RAINBOW RAMSEY NUMBER FOR POSETS

Wei-Tian Li joint work with many people

Department of Applied Mathematics National Chung Hsing University

10th Cross-Strait Graph and Combinatorics Conference

Table of Content

- Introduction
 - Partially Ordered Sets
 - Poset Ramsey Number
- The Results

Introduction

Partially Ordered sets

A poset (partially ordered set) $P = (P, \leq)$ is a set P with a binary partial order relation \leq satisfying

1. For all $x \in P$, $x \leq x$. (reflexivity)

2. If $x \le y$ and $y \le x$, then x = y. (antisymmetry)

ヘロト ヘロト ヘヨト ヘヨト

3. If $x \leq y$ and $y \leq z$, then $x \leq z$. (transitivity)

Figure: The Hasse diagrams of some small posets.

The **Boolean lattice** \mathcal{B}_n is the poset whose elements are subsets of [n] and the partial order is the inclusion relation on sets .

Partially Ordered sets

A poset $P_1 = (P_1, \leq_1)$ contains another poset $P_2 = (P_2, \leq_2)$ as an **(induced) subposet** if there is an injection $f : P_2 \to P_1$ such that

 $a \leq_2 b \Leftrightarrow f(a) \leq_1 f(b).$

A poset $P_1 = (P_1, \leq_1)$ contains another poset $P_2 = (P_2, \leq_2)$ as a **(weak) subposet** if there is an injection $f : P_2 \to P_1$ such that

$$a\leq_2 b\Rightarrow f(a)\leq_1 f(b).$$

Example:

DEFINITION

Given posets P and Q, the strong Ramsey number $R^*(P, Q)$ is the minimum n such that any 2-coloring (red/blue) on \mathcal{B}_n contains either a red P or a blue Q as an induced subposet.

Figure: Three colorings on \mathcal{B}_3 without a monochromatic Q_2 .

THEOREM (Axenovich and Walzer, 2017)

For hypercubes (Boolean posets) Q_n, Q_m , (i) $2n \le R^*(Q_n, Q_n) \le n^2 + 2n$, (ii) $R^*(Q_2, Q_2) = 4$, $R^*(Q_3, Q_3) \in \{7, 8\}$, (iii) $R^*(Q_1, Q_n) = n + 1$, $R^*(Q_2, Q_n) \le 2n + 2$, (iv) $R^*(Q_n, Q_m) \le mn + n + m$.

Remark. The strong Ramsey number $R^*(P_1, \ldots, P_k)$ for posets P_1, \ldots, P_k can be defined analogously. If $P_1 = \cdots = P_k = P$, then we use $R_k^*(P)$ to denote $R^*(P_1, \ldots, P_k)$.

THEOREM (Axenovich and Walzer, 2017)

For hypercubes (Boolean posets) Q_n, Q_m , (i) $2n \le R^*(Q_n, Q_n) \le n^2 + 2n$, (ii) $R^*(Q_2, Q_2) = 4$, $R^*(Q_3, Q_3) \in \{7, 8\}$,

(iii)
$$R^*(Q_1, Q_n) = n + 1$$
, $R^*(Q_2, Q_n) \le 2n + 2$
(iv) $R^*(Q_n, Q_m) \le mn + n + m$.

THEOREM (Axenovich and Walzer, 2017)

For any poset P,

$$R_k^*(P) = \Theta(k).$$

Definition

Given posets P and Q, the weak Ramsey number R(P, Q) is the minimum n such that any 2-coloring (red/blue) on \mathcal{B}_n contains either a red P or a blue Q as a weak subposet.

Remark. To see more results of the weak version of Ramsey number for posets, please see "Ramsey number for partially-ordered posets" by Cox and Stolee in *Order* 35(3), pp 557–579.

イロト イヨト イヨト イ

THEOREM (Wu, 2018)

For the posets P with |P| = 4, we have the following results:

(i)
$$R^*(N, N) = 4$$
,
(ii) $R^*(V_3, V_3) = 5$,
(iii) $R^*(J, J) = 5$,
(iv) $R^*(Y, Y) = 5$, and
(v) $R^*(B, B) = 6$.

11 / 25

$\mathrm{THEOREM}$ (Chen, Cheng, L. and Liu, 2018+)

For the poset Q_2 , we have $R_3^*(Q_2) = 6$.

DEFINITION

Let P be a poset, and let f be a coloring on the Boolean lattice \mathcal{B}_n . If \mathcal{B}_n contains P as an induced subposet with different colors on different elements, then we say \mathcal{B}_n contains a rainbow P under f.

The \mathcal{B}_3 on the left contains a rainbow Y under the coloring.

Definition

Let P be a poset, and let f be a coloring on the Boolean lattice \mathcal{B}_n . If \mathcal{B}_n contains P as an induced subposet with different colors on different elements, then we say \mathcal{B}_n contains a rainbow P under f.

DEFINITION

Given two posets P and Q, the **strong rainbow Ramsey number** for posets P and Q, $RR^*(P, Q)$, is the minimum number n such that for any coloring f on \mathcal{B}_n , either there is a monochromatic Por a rainbow Q as an induced subposet.

14 / 25

THEOREM (Chen, Cheng, L., Liu, 2018+)

 $n(2^m-1) \leq RR^*(Q_n, Q_m) \leq (2^m-1)R^*_{2^m-1}(Q_n).$

Proof. Let $N = (2^m - 1)R_{2^m-1}(Q_n)$. For any coloring f on \mathcal{B}_N , we assume there is no monochromatic Q_n in \mathcal{B}_N , and show that there is a rainbow Q_m under f. Write $[N] = \bigcup_{I: \emptyset \neq I \subseteq [m]} S_I$ with $S_I = |R_{2^m-1}(Q_n)|$.

THEOREM (Chen, Cheng, L., Liu, 2018+)

 $n(2^m-1) \leq RR^*(Q_n, Q_m) \leq (2^m-1)R^*_{2^m-1}(Q_n).$

THEOREM (Chen, Cheng, L., Liu, 2018+)

 $n(2^m-1) \leq RR^*(Q_n, Q_m) \leq (2^m-1)R^*_{2^m-1}(Q_n).$

For |I| = 1, since if $f|_{2^{[S_I]}}$ does not contain a monochromatic Q_n , then there are at least 2^m colors on the subsets in $2^{[S_I]}$. Then for these *I*'s, we pick a nonempty set $T_I \subseteq S_I$ so that $f(T_I)$'s are all distinct.

For sets in the interval $[T_{\{1\}} \cup T_{\{2\}}, T_{\{1\}} \cup T_{\{2\}} \cup S_{\{1,2\}}]$, there are at least 2^m colors on the sets in the interval, since B_N does not contain a monochromatic Q_n . So we can pick one set whose color is different from $f(T_I)$'s and $f(\emptyset)$ as denote it as $T_{\{1,2\}}$.

Repeat this method from the small subsets to large subsets, we can construct a rainbow Q_m .

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 A
 A

Exact Values of $RR^*(Q_n, Q_m)$ for some *n* and *m*.

THEOREM (Chen, Cheng, L., Liu, 2018+)

 $RR^*(Q_n, Q_1) = n.$

THEOREM (Chen, Cheng, L., Liu, 2018+)

 $RR^*(Q_1,Q_n)=2^n-1.$

THEOREM (Chen, Cheng, L., Liu, 2018+)

 $RR^*(Q_2, Q_2) = 6.$

Given a family \mathcal{F} of subsets of [n], the **Lubell function** of \mathcal{F} is defined to be

$$ar{h}_n(\mathcal{F}) = \sum_{F \in \mathcal{F}} rac{1}{\binom{n}{|F|}}.$$

Let e(P) be the maximum number such that the union of any e(P) consecutive levels in any Boolean lattice does not contain P as a weak subposet.

DEFINITION

A poset *P* is **uniformly Lubell bounded** if for any *n*, every family \mathcal{F} of subsets of [*n*], which does not contain *P* as a weak subposet satisfies $\bar{h}_n(\mathcal{F}) \leq e(P)$.

THEOREM (CGLMNPV, 2018+)

Let P be a uniformly Lubell bounded poset and \mathcal{F} be a family of subsets with $\bar{h}_n(\mathcal{F}) > e(P)(k-1)$. Then any coloring c on \mathcal{F} contains either a monochromatic P or a raibow chain P_k as a weak subposet.

Becasue $\bar{h}_n(\mathcal{B}_n) = \sum_{F \subseteq [n]} \frac{1}{\binom{n}{|F|}} = n + 1$ and P_k contains any k-element poset as a weak subpost, the theorem implies the following corollary immediately.

COROLLARY (CGLMNPV, 2018+)

If P is uniformly Lubell-bounded, then RR(P, Q) = e(P)(|Q| - 1)holds for any poset Q.

Proof of the theorem. We prove by induction on *k*.

For k = 1, if we color a nonempty family of subsets of [n], then at least one color class is not empty. So there is a monochromatic P_1 (singleton).

Suppose this holds for some integer k. Let us color a family \mathcal{F} with $\bar{h}_n(\mathcal{F}) > e(P)k$, and then apply the "**min-max partition**" on the set of full chains in \mathcal{B}_n to get a subfamly \mathcal{F}' with $\bar{h}_m(\mathcal{F}') > e(P)k$.

Proof of the theorem. We prove by induction on *k*.

For k = 1, if we color a nonempty family of subsets of [n], then at least one color class is not empty. So there is a monochromatic P_1 (singleton).

Suppose this holds for some integer k. Let us color a family \mathcal{F} with $\bar{h}_n(\mathcal{F}) > e(P)k$, and then apply the "**min-max partition**" on the set of full chains in \mathcal{B}_n to get a subfamily \mathcal{F}' with $\bar{h}_m(\mathcal{F}') > e(P)k$.

Proof of the theorem. We prove by induction on *k*.

For k = 1, if we color a nonempty family of subsets of [n], then at least one color class is not empty. So there is a monochromatic P_1 (singleton).

Suppose this holds for some integer k. Let us color a family \mathcal{F} with $\bar{h}_n(\mathcal{F}) > e(P)k$, and then apply the "**min-max partition**" on the set of full chains in \mathcal{B}_n to get a subfamily \mathcal{F}' with $\bar{h}_m(\mathcal{F}') > e(P)k$.

This family contains a minimum and a maximum subset. Let the minimum subset be colored by 1, and let \mathcal{F}_1 be the subfamily of \mathcal{F} , which contains all subsets of color 1.

If \mathcal{F}_1 does not contain P as a weak subposet, then $\bar{h}_m(\mathcal{F}_1) < e(P)$ and $\bar{h}_m(\mathcal{F}' - \mathcal{F}_1) > e(P)(k-1)$.

By induction, either $\mathcal{F}' - \mathcal{F}_1$ contains a monochromatic P as a weak subposet, or it contains a rainbow P_{k-1} as a weak subposet. Assume that the latter case happens.

Then the rainbow P_{k-1} does not contain subsets of color 1. We elongate the rainbow P_{k-1} by adding the minimum subset.

24 / 25

Future work

- $R_k^*(Q_2) = 2k?$
- Good estimations of $R^*(Q_n, Q_m)$.
- Other type of Ramsey Problems on Posets.

Future work

- $R_k^*(Q_2) = 2k?$
- Good estimations of $R^*(Q_n, Q_m)$.
- Other type of Ramsey Problems on Posets.

Thank you for your attention.

