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Image Segmentation

Figure: An Example of Image Segmentation



Image Segmentation

Image segmentation is the separation of the target region
corresponding to the object of the real world from the back-
ground of the image.

The target region is based on the needs of specific applica-
tions and usually conforms to the subjective cognition and
experience of the operator

Without image segmentation, it is hard to switch into im-
age analysis from image processing and get further image
understanding.



Submodular Function-Definitions

Definition 1

A function f : 2N → R is submodular if for any S, T ⊆ N,

f(S ∪ T ) + f(A ∩ T ) ≤ f(S) + f(T )

Definition 2

(decreasing marginal values) For any A ⊆ B ⊆ N and x ∈ N\B,

f(B ∪ {x})− f(B) ≤ f(A ∪ {x})− f(A).



Submodular Function-definitions

Figure: An Illustration of the diminishing returns effect[1]



Submodular Function-definitions

Definition 3

Consider a function f : 2N → R≥0.

f is monotone if f(A) ≤ f(B) for every two sets A ⊆ B ⊆
N.

f is symmetric if f(A) = f(N\A) for every set A ⊆ N.
f is normalized if f(φ) = 0



Submodular Function-Examples

Example 1

Cut Function: Let G = (V,E) be a directed graph with capaci-
ties ce ≥ 0 on the edges. For every subset of vertices A ⊆ V, let
δ(A) = {e = uv|u ∈ A, v ∈ V \A}. The cut capacity function is
defined as the total capacity of edges that cross the cut (A, V \A).
Formally, the cut function is defines as

f(A) =
∑
e∈δ(A)

ce



Submodular Function-Examples

(Max k− Coverage) A number k and a collection of sets
S = {S1, S2, · · · , Sm}, Find a subsets S′ ⊆ S of sets, such
that |S′| ≤ k and the number of covered elements |

⋃
Si∈S′

Si|

is maximized.

(Weighted Coverage Function) Fix a set X, a nonnegative
modular function g : 2X → R and a collection V of subsets
of X. Then for a subcollection S ⊆ V , the function

f(S) := g(
⋃
v∈S

v) =
∑

x∈∪v∈Sv

w(x),

is monotone submodular. When g(A) = |A|, it is the well-
known max-cover problem. f(S) is submodular even for
arbitrary submodular function g.



Submodular Function-Examples

(The Rank Function of a Matroid) A matroid is a pair
(V, I) such that V is a finite set, and I ⊆ 2V is a collection
of subsets of V satisfying the following two properties:
(1) A ⊆ B ⊆ V and B ∈ I implies A ∈ I;
(2) A,B ∈ I and |B| > |A| implies ∃e ∈ B\A such that
A ∪ {e} ∈ I.
Sets in I are called independent, and matroids generalize the
concept of linear independence in linear algebra. Rank func-
tion f(S) := max{|U | : U ⊆ S,U ∈ I}. The rank function
of any matroid is monotone submodular [2].



Submodular Function-Examples

(Facility Location) Suppose we wish to select, out of a set
V = {1, 2, · · · , n}, some locations to open up facilities in
order to serve a collection of m customers. If we open up a
facility at location j, then it provides service of value Mij

to customer i, where M ∈ Rm×n. If each customer chooses
the facility with highest value, the total value provided to
all customers is modeled by the set function

f(S) =

m∑
i=1

max
j∈S

Mi,j .

Here f(Φ) = 0. If Mi,j > 0 for all i, j, then f(S) is monotone
submodular [3].



Submodular Function-Examples

(Entropy) Given a joint probability distribution P (X) over
a discrete-valued random vector X = [X1, X2, · · · , Xn], the
function f(S) = H(XS) is monotone submodular [4], where
H is the Shannon entropy, i.e.,

H(XS) = −
∑
XS

p(xS) log2 P (xS)

where we use the notational convention that XS is the ran-
dom vector consisting of the coordinates of X indexed by S,
and likewise xS is the vector consisting of the coordinates of
an assignment x indexed by S.



Minimizing submodular functions

Let EO be the maximum amount of time it takes to evaluate
f(S) for subset S ⊆ V.
Grötschel et. al. [5], [6] showed that a set U minimizing
f(S) can be found in strongly polynomial time, if f is given
by a value-giving oracle, that is, an oracle that returns f(U)
for any given U ⊆ V.
Schrijver [7] developed an submodular function minimization
algorithm that proved runs in O(n8EO + n9) time.

Vygen [8] improved the run time analysis of Schrijver’s algo-
rithm and showed that the running time is O(n7EO + n8).

Iwata, Fleischer and Fujishige [9] presented two algorithms
that run in O(n5EO logM) and O(n7EO log n) time respec-
tively



Minimizing submodular functions

Fleischer and Iwata [10] gave an alternative to Schrijver’s
algorithm that runs in O(n7EO + n8) time.

Iwata[11] developed a scaling based algorithm whose running
time is O(n4EO logM + n5 logM).

In 2008, Iwata[12] gave a new submodular function mini-
mization algorithm, the running time is O(n6EO + n7)

In 2009, Orlin[13] gave a combinatorial algorithm that runs
in O(n5EO + n6).



Maximizing submodular functions

Unconstrained Submodular Maximiztion (USM) has been stud-
ied since the sixties in the operations research community. USM
captures NP-hard problems, the research concentrate on:

Solve special cases of the problem.

Provide exact algorithms whose times complexity cannot be
efficiently bounded.

Provide efficient algorithms whose output has no provable
guarantee.



Maximizing submodular functions

In 1962, V. P. Cherenin[14] , Solving some combinatorial
problems of optimal planning by the method of successive
calculations.

The first rigorous study of USM was conducted by Feige,
Mirrokni, and Vondrák [15]. They attempts to design effi-
cient algorithms and prove the corresponding lower-bounds
for unconstrained maximization of non-negative functions
that are not necessarily monotone. They propose a (2/5)-
approximation algorithm he also proved that the optimal
approximation factor in this case is 1/2.



Maximizing submodular functions

The hard results (optimal approximation factors) in both
monotone and non-monotone cases are re-derived using a
joint framework by Vondrák[16] in which the so-called mul-
tilinear continuous extension of the set functions is used.

Buchbinder et al. [17](2015) gave a (1/3)-approximation de-
terministic and (1/2)-approximation randomized algorithms
for unconstrained maximization of nonnegative submodular
functions.



Maximizing submodular functions

For many special cases of USM, better approximation factors
are known. For example, Goemans and Williamsom[18] pro-
vides a 0.878-approximation for Max-Cut based on a semidef-
inite programming formulation.

Ageev and Sviridenko [19] provide an approximation of 0.828
for the maximum facility location problem.



Maximizing submodular functions

For Monotome submodular function subject to a matroid
constraint, Calinescu et. al [20]. provide a randomized (1−
1/e)-approximation for any monotone submodular function
and an arbitrary matroid.

Lee et. al[21] consider the problem of maximizing non-
monotone submodular functions under matroid or knapsack
constraints.



Submodular Function and Image Segmentation

Many of the problems that arise in computer vision, espe-
cially, image segmentation, can be naturally expressed in
terms of energy minimization.

One of the most important method in solving energy min-
imization problems is based on graph cut. The basic tech-
nique is to construct a specialized graph for the energy func-
tion to be minimized such that the minimum cut on the
graph also minimizes the energy. The minimum cut can be
computed very efficiently by max flow algorithms[22].



Submodular Function and Image Segmentation

Figure: An example of image labeling.



Submodular Function and Image Segmentation

Grig et. al were the first to discover the powerful min-
cut/max flow algorithms from combinatorial optimization
can be used to minimize certain important energy functions
in vision.

The energies addressed by Greig et al. and by most later
graph-based methods can be represented as

E(L) =
∑
p∈P

Dp(Lp) +
∑

(p,q)∈N

Vp,q(Lp, Lq) (1)

where L = {Lp|p ∈ P} is a labeling of image P, Dp(·) is a
data penality function, Vp,q is an interaction potential, N is
a set of all pairs of neighboring pixels.



Submodular Function and Image Segmentation

Figure: An example of directed capacitated graph, (a) A graph G. (b)
A cut on G.



Submodular Function and Image Segmentation

Let {x1, x2, · · · , xn}, xi ∈ {0, 1} be a set of binary-valued
variables. We define the class F2 to be functions that can
be written as a sum of functions of up to two binary variables
at a time

E(x1, x2, · · · , xn) =
∑
i

Ei(xi) +
∑
i<j

Ei,j(xi, xj).

We define the class F3 to be functions that can be written
as a sum of functions of up to three binary variables at a
time,

E(x1, x2, · · · , xn) =
∑
i

Ei(xi)+
∑
i<j

Ei,j(xi, xj)+
∑

i<j<k

Ei,j,k(xi, xj , xk)

Obviously, the class F2 is a strict subset of the class F3.



Submodular Function and Image Segmentation

Definition 4

[22] A function E of n binary variables is called graph-
representatable if there exists a graph G = (V,E) with the ter-
minals s and t and a subset of vertices V0 = {v1, v2, · · · , vn} ⊂
V−{s, t} such that, for any configuration x1, x2, · · · , xn, the value
of the energy E(x1, x2, · · · , xn) is equal to a constant plus the cost
of the minimum s−t-cut among all cuts C = S, T in which vi ∈ S
iif xi = 0, and vi ∈ T, if xi = 1(1 ≤ i ≤ n), We say that E is
exactly represented by G, V0 if the constant is zero.



Submodular Function and Image Segmentation

Lemma 1

[22] the energy function E is graph-representable by a graph G
and a subset V0. Then, it is possible to find the exact minimum
of E in polynomial time by computing the minimum s− t−cut on
G.



Submodular Function and Image Segmentation

Lemma 2

(F2 Theorem)[22] Let E be a function of n binary variables from
the class of F2, i.e.,

E(x1, x2, · · · , xn) =
∑
i

Ei(xi) +
∑
i<j

Ei,j(xi, xj).

Then, E is graph-representable if and only if each term Ei,j sat-
isfies the inequality

Ei,j(0, o) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0)

Namely E is a submodular function



Submodular Function and Image Segmentation

Theorem 1

[22] Let E2 be a nonregular function of two variables. Then,
minimizing function of the form

E(x1, x2, · · · , xn) =
∑
i

Ei(xi) +
∑

(i,j)∈N

E2(xi, xj),

where Ei are arbitrary function of one variable and N ⊂
{(i, j)|i ≤ i < j ≤ n} is NP-hard.



Submodular Function and Image Segmentation

Definition 5

[22] Let E(x1, x2, · · · , xn) be a function of n binary vari-
ables and let I, J be a disjoint partition of the set of indices
{1, 2, · · · , n}; I = {i(1), · · · , i(m)}, J = {j(1), · · · , j(n − m)}.
Let αi(1), · · · , αi(m)} be binary constants. A projection E′ =
E(xi(1) = αi(1), · · · , xi(m) = αi(m)] is a function of n−m variables
defined by

E′(xj(1), · · · , xj(n−m)) = E(x1, · · · , xn),

where xi = αi for i ∈ I. We say that we fix the variables
xi(1), · · · , xi(m).



Submodular Function and Image Segmentation

Definition 6

[22]

All functions of one variable are regular.

A function E of two variables is called regular if E(0, 0) +
E(1, 1) ≤ E(0, 1) + E(1, 0).

A function E of more than two variables is called regular if
all projection of E of two variables are regular.



Submodular Function and Image Segmentation

Theorem 2

[22] Let E be a function of n binary variables from F3, i.e.,

E(x1, x2, · · · , xn) =
∑
i

Ei(xi)+
∑
i<j

Ei,j(xi, xj)+
∑

i<j<k

Ei,j,k(xi, xj , xk)

Then, E is graph-representable if and only if E is regular.

Theorem 3

[22] (regularity) Let E be a function of binary variables. If E is
not regular, then E is not graph-representable.



Submodular Function and Image Segmentation

How to construct meaningful energy function?

How to approximate submodular function?

How ti design approximation algorithm for minimizing or
maximizing the submodular functions (unconstrained or con-
strained)?



Submodular Function and Image Segmentation

The graph cut method is prone to cause the isolated points
problem due to the lack of the distance information between
pixels and seeds.

Our method makes full use of color information and geodesic
distance information; the method does not need iterative
process, and can give good results in many cases.

Besides, the approach can continue to interact to improve the
previous segmentation results after getting poor segmenta-
tions in the condition of inadequate seed points marked.



Our method

Our approach incorporates geodesic-distance and appear-
ance overlap constraints properly in the graph-cut optimiza-
tion framework:

E(L) = λ ·
∑
xi∈I

Ri(Li) +
∑

(xi,xj)∈N

Bi,j(Li, Lj)

.

The coefficient λ ≥ 0 specifies a relative importance of re-
gional term Ri in comparison with boundary term Bi,j .

L = (Li) is a binary vector whose components Li specify
assignments to pixels xi in I (i.e., Li = 0 if xi is a background
pixel and Li = 1 if xi is a foreground object pixel).

I is the set of pixels in the image, and N is the set of adjacent
pixel pairs.



Our method

For weighting of the relative importance of each term, the
regional term can be expressed as:

xi represents a pixel in a image, α1 and α2 are used to specify
the importance of Ml(xi) and Gl(xi) separately;



Our method

sl(xi) is a term to represent user strokes,

Ml(xi) is a global color model, and Gl(xi) is based on the
geodesic distance . Namely,

sl(xi) =

{
∞ if xi ∈ Ωl̄

0 otherwise
, (2)

Ml(xi) = Pl̄(C(xi)), Gl(xi) =
Dl(xi)

DF (xi) +DB(xi)
, (3)



Our method

Ωl is the set of seeds with label l ∈ {F,B}; C(xi) = c is
the color at pixel xi; Pl(C(xi)) is the color model at xi for
the label l, and can be computed by normalizing the color
probability density function (PDF) Pr(c|l) of Ωl, mathemat-
ically,

Pl(c) =
Pr(c|l)

Pr(c|F ) + Pr(c|B)
; (4)

Dl(xi) is the geodesic distance that is defined as the smallest
geodesic distance dl(s, xi) from pixel xi to the foreground
(F ) and background (B) seeds s in form of:

Dl(xi) = min
s∈Ωl

dl(s, xi), (5)



Our method

The boundary term of our method is expressed by using the
combination of the appearance overlap penalty in OneCut
with the usual smoothing terms:

B(xi, xj) = −β
∥∥∥θL − θL̄∥∥∥

L1

+ |∂S| , (6)

L ⊂ Ω is a segment, and L = Ω\L, θL and θL̄ are the unnor-
malized color histograms inside object L and background L̄,
‖·‖L1

is the L1 norm, β is the weight of appearance overlap
penalty;



Our method

The second term is a commonly used contrast-sensitive smooth-
ness term as:

|∂S| =
∑

ωxi,xj
∣∣lxi − lxj ∣∣ with ωxi,xj = exp

−∆I2

2σ2

/
d,

(7)

lxi is the label for pixel xi, σ
2 is the average ∆I2 over the

image, d is the distance between pixel xi and xj .

According to GeoGC, OneCut, and Kolmogorov 2004 above,
our objective energy function is submodular that can be op-
timized with graph-cut.



Our method

As the irrational weight of the appearance overlap penalty
term (β) used in OneCut algorithm prone to cause the prob-
lem of isolated points, we need to adjust the value of β prop-
erly according to the ambiguity degree of the estimated ap-
pearance model.

an error term ε,

ε =
1

2

[∑
x∈F PB(C(x))

|ΩF |
+

∑
x∈B PF (C(x))

|ΩB|

]
. (8)



Our method

there is no error (ε = 0), we would like to give the appearance
overlap term a big weight; when the color models become
more indistinct (i.e. the foreground and background color
models will overlap more and more), the error ε will grow
and we would like to provide less weight to the appearance
overlap term:

βt+1 =

{
0.25× βt if ε > 0.9

(1− ε)× βt otherwise
with β0 = 1.4. (9)



Our method

The constraints of color models and geodesic distance α

Empirically, we set α according to the error term ε computed
in the previous section:

κ =

{
1− 2ε if ε < 0.5

0 otherwise
, (10)

α1 = 80× (1− κ), α2 = 800× κ. (11)

κ can be viewed as the confidence of the estimated appear-
ance model. the number of bins automatically when using
L1 norm to approximate the appearance overlap term: 128
for small images; medium-sized images (used in this letter),
take 64; and 16 for large images.



Our method

Figure: Comparison results with the same user scribbles. The first row
is the original images with user scribbles, 2-6 rows are the segmentation
masks of OneCut, GeoGC, SSNCuts, TRC and Ours respectively



Our method
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