Rainbow Ramsey Number for Posets

Wei－Tian Li
joint work with many people
Department of Applied Mathematics
National Chung Hsing University
10th Cross－Strait Graph and Combinatorics Conference

Table of Content

- Introduction
- Partially Ordered Sets
- Poset Ramsey Number
- The Results

大學
Nationat Chung Hsing University

Introduction

$-\quad$ Q
$3 / 25$

Partially Ordered sets

A poset (partially ordered set) $P=(P, \leq)$ is a set P with a binary partial order relation \leq satisfying

1. For all $x \in P, x \leq x$. (reflexivity)
2. If $x \leq y$ and $y \leq x$, then $x=y$. (antisymmetry)
3. If $x \leq y$ and $y \leq z$, then $x \leq z$. (transitivity)

Figure: The Hasse diagrams of some small posets.

The Boolean lattice \mathcal{B}_{n} is the poset whose elements are subsets of $[n]$ and the partial order is the inclusion relation on sets.

Partially Ordered sets

A poset $P_{1}=\left(P_{1}, \leq_{1}\right)$ contains another poset $P_{2}=\left(P_{2}, \leq_{2}\right)$ as an (induced) subposet if there is an injection $f: P_{2} \rightarrow P_{1}$ such that

$$
a \leq_{2} b \Leftrightarrow f(a) \leq_{1} f(b)
$$

A poset $P_{1}=\left(P_{1}, \leq_{1}\right)$ contains another poset $P_{2}=\left(P_{2}, \leq_{2}\right)$ as a (weak) subposet if there is an injection $f: P_{2} \rightarrow P_{1}$ such that

$$
a \leq_{2} b \Rightarrow f(a) \leq_{1} f(b)
$$

Example:

$$
\begin{aligned}
& c \stackrel{f}{\longmapsto} C \\
& b \longmapsto B \\
& a \longmapsto A
\end{aligned}
$$

Poset Ramsey Number

DEFINITION

Given posets P and Q ，the strong Ramsey number $R^{*}(P, Q)$ is the minimum n such that any 2 －coloring（red／blue）on \mathcal{B}_{n} contains either a red P or a blue Q as an induced subposet．

Figure：Three colorings on \mathcal{B}_{3} without a monochromatic Q_{2} ．

Poset Ramsey Number

Theorem (Axenovich and Walzer, 2017)

For hypercubes (Boolean posets) Q_{n}, Q_{m},

$$
\begin{aligned}
& \text { (i) } 2 n \leq R^{*}\left(Q_{n}, Q_{n}\right) \leq n^{2}+2 n \\
& \text { (ii) } R^{*}\left(Q_{2}, Q_{2}\right)=4, R^{*}\left(Q_{3}, Q_{3}\right) \in\{7,8\} \\
& \text { (iii) } R^{*}\left(Q_{1}, Q_{n}\right)=n+1, R^{*}\left(Q_{2}, Q_{n}\right) \leq 2 n+2 \text {, } \\
& \text { (iv) } R^{*}\left(Q_{n}, Q_{m}\right) \leq m n+n+m
\end{aligned}
$$

Remark. The strong Ramsey number $R^{*}\left(P_{1}, \ldots, P_{k}\right)$ for posets P_{1}, \ldots, P_{k} can be defined analogously. If $P_{1}=\cdots=P_{k}=P$, then we use $R_{k}^{*}(P)$ to denote $R^{*}\left(P_{1}, \ldots, P_{k}\right)$.

Poset Ramsey Number

Theorem（Axenovich and Walzer，2017）

For hypercubes（Boolean posets）Q_{n}, Q_{m} ，

$$
\begin{aligned}
& \text { (i) } 2 n \leq R^{*}\left(Q_{n}, Q_{n}\right) \leq n^{2}+2 n \text {, } \\
& \text { (ii) } R^{*}\left(Q_{2}, Q_{2}\right)=4, R^{*}\left(Q_{3}, Q_{3}\right) \in\{7,8\} \text {, } \\
& \text { (iii) } R^{*}\left(Q_{1}, Q_{n}\right)=n+1, R^{*}\left(Q_{2}, Q_{n}\right) \leq 2 n+2 \text {, } \\
& \text { (iv) } R^{*}\left(Q_{n}, Q_{m}\right) \leq m n+n+m \text {. }
\end{aligned}
$$

Theorem（Axenovich and Walzer，2017）

For any poset P ，

$$
R_{k}^{*}(P)=\Theta(k)
$$

Poset Ramsey Number

DEFINITION

Given posets P and Q, the weak Ramsey number $R(P, Q)$ is the minimum n such that any 2-coloring (red/blue) on \mathcal{B}_{n} contains either a red P or a blue Q as a weak subposet.

Remark. To see more results of the weak version of Ramsey number for posets, please see "Ramsey number for partially-ordered posets" by Cox and Stolee in Order 35(3), pp 557-579.

The Results

圈立中县大嚳
Nationat Chung Hsing University
三 \quad のの
$10 / 25$

The Results

Theorem (Wu, 2018)

For the posets P with $|P|=4$, we have the following results:
(i) $R^{*}(N, N)=4$,
(ii) $R^{*}\left(V_{3}, V_{3}\right)=5$,
(iii) $R^{*}(J, J)=5$,
(iv) $R^{*}(Y, Y)=5$, and
(v) $R^{*}(B, B)=6$.

The Results

Theorem（Chen，Cheng，L．and Liu，2018＋）

For the poset Q_{2} ，we have $R_{3}^{*}\left(Q_{2}\right)=6$ ．

圈立中具大嚳
National Chung Hsing University

The Results

Definition

Let P be a poset，and let f be a coloring on the Boolean lattice \mathcal{B}_{n} ． If \mathcal{B}_{n} contains P as an induced subposet with different colors on different elements，then we say \mathcal{B}_{n} contains a rainbow P under f ．

The \mathcal{B}_{3} on the left contains a rainbow Y under the coloring．

The Results

Definition

Let P be a poset，and let f be a coloring on the Boolean lattice \mathcal{B}_{n} ． If \mathcal{B}_{n} contains P as an induced subposet with different colors on different elements，then we say \mathcal{B}_{n} contains a rainbow P under f ．

DEFINITION

Given two posets P and Q ，the strong rainbow Ramsey number for posets P and $Q, R R^{*}(P, Q)$ ，is the minimum number n such that for any coloring f on \mathcal{B}_{n} ，either there is a monochromatic P or a rainbow Q as an induced subposet．

The Results

Theorem（Chen，Cheng，L．，Liu，2018＋）

$n\left(2^{m}-1\right) \leq R R^{*}\left(Q_{n}, Q_{m}\right) \leq\left(2^{m}-1\right) R_{2^{m}-1}^{*}\left(Q_{n}\right)$.
Proof．Let $N=\left(2^{m}-1\right) R_{2^{m}-1}\left(Q_{n}\right)$ ．For any coloring f on \mathcal{B}_{N} ， we assume there is no monochromatic Q_{n} in \mathcal{B}_{N} ，and show that there is a rainbow Q_{m} under f ．Write $[N]=\bigcup_{I: \emptyset \neq I \subseteq[m]} S_{l}$ with $S_{I}=\left|R_{2^{m}-1}\left(Q_{n}\right)\right|$ ．

\emptyset

The Results

$$
\begin{aligned}
& \text { Theorem (Chen, Cheng, L., Liu, 2018+) } \\
& n\left(2^{m}-1\right) \leq R R^{*}\left(Q_{n}, Q_{m}\right) \leq\left(2^{m}-1\right) R_{2^{m}-1}^{*}\left(Q_{n}\right)
\end{aligned}
$$

The Results

Theorem（Chen，Cheng，L．，Liu，2018＋）

$$
n\left(2^{m}-1\right) \leq R R^{*}\left(Q_{n}, Q_{m}\right) \leq\left(2^{m}-1\right) R_{2^{m}-1}^{*}\left(Q_{n}\right)
$$

For $|I|=1$ ，since if $\left.f\right|_{2\left[S_{l}\right]}$ does not contain a monochromatic Q_{n} ， then there are at least 2^{m} colors on the subsets in $2^{\left[S_{l}\right]}$ ．Then for these I＇s，we pick a nonempty set $T_{I} \subseteq S_{I}$ so that $f\left(T_{I}\right)$＇s are all distinct．

\emptyset

The Results

For sets in the interval $\left[T_{\{1\}} \cup T_{\{2\}}, T_{\{1\}} \cup T_{\{2\}} \cup S_{\{1,2\}}\right.$ ］，there are at least 2^{m} colors on the sets in the interval，since B_{N} does not contain a monochromatic Q_{n} ．So we can pick one set whose color is different from $f\left(T_{l}\right)$＇s and $f(\emptyset)$ as denote it as $T_{\{1,2\}}$ ．

Repeat this method from the small subsets to large subsets，we can construct a rainbow Q_{m} ．

The Results

Exact Values of $R R^{*}\left(Q_{n}, Q_{m}\right)$ for some n and m ．

Theorem（Chen，Cheng，L．，Liu，2018＋）

$R R^{*}\left(Q_{n}, Q_{1}\right)=n$.

Theorem（Chen，Cheng，L．，Liu，2018＋）
$R R^{*}\left(Q_{1}, Q_{n}\right)=2^{n}-1$.

Theorbm（Chen，Cheng，L．，Liu，2018＋）
$R R^{*}\left(Q_{2}, Q_{2}\right)=6$.

The Results

Given a family \mathcal{F} of subsets of $[n]$, the Lubell function of \mathcal{F} is defined to be

$$
\bar{h}_{n}(\mathcal{F})=\sum_{F \in \mathcal{F}} \frac{1}{\binom{n}{|F|}}
$$

Let $e(P)$ be the maximum number such that the union of any $e(P)$ consecutive levels in any Boolean lattice does not contain P as a weak subposet.

DEFINITION

A poset P is uniformly Lubell bounded if for any n, every family \mathcal{F} of subsets of $[n]$, which does not contain P as a weak subposet satisfies $\bar{h}_{n}(\mathcal{F}) \leq e(P)$.

The Results

Theorem (CGLMNPV, 2018+)

Let P be a uniformly Lubell bounded poset and \mathcal{F} be a family of subsets with $\bar{h}_{n}(\mathcal{F})>e(P)(k-1)$. Then any coloring c on \mathcal{F} contains either a monochromatic P or a raibow chain P_{k} as a weak subposet.

Becasue $\bar{h}_{n}\left(\mathcal{B}_{n}\right)=\sum_{F \subseteq[n]} \frac{1}{\binom{n}{|F|}}=n+1$ and P_{k} contains any k-element poset as a weak subpost, the theorem implies the following corollary immediately.

Corollary (CGLMNPV, 2018+)

If P is uniformly Lubell-bounded, then $R R(P, Q)=e(P)(|Q|-1)$ holds for any poset Q.

The Results

Proof of the theorem．We prove by induction on k ．
For $k=1$ ，if we color a nonempty family of subsets of［ n ］，then at least one color class is not empty．So there is a monochromatic P_{1} （singleton）．
Suppose this holds for some integer k ．Let us color a family \mathcal{F} with $\bar{h}_{n}(\mathcal{F})>e(P) k$ ，and then apply the＂min－max partition＂on the set of full chains in \mathcal{B}_{n} to get a subfamly \mathcal{F}^{\prime} with $\bar{h}_{m}\left(\mathcal{F}^{\prime}\right)>e(P) k$ ．

The Results

Proof of the theorem. We prove by induction on k.
For $k=1$, if we color a nonempty family of subsets of $[n]$, then at least one color class is not empty. So there is a monochromatic P_{1} (singleton).
Suppose this holds for some integer k. Let us color a family \mathcal{F} with $\bar{h}_{n}(\mathcal{F})>e(P) k$, and then apply the "min-max partition" on the set of full chains in \mathcal{B}_{n} to get a subfamly \mathcal{F}^{\prime} with $\bar{h}_{m}\left(\mathcal{F}^{\prime}\right)>e(P) k$.

The Results

Proof of the theorem．We prove by induction on k ．
For $k=1$ ，if we color a nonempty family of subsets of $[n]$ ，then at least one color class is not empty．So there is a monochromatic P_{1} （singleton）．
Suppose this holds for some integer k ．Let us color a family \mathcal{F} with $\bar{h}_{n}(\mathcal{F})>e(P) k$ ，and then apply the＂min－max partition＂on the set of full chains in \mathcal{B}_{n} to get a subfamly \mathcal{F}^{\prime} with $\bar{h}_{m}\left(\mathcal{F}^{\prime}\right)>e(P) k$ ．

The Results

This family contains a minimum and a maximum subset．Let the minimum subset be colored by 1 ，and let \mathcal{F}_{1} be the subfamily of \mathcal{F} ，which contains all subsets of color 1 ．

If \mathcal{F}_{1} does not contain P as a weak subposet，then $\bar{h}_{m}\left(\mathcal{F}_{1}\right)<e(P)$ and $\bar{h}_{m}\left(\mathcal{F}^{\prime}-\mathcal{F}_{1}\right)>e(P)(k-1)$ ．

The Results

By induction, either $\mathcal{F}^{\prime}-\mathcal{F}_{1}$ contains a monochromatic P as a weak subposet, or it contains a rainbow P_{k-1} as a weak subposet. Assume that the latter case happens.

Then the rainbow P_{k-1} does not contain subsets of color 1 . We elongate the rainbow P_{k-1} by adding the minimum subset.

Future work

- $R_{k}^{*}\left(Q_{2}\right)=2 k$?
- Good estimations of $R^{*}\left(Q_{n}, Q_{m}\right)$.
- Other type of Ramsey Problems on Posets.

Future work

- $R_{k}^{*}\left(Q_{2}\right)=2 k$?
- Good estimations of $R^{*}\left(Q_{n}, Q_{m}\right)$.
- Other type of Ramsey Problems on Posets.

Thank you for your attention.

