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Image Segmentation

Figure: An Example of Image Segmentation




Image Segmentation

o Image segmentation is the separation of the target region
corresponding to the object of the real world from the back-
ground of the image.

o The target region is based on the needs of specific applica-
tions and usually conforms to the subjective cognition and
experience of the operator

o Without image segmentation, it is hard to switch into im-
age analysis from image processing and get further image
understanding.




Submodular Function-Definitions

Definition 1

A function f: 2N — R is submodular if for any S,T C N,

fFSUT) + f(ANT) < f(S) + f(T)

Definition 2

(decreasing marginal values) For any A C B C N and z € N\B,

f(BU{z}) — f(B) < f(AU{z}) — f(A).




Submodular Function-definitions

(a) Adding s’ to set {s1,s2} (b) Adding s' to superset {s1,...,s4}

Figure: An Tllustration of the diminishing returns effect[1]




Submodular Function-definitions

Definition 3

Consider a function f: 2N — R>o.
o f is monotone if f(A) < f(B) for every two sets A C B C
N.

o f is symmetric if f(A) = f(N\A) for every set A C N.
o f is normalized if f(¢) =0




Submodular Function-Examples

Example 1

Cut Function: Let G = (V| E) be a directed graph with capaci-
ties ce > 0 on the edges. For every subset of vertices A C V, let
d(A) = {e = uwvlu € A,v € V\A}. The cut capacity function is
defined as the total capacity of edges that cross the cut (A, V\A).
Formally, the cut function is defines as

f(A): Z Ce

e€i(A)




Submodular Function-Examples

o (Max k— Coverage) A number k£ and a collection of sets
S = {51,592, ,Sn}, Find a subsets S’ C S of sets, such
that |S’| < k and the number of covered elements | |J Sj

S; €8’
is maximized.

o (Weighted Coverage Function) Fix a set X, a nonnegative
modular function g : 2X — R and a collection V' of subsets
of X. Then for a subcollection S C V, the function

) =gJv= Y w@),

vES z€EUyesv

is monotone submodular. When ¢g(A4) = |A|, it is the well-
known max-cover problem. f(S) is submodular even for
arbitrary submodular function g.




Submodular Function-Examples

o (The Rank Function of a Matroid) A matroid is a pair
(V,T) such that V is a finite set, and Z C 2" is a collection
of subsets of V satisfying the following two properties:

(1) ACBCV and B € T implies A € T;

(2) A,B € T and |B| > |A| implies Je € B\A such that
Au{e} e T

Sets in Z are called independent, and matroids generalize the
concept of linear independence in linear algebra. Rank func-
tion f(S) := max{|U|: U C S,U € Z}. The rank function
of any matroid is monotone submodular [2].




Submodular Function-Examples

o (Facility Location) Suppose we wish to select, out of a set
V = {1,2,---,n}, some locations to open up facilities in
order to serve a collection of m customers. If we open up a
facility at location j, then it provides service of value M;;
to customer ¢, where M € R™*™. If each customer chooses
the facility with highest value, the total value provided to
all customers is modeled by the set function

Here f(®) = 0. If M; ; > 0 for all 4, j, then f(S) is monotone
submodular [3].




Submodular Function-Examples

o (Entropy) Given a joint probability distribution P(X) over
a discrete-valued random vector X = [X1, Xo, -+, X,;], the
function f(S) = H(Xg) is monotone submodular [4], where
H is the Shannon entropy, i.e.,

H(Xg) =Y p(xs)log, P(xs)
Xs

where we use the notational convention that Xg is the ran-
dom vector consisting of the coordinates of X indexed by .S,
and likewise xg is the vector consisting of the coordinates of
an assignment = indexed by S.




Minimizing submodular functions

o Let EO be the maximum amount of time it takes to evaluate
f(S) for subset S C V.

o Grotschel et. al. [5], [6] showed that a set U minimizing
f(S) can be found in strongly polynomial time, if f is given
by a value-giving oracle, that is, an oracle that returns f(U)
for any given U C V.

@ Schrijver [7] developed an submodular function minimization
algorithm that proved runs in O(n8EO + n?) time.

@ Vygen [8] improved the run time analysis of Schrijver’s algo-
rithm and showed that the running time is O(n" EO + n?).

o Iwata, Fleischer and Fujishige [9] presented two algorithms
that run in O(n® EOlog M) and O(n” EOlogn) time respec-
tively




Minimizing submodular functions

o Fleischer and Iwata [10] gave an alternative to Schrijver’s
algorithm that runs in O(n” EO + n®) time.

o Iwata[l1l] developed a scaling based algorithm whose running
time is O(n*EO log M + n°log M).

e In 2008, Iwata[l2] gave a new submodular function mini-
mization algorithm, the running time is O(n°EO + n")

e In 2009, Orlin[13] gave a combinatorial algorithm that runs
in O(nSEO + n®).




Maximizing submodular functions

Unconstrained Submodular Maximiztion (USM) has been stud-
ied since the sixties in the operations research community. USM
captures NP-hard problems, the research concentrate on:

@ Solve special cases of the problem.

e Provide exact algorithms whose times complexity cannot be
efficiently bounded.

o Provide efficient algorithms whose output has no provable
guarantee.




Maximizing submodular functions

e In 1962, V. P. Cherenin[14] , Solving some combinatorial
problems of optimal planning by the method of successive
calculations.

o The first rigorous study of USM was conducted by Feige,
Mirrokni, and Vondrdk [15]. They attempts to design effi-
cient algorithms and prove the corresponding lower-bounds
for unconstrained maximization of non-negative functions
that are not necessarily monotone. They propose a (2/5)-
approximation algorithm he also proved that the optimal
approximation factor in this case is 1/2.




Maximizing submodular functions

o The hard results (optimal approximation factors) in both
monotone and non-monotone cases are re-derived using a
joint framework by Vondrak[16] in which the so-called mul-
tilinear continuous extension of the set functions is used.

e Buchbinder et al. [17](2015) gave a (1/3)-approximation de-
terministic and (1/2)-approximation randomized algorithms
for unconstrained maximization of nonnegative submodular
functions.




Maximizing submodular functions

o For many special cases of USM, better approximation factors
are known. For example, Goemans and Williamsom|[18] pro-
vides a 0.878-approximation for Max-Cut based on a semidef-
inite programming formulation.

e Ageev and Sviridenko [19] provide an approximation of 0.828
for the maximum facility location problem.




Maximizing submodular functions

o For Monotome submodular function subject to a matroid
constraint, Calinescu et. al [20]. provide a randomized (1 —
1/e)-approximation for any monotone submodular function
and an arbitrary matroid.

o Lee et. al[21] consider the problem of maximizing non-

monotone submodular functions under matroid or knapsack
constraints.




Submodular Function and Image Segmentation

o Many of the problems that arise in computer vision, espe-
cially, image segmentation, can be naturally expressed in
terms of energy minimization.

@ One of the most important method in solving energy min-
imization problems is based on graph cut. The basic tech-
nique is to construct a specialized graph for the energy func-
tion to be minimized such that the minimum cut on the
graph also minimizes the energy. The minimum cut can be
computed very efficiently by max flow algorithms[22].




Submodular Function and Image Segmentation
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Figure: An example of image labeling.




Submodular Function and Image Segmentation

o Grig et. al were the first to discover the powerful min-
cut/max flow algorithms from combinatorial optimization
can be used to minimize certain important energy functions
in vision.

o The energies addressed by Greig et al. and by most later
graph-based methods can be represented as

L):ZDP Z V}Dqu,L (1)

pEP (p.9)EN

e where L = {L,|p € P} is a labeling of image P, D,(-) is a
data penality function, V,, 4 is an interaction potential, N is
a set of all pairs of neighboring pixels.




Submodular Function and Image Segmentation

Figure: An example of directed capacitated graph, (a) A graph G. (b)
A cut on G.




Submodular Function and Image Segmentation

o Let {x1,x9, -+ ,xn},z; € {0,1} be a set of binary-valued
variables. We define the class F2 to be functions that can
be written as a sum of functions of up to two binary variables
at a time

E(x1, 32, ,2n ZEZ z:) + > B (mi,35).
1<j

o We define the class F2 to be functions that can be written
as a sum of functions of up to three binary variables at a
time,

E(xy,29, - ,x ZE’ T —|—ZE (x4, z5)+ Z Ei’j’k(xi,xj,a?k)

1<J i<j<k

e Obviously, the class F? is a strict subset of the class F3.




Submodular Function and Image Segmentation

Definition 4

[22] A function E of n binary variables is called graph-
representatable if there exists a graph G = (V, E) with the ter-
minals s and t and a subset of vertices Vo = {vi,v2, -+ ,vp} C
V —{s,t} such that, for any configuration x1,xa,- - , Ty, the value
of the energy E(x1, 2, - ,y) is equal to a constant plus the cost
of the minimum s—t-cut among all cuts C = S, T in which v; € S
iifx; =0, andv; € T, if z; = 1(1 < i < n), We say that E is
exactly represented by G, Vo if the constant is zero.




Submodular Function and Image Segmentation

[22] the energy function E is graph-representable by a graph G
and a subset Vy. Then, it is possible to find the exact minimum
of E in polynomial time by computing the minimum s —t—cut on

g.




Submodular Function and Image Segmentation

Lemma 2

(F? Theorem)[22] Let E be a function of n binary variables from
the class of F2, i.e.,

E(xi,x9, -+ ,xy) = ZEZ(LISZ) + ZEi’j(:vi,xj).
%

1<j

Then, E is graph-representable if and only if each term E*J sat-
isfies the inequality

E"(0,0) + E™(1,1) < E*(0,1) + E™(1,0)

Namely FE is a submodular function




Submodular Function and Image Segmentation

Theorem 1
[22] Let E? be a nonregular function of two variables. Then,
minimizing function of the form
E({L'l,.’l,‘g, co 7wn) = ZEZ(wl) + Z E2(xi7$j)a
i

(i,9)EN

where E' are arbitrary function of one wariable and N C
{(4,j)|i <i<j<n} is NP-hard.




Submodular Function and Image Segmentation

Definition 5

[22] Let E(xi,z2,---,x,) be a function of n binary wvari-
ables and let I,J be a disjoint partition of the set of indices

Let a;y, -+ ,a50m)} be binary constants. A projection E =
E(zi1) = i1y, » Tigm) = Qi(m)] 8 a function of n—m variables
defined by

El(l,j(l)’... 733](n—m)) = E(x]_?... ’:L'n)’

where x; = «; for i € I. We say that we fix the variables
Li(1)y " » Li(m)-

<




Submodular Function and Image Segmentation

Definition 6
[22]
o All functions of one variable are regular.
o A function E of two variables is called regular if E(0,0) +
E(1,1) < E(0,1) + E(1,0).
o A function E of more than two variables is called regular if
all projection of E of two variables are regular.

w




Submodular Function and Image Segmentation

[22] Let E be a function of n binary variables from F3, i.e.,

E(.’L‘l,l‘g, co 7xn) = ZEZ(LL‘Z)—FZ EiJ(xi?xj)—i_ Z Ei7j7k(xi7xjvmk)
[

i<j i<j<k

Then, E is graph-representable if and only if E is reqular.

Theorem 3

[22] (regularity) Let E be a function of binary variables. If E is
not reqular, then E is not graph-representable.

| \

V.




Submodular Function and Image Segmentation

e How to construct meaningful energy function?
e How to approximate submodular function?

o How ti design approximation algorithm for minimizing or
maximizing the submodular functions (unconstrained or con-
strained)?




Submodular Function and Image Segmentation

o The graph cut method is prone to cause the isolated points
problem due to the lack of the distance information between
pixels and seeds.

o Our method makes full use of color information and geodesic
distance information; the method does not need iterative
process, and can give good results in many cases.

o Besides, the approach can continue to interact to improve the
previous segmentation results after getting poor segmenta-
tions in the condition of inadequate seed points marked.




Our method

@ Our approach incorporates geodesic-distance and appear-
ance overlap constraints properly in the graph-cut optimiza-
tion framework:

E(L)=X-> RiL)+ Y Bi;(LiLy)

x; €1 (z4,25)EN

@ The coefficient A > 0 specifies a relative importance of re-
gional term I?; in comparison with boundary term B;,;.

e L = (L;) is a binary vector whose components L; specify
assignments to pixels z; in I (i.e., L; = 0 if z; is a background
pixel and L; = 1 if x; is a foreground object pixel).

o [ is the set of pixels in the image, and IV is the set of adjacent
pixel pairs.




Our method

o For weighting of the relative importance of each term, the
regional term can be expressed as:

e x; represents a pixel in a image, a; and a are used to specify
the importance of M;(z;) and G;(x;) separately;




Our method

o s;(x;) is a term to represent user strokes,

e Mi(z;) is a global color model, and G(z;) is based on the
geodesic distance . Namely,

o) ={ et ©)

0 otherwise ’

Mmbﬁmmxwmzmm%@mw )




Our method

o () is the set of seeds with label [ € {F,B}; C(x;) = c is
the color at pixel z;; Pj(C(z;)) is the color model at z; for
the label [, and can be computed by normalizing the color
probability density function (PDF) Pr(c|l) of €;, mathemat-

ically,
Pr(c|l)
P(c) = ; 4
") = BrelF) + Pr(elB)’ (4)
Dy(z;) is the geodesic distance that is defined as the smallest
geodesic distance d;(s,z;) from pixel z; to the foreground

(F') and background (B) seeds s in form of:

D i) = in d y L)y 5
() = mindi(s, ) ®)




Our method

@ The boundary term of our method is expressed by using the
combination of the appearance overlap penalty in OneCut
with the usual smoothing terms:

B(x;, z;) ——ﬂHHL oL .

+ |05, (6)

o L C Qisasegment, and L = Q\L, 8 and 6” are the unnor-
malized color histograms inside object L and background L,
[, is the L1 norm, 3 is the weight of appearance overlap
penalty;




Our method

@ The second term is a commonly used contrast-sensitive smooth-
ness term as:

— AN d.
202
(7)
o I, is the label for pixel x;, 02 is the average AI® over the
image, d is the distance between pixel z; and x;.

o According to GeoGC, OneCut, and Kolmogorov 2004 above,
our objective energy function is submodular that can be op-
timized with graph-cut.

|8S’ = wai,wj ‘lazl — lxj} with Wz, z; = €XP




Our method

o As the irrational weight of the appearance overlap penalty
term (/) used in OneCut algorithm prone to cause the prob-
lem of isolated points, we need to adjust the value of 5 prop-
erly according to the ambiguity degree of the estimated ap-
pearance model.

@ an error term e,

1 erF Pp(C(x)) 4 erB Pr(C(z))

£E= =

2 €2r| 197:1

(8)




Our method

@ there is no error (¢ = 0), we would like to give the appearance
overlap term a big weight; when the color models become
more indistinct (i.e. the foreground and background color
models will overlap more and more), the error € will grow
and we would like to provide less weight to the appearance
overlap term:

0.25 x By if € >0.9

Br1 = { (1 —¢) x B¢ otherwise wily fy 1A ()




Our method

The constraints of color models and geodesic distance «

o Empirically, we set a according to the error term e computed
in the previous section:

1—-2 ife<0.5
" _{ 0 otherwise (LT,
a1 =80 x (1 —k), ag =800 x k. (11)

@ k can be viewed as the confidence of the estimated appear-
ance model. the number of bins automatically when using
L1 norm to approximate the appearance overlap term: 128
for small images; medium-sized images (used in this letter),
take 64; and 16 for large images.




Figure: Comparison results with the same user scribbles. The first row
is the original images with user scribbles, 2-6 rows are the segmentation
masks of OneCut, GeoGC, SSNCuts, TRC and Ours respectively




Our method
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