元周期序列

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

-

Introduction

•
$$n \equiv 1 \pmod{4}$$

•
$$n \equiv 2 \pmod{4}$$

•
$$n \equiv 3 \pmod{4}$$

•
$$n \equiv 0 \pmod{4}$$

æ

≣ ।•

□ ▶ ▲ 臣 ▶ ▲

Definition

For a binary periodical sequence $\mathbf{a} = (a_0, a_1, \dots, a_{n-1}, \dots)$ with period n and $a_j \in \{-1, 1\}$, $j \ge 0$, the **autocorrelation values** of \mathbf{a} are defined by

$$C_{\mathbf{a}}(t) = \sum_{i=0}^{n-1} a_i a_{i+t}, \quad t = 0, 1, \dots, n-1.$$

It is obvious that $C_{\mathbf{a}}(0) = n$, and it is called **trivial** autocorrelation value. These $C_{\mathbf{a}}(t)$, $1 \le t \le n - 1$, are called **nontrivial** autocorrelation values.

A simple necessary condition for the existence of a binary sequence is

$$C_{\mathbf{a}}(t) \equiv n \pmod{4} \tag{1}$$

for $0 \leq t \leq n-1$.

Binary sequences with 2-level autocorrelation values: all nontrivial autocorrelation values are equal to some constant d($C_a(t) = d$ for $1 \le t \le n - 1$).

A binary sequence with 2-level autocorrelation values is called **perfect** if the nontrivial autocorrelation value d is as small as possible in absolute value.

Definition

Let G be an additive group of order n. A k-subset D of G is an (n, k, λ) -difference set (briefly (n, k, λ) -DS) if any nonzero element $g \in G$, $d - d_0 = g$ has exactly λ solutions (d, d_0) with $d, d_0 \in D$. The difference set D is cyclic (briefly (n, k, λ) -CDS), if the group G has the property.

Example

Let $G = \mathbb{Z}_7$ and $D = \{0, 1, 3\}$. Then D is a (7, 3, 1)-CDS. 1 - 0 = 1, 3 - 1 = 2, 3 - 0 = 3,

$$0-3=4, 1-3=5, 0-1=6.$$

Theorem (Jungnickel and Pott, 1999)

A binary sequence with 2-level autocorrelation values (with all nontrivial autocorrelation values equal to d) is equivalent to an (n, k, λ) -CDS, where $d = n - 4(k - \lambda)$.

Let
$$\mathbf{a} = (a_0, a_1, \dots, a_{n-1}, \dots)$$
 be a binary periodical sequence and
 $G = \mathbb{Z}_n$. Let $D = \{0 \le i \le n - 1 : a_i = -1\}$.
 $C_{\mathbf{a}}(t) = d, \ 0 < t \le n - 1 \iff D$ is an (n, k, λ) -CDS, where
 $d = n - 4(k - \lambda)$.

Example

$$\mathbf{a} = (-1, -1, 1, -1, 1, 1, 1, 1, -1, 1, 1, 1, ...) \ (d = 1).$$

Let $G = \mathbb{Z}_{13}$ and $D = \{0, 1, 3, 9\}$. Then D is a $(13, 4, 1)$ -CDS.

Let **a** be a binary sequence with $C_{\mathbf{a}}(t) = d$, $0 < t \le n - 1$. By above theorem, **a** corresponds to an (n, k, λ) -CDS. Since $k(k-1) = (n-1)\lambda$, we have

$$(n,k,\lambda) = (n,\frac{n-\sqrt{dn+n-d}}{2},\frac{n+d-2\sqrt{dn+n-d}}{4}).$$
 (2)

So $dn + n - d \ge 0$ is a perfect square number. Then d > -2when n > 2 and d = -2 when n = 2. For the later case there exists a perfect binary sequence with (n, d) = (2, 2), for example, (-1, 1, -1, 1, ...).

$n \equiv 1 \pmod{4}$ and d = 1

A perfect binary sequence with d = 1 corresponds to an $(n, \frac{1}{2}(n - \sqrt{2n-1}), \frac{1}{4}(n+1-2\sqrt{2n-1}))$ -CDS, by (2). n = 5 and n = 13 are the only known perfect binary sequences since there exist (5, 1,0)-CDS and (13,4,1)-CDS.

Theorem

 There are no perfect binary sequences for 13 < n < 266. (Turyn, 1965)

There are no perfect binary sequences for 13 < n < 20605, except n = 181, 4901, 5101, 13613. (Eliahou, Kervaire, 1992)
 There are no perfect binary sequences for 13 < n < 20605. (Broughton, 1994)

Conjecture (Schmidt, 2016)

There are no perfect binary sequences with n > 13 and d = 1.

If a and b are integers, we say that a is **semiprimitive** modulo b if there exists an integer c such that $a^c \equiv -1 \pmod{b}$. Let p be a prime. For any nonzero integer m, $v_p(m) = l$ if and only if $p^l | m$ and $p^{l+1} \nmid m$.

Theorem (Lander, 1983)

Suppose that there exists an (n, k, λ) -CDS. Let $e \ge 2$ be a divisor of n, and p be a prime number, and p be semiprimitive modulo e. Then $v_p(k - \lambda)$ is even.

An
$$(n, \frac{1}{2}(n - \sqrt{2n-1}), \frac{1}{4}(n+1 - 2\sqrt{2n-1}))$$
-CDS is a $(\frac{1}{2}(u^2+1), \frac{1}{4}(u-1)^2, \frac{1}{8}(u-1)(u-3))$ -CDS if $2n-1 = u^2$.

Theorem

Let $u \equiv 3,7 \pmod{10}$. There does not exist a $(\frac{1}{2}(u^2+1), \frac{1}{4}(u-1)^2, \frac{1}{8}(u-1)(u-3))$ -CDS if one of the following two conditions is satisfied:

1.
$$v_2(u^2 - 1)$$
 is even.

2. There exists a prime $p \equiv 2, 3, 4 \pmod{5}$ such that $v_p(u+1)$ or $v_p(u-1)$ is odd.

Equivalently there do not exist perfect binary sequences with $(n, d) = (\frac{1}{2}(u^2 + 1), 1).$

Example

1. Let $u \equiv \pm 7, \pm 23 \pmod{80}$ or $u \equiv \pm 33, \pm 97 \pmod{320}$. There do not exist perfect binary sequences with $(n, d) = (\frac{u^2+1}{2}, 1)$. (p = 2)

2. Let $u \equiv \pm 13, \pm 23, \pm 43, \pm 83 \pmod{90}$. There do not exist perfect binary sequences with $(n, d) = (\frac{u^2+1}{2}, 1)$. (p = 3)

Theorem

Let e be a prime with $e \equiv 1 \pmod{4}$. If there exists an integer u satisfying the following two conditions: 1. $2 \nmid u$ and $u^2 \equiv -1 \pmod{e}$. 2. $u \equiv 2^l \cdot c^2 r \pm 1 \pmod{2^{l+1} \cdot c^2 e}$, where c > 0, $l \ge 0$, $2|(2^l \cdot c)$, $2 \nmid r$ and r is a nonsquared elements. Then there do not exist perfect binary sequences with $(n, d) = (\frac{u^2+1}{2}, 1)$.

Example

1. Let $u \equiv \pm 7 \pmod{20}$ or $u \equiv \pm 55 \pmod{180}$. Then there do not exist perfect binary sequences with $(n, d) = (\frac{u^2+1}{2}, 1)$. (e = 5)

2. Let $u \equiv \pm 21 \pmod{52}$. Then there do not exist perfect binary sequences with $(n, d) = (\frac{u^2+1}{2}, 1)$. (e = 13)

$n \equiv 2 \pmod{4}$ and d = 2

A perfect binary sequence with d = 2 corresponds to a $(2u, \frac{1}{2}(2u - \sqrt{6u-2}), \frac{1}{2}(u + 1 - \sqrt{6u-2}))$ -CDS, by (2).

Theorem (Jungnickel and Pott, 1999)

There are no perfect binary sequences with d = 2 for $6 < n < 10^9$ except n = 12546, n = 174726, n = 2433602 and n = 33895686.

We use the algebraic number theory to obtain a necessary condition of $(2u, \frac{1}{2}(2u - \sqrt{6u - 2}), \frac{1}{2}(u + 1 - \sqrt{6u - 2}))$ -CDS.

Lemma

If there exists a $(2u, \frac{1}{2}(2u - \sqrt{6u - 2}), \frac{1}{2}(u + 1 - \sqrt{6u - 2}))$ -CDS with odd integer $u \ge 3$, then $u = 2B_i^2 + 1$, where $\varepsilon = 2 + \sqrt{3}$ and $\varepsilon^i = A_i + \sqrt{3}B_i$ for $i \ge 1$.

Lemma

There are no perfect binary sequences with d = 2 for n = 12546,

174726, 2433602.

$n \equiv 3 \pmod{4}$ and d = 3

By (2), a binary sequence with $n \equiv 3 \pmod{4}$ and d = 3corresponds to $(n, \frac{1}{2}(n - \sqrt{4n - 3}), \frac{1}{4}(n + 3 - 2\sqrt{4n - 3}))$ -CDS. Let $u = \sqrt{4n - 3}$. Since $n \equiv 3 \pmod{4}$, we have $4n - 3 = u^2$, $u \equiv \pm 3 \pmod{8}, u \ge 5$ and $(n, k - \lambda) = (\frac{1}{4}(u^2 + 3), \frac{1}{16}(u^2 - 9))$.

Theorem

Let $u \equiv \pm 3 \pmod{24}$. If there exists a prime $p \equiv 2 \pmod{3}$ such that $v_p(u^2 - 9)$ is odd, then there does not exist a binary sequence with $(n, d) = (\frac{1}{4}(u^2 + 3), 3)$.

Example

Let $u \equiv 27, 45, 51, 69 \pmod{72}$. There does not exist a binary sequences with $(n, d) = (\frac{u^2+3}{4}, 3)$.

Theorem

Let e and p be two prime numbers such that $e \equiv 1 \pmod{6}$ and p is semiprimitive modulo e. Let $u \equiv \pm 3 \pmod{8}$ such that the following two conditions are satisfied:

1. $u^2 \equiv -3 \pmod{e}$.

2. one of the following three conditions is satisfied:

(i) p = 2 and $v_2(u^2 - 9)$ is odd.

(ii) p = 3, $v_3(u' - 1)$ or $v_3(u' + 1)$ is odd, where u = 3u'.

(iii) $p \ge 5$ and $v_p(u+3)$ or $v_p(u-3)$ is odd.

Then there does not exist a binary sequence with

$$(n, d) = (\frac{1}{4}(u^2 + 3), 3).$$

Example

1. There does not exist a binary sequence with $(n, d) = (\frac{u^2+3}{4}, 3)$ for $u \equiv 75,93 \pmod{1512}$.

2. There does not exist a binary sequence with $(n, d) = (\frac{u^2+3}{4}, 3)$ for $u \in \{37, 59, 85\}$.

Table 1 Cyclic difference sets for $h \equiv 3 \pmod{4}$, $h = -\frac{4}{4}$ and $u \leq 100$												
$u \equiv 3 \pmod{8}$	11	19	27	35	43	51	59	67	75	83	91	99
n	31	91	183	307	463	651	871	1123	1407	1723	2071	2451
k	10	36	78	136	210	300	406	528	666	820	990	1176
λ	3	14	33	60	95	138	189	248	315	390	473	564
$k - \lambda$	7	22	45	76	115	162	217	280	351	430	517	612
Existence	×	×	×	?	×	×	×	×	×	×	×	×
$u \equiv -3 \pmod{8}$	5	13	21	29	37	45	53	61	69	77	85	93
п	7	43	111	211	343	507	703	931	1191	1483	1807	2163
k	1	15	45	91	153	231	325	435	561	703	861	1035
λ	0	5	18	39	68	105	150	203	264	333	410	495
$k-\lambda$	1	10	27	52	85	126	175	232	297	370	451	540
Existence	\checkmark	×	×	×	×	×	?	×	×	×	×	×

Table 1 Cyclic difference sets for $n \equiv 3 \pmod{4}$, $n = \frac{u^2+3}{4}$ and $u \leq 10$

Question

the nonexistence of binary sequence with d = 3 and

 $n \in \{307, 703\}.$

$n \equiv 0 \pmod{4}$ and d = 4

By (2), a binary sequence is equivalent to an $(n, \frac{1}{2}(n-\sqrt{5n-4}), \frac{1}{4}(n+4-2\sqrt{5n-4}))$ -CDS.

We obtain two binary sequences with d = 4 and $n \in \{8, 40\}$ from (8, 1, 0)-CDS and (40, 13, 4)-CDS. Since $n \equiv 0 \pmod{4}$, we may assume that n = 4u. Then we have

$$(n, k, \lambda) = (4u, 2u - \sqrt{5u - 1}, u + 1 - \sqrt{5u - 1}).$$

Lemma

If there exists a
$$(4u, 2u - \sqrt{5u - 1}, u + 1 - \sqrt{5u - 1})$$
-CDS, then $u = B_i^2 + 1$, where $\varepsilon = \frac{3+\sqrt{5}}{2}$ and $\varepsilon^i = \frac{A_i + \sqrt{5}B_i}{2}$ for $i \ge 1$.

Theorem

There do not exist binary sequences with $n \neq 8,40$ and d = 4.

• • = • • = •

- L. D. Baumert. Cyclic difference sets. Springer-Verlag, Berlin, 1971.
- W.J. Broughton. A note on Table I of : Barker sequences and difference sets. Enseign. Math. 2 40 (1994) 105-107.
- S. Eliahou and M. Kervaire. Barker sequences and difference sets. Enseign. Math. 2 38 (1992) 345-382.
- L. Hua. Introduction to number theory. Springer-Verlag, New York, Pacific Grove, CA, USA, 1982.
- D. Jungnickel and A. Pott. Perfect and almost perfect sequences. Discrete Appl. Math. 95 (1999), 331-359.

- E. S. Lander. Symmetric designs: an algebraic approach. Cambridge University Press, Cambridge, 1983.
- H. Liu and K. Feng. New results on nonexistence of perfect *p*-ary sequences and almost perfect *p*-ary sequences. Acta Math. Sin. 32 (2016), 2-10.
- K. U. Schmidt. Sequences with small correlation. Des. Codes Cryptogr. 78 (2016), 237-267.
- R. J. Turyn. Character sums and difference sets. Pac. J. Math. 15 (1965), 319-346.

Thank you!

▶ < ≣ ▶ <</p>