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Integer partitions

Let λ = (λ1, λ2, . . . , λk) be a partititon of n, i.e.

λ1 + λ2 + · · ·+ λk = n,

where λ1 ≥ λ2 ≥ · · · ≥ λk > 0.
The Ferrers diagram of λ is a left-justfied array of cells with λi cells in the
i-th row, for 1 ≤ i ≤ k.

Figure: The Ferrers diagram of a partition λ = (6, 3, 1) ⊢ 10.
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Semistandard Young tableau and standard Young tableau

A semistandard Young tableau (SSYT) of shape λ is a filling of the Ferrers
diagram of λ with positive integers such that every row is strictly increasing
and every column is weakly increasing.
A standard Young tableau (SYT) of shape λ ⊢ n is a filling of the Ferrers
diagram of λ with {1, 2, . . . ,n} such that every row and column is strictly
increasing.

2 4 6 7 8 9
4 5 6
8

1 3 4 5 8 10
2 6 7
9

Figure: A semi-standard Young tableau of shape (6, 3, 1) and a standard Young
tableau of shape (6, 3, 1).
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Major index and amajor index of a tablau

A descent of an SSYT T is any instance of i followed by an i + 1 in a lower
row of T. D(T) : the descent set of T. The major index of T is defined by
maj(T) =

∑
i∈D(T) i. An ascent of T is any instance of i followed by an

i + 1 in a higher row of T than i. A(T) : the ascent set of T. The amajor
index of T is defined by amaj(T) =

∑
i∈A(T) i.

1 2 5 10
3 4 8
6
7
9

1 2 5 10
3 4 8
6
7
9

Figure: T ∈ SYT(4, 3, 1, 1, 1).

D(T) = {2, 5, 6, 8}, maj(T) = 21. A(T) = {4, 7, 9}, amaj(T) = 20.
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Major index for standard Young tableaux

Lemma (Stanley’s q-hook length formula)
For any partition λ =

∑
i λi of n, we have

∑
T∈SYT(λ)

qmaj(T) =
qb(λ)[n]!∏

u∈λ h(u) . (1)

Here b(λ) =
∑

i(i − 1)λi.

The famous RSK algorithm is a bijection between permutations of length n
and pairs of SYTs of order n of the same shape. Under this bijection, the
descent set of a permutation is transferred to the descent set of the
corresponding “recording tableau”. Therefore many problems involving the
statistics descent or major index of pattern-avoiding permutations can be
translated to the study of descent or major index of tableaux.
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Standard Young tableaux of shape 2 × n

For any positive integer n, we have

Cq(n) =
∑

T∈SYT(2×n)

qmaj(T) =
qn

[n + 1]

[
2n
n

]
. (2)

Here [n] = 1−qn

1−q = 1 + q + q2 + · · ·+ qn−1, [n]! = [n][n − 1] · · · [1] and[n
m
]
= [n]!

[m]![n−m]! .
For example, whenn = 3, we have

Cq(3) =
q3

[3 + 1]

[
6
3

]
= q3 + q5 + q6 + q7 + q9.

And there are five SYT of shape 2 × 3, with major index 3,6,7,5,9.

1 2 3
4 5 6

1 2 4
3 5 6

1 2 5
3 4 6

1 3 4
2 5 6

1 3 5
2 4 6
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Increasing tableaux

An increasing tableau is an SSYT such that both rows and columns are
strictly increasing, and the set of entries is an initial segment of positive
integers (if an integer i appears, positive integers less than i all appear).
We denote by Inck(λ) the set of increasing tableaux of shape λ with entries
are {1, 2, . . . ,n − k}.

1 2 3
2 4 5

1 2 4
2 3 5

1 2 3
3 4 5

1 2 4
3 4 5

1 3 4
2 4 5

Figure: There are five increasing tableaux in Inc1(2 × 3).

Increasing tableau is defined by O. Pechenik who studied increasing tableaux
in Inck(2 × n), i.e., increasing tableaux of shape 2 × n, with exactly k
numbers appeared twice.
O. Pechenik, Cyclic Sieving of Increasing Tableaux and Small Schröder
Paths. J. Combin. Theory Ser. A, 125: 357–378, 2014.
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Major index for Increasing tableau of shape 2 × n

Theorem (O. Pechenik)
For any positive integer n, and 0 ≤ k ≤ n we have

Sq(n, k) =
∑

T∈Inck(2×n)

qmaj(T) =
qn+k(k+1)/2

[n + 1]

[
n − 1

k

][
2n − k

n

]
. (3)

For example, when n = 3, k = 1 we have

1 2 3
2 4 5

1 2 4
2 3 5

1 2 3
3 4 5

1 2 4
3 4 5

1 3 4
2 4 5

Sq(3, 1) =
∑

T∈Inc1(2×3)

qmaj(T) =
q4

[3 + 1]

[
2
1

][
5
3

]
= q8 + q7 + q6 + q5 + q4.

Pechinik’s proof involves the cyclic sieving method.
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A refinement of small Schröder number

Setting q = 1, we get the cardinality of Inck(2 × n):

s(n, k) = 1
n + 1

(
n − 1

k

)(
2n − k

n

)
. (4)

s(n, k) is considered as a refinement of the small Schröder number which
counts the following sets:

1. Dissections of a convex (n + 2)-gon into n − k regions;
2. SYTs of shape (n − k,n − k, 1k);
3. small Schröder n-paths with k flat steps.

In 1996 Stanley gave a bijection between the first two sets.
R. P. Stanley, Polygon dissections and standard Young tableaux. J. Combin.
Theory Ser. A, 76: 175–177, 1996.
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Schröder paths

A Schröder n-path is a lattice path goes from (0, 0) to (n,n) with steps
(0, 1), (1, 0) and (1, 1) and never goes below the diagonal line y = x. If there
is no F steps on the diagonal line, it is called a small Schröder path.

There is an obvious bijection between Schröder n-paths and SSYTs of shape
2 × n: read the numbers i from 1 to 2n − k in increasing order, if i appears
only in row 1 (2), it corresponds to a U (D) step, if i appears in both rows,
it corresponds to an F step.

1 2 3
1 3 4

1 2 4
2 3 4

1 2 3
1 2 4

1 3 4
2 3 4

1 2 4
1 3 4

1 2 3
2 3 4

Motivation: are there any interesting result for these tableaux that
correspond to all Schröder n-paths?
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Row-increasing tableaux

A row-increasing tableau is an SSYT with strictly increasing rows and weakly
increasing columns, and the set of entries is a consecutive segment of
positive integers.
We denote by RIncm

k (λ) the set of row-increasing tableaux of shape λ with
set of entries {m + 1,m + 2, . . . ,m + n − k}. When m = 0, we will just
denote RInc0

k(λ) as RInck(λ). It is obvious that Inck(λ) ⊆ RInck(λ).

1 2 3
1 3 4

1 2 4
2 3 4

1 2 3
1 2 4

1 3 4
2 3 4

1 2 4
1 3 4

1 2 3
2 3 4

Figure: There are 6 row-increasing tableaux in RInc2(2 × 3).

It is not hard to show that RInck(2 × n) is counted by

r(n, k) = 1
n − k + 1

(
2n − k

k

)(
2n − 2k
n − k

)
. (5)

r(n, k) is considered as a refinement of the large Schröder number.
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Major index polynomial for RInck(2 × n)

There is a bijection f : RInck(2 × n)\Inck(2 × n) 7→ Inck−1(2 × n).
Given T ∈ RInck(2 × n)\Inck(2 × n), find the minimal integer j such that
T1,j = T2,j,. Now we first delete the entry T2,j, then move all the entries on
the right of T2,j one box to the left and set the last entry as 2n − k + 1, and
define the resulting tableau to be f(T).

T :
1 3 4 5 6
2 3 4 6 7

7→ f(T) :
1 3 4 5 6
2 4 6 7 8

Figure: An example of f with T ∈ RInc3(2× 5)\Inc3(2× 5) and f(T) ∈ Inc2(2× 5).

However, f does NOT preserve the major index. In fact we have

Theorem
For any positive integer n, k with k < n, we have

Rq(n, k) = Sq(n, k)+Sq(n, k−1)+(1−q2n−k)(Sq(n−1, k−1)+Sq(n−1, k−2)).
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Major index polynomial for RInck(2 × n)

Theorem (O. Pechenik)
There exists a bijection γ between Inck(2 × n) and SYT(n − k,n − k, 1k)

which preserves the descent set.

E.g., we have A = {4, 6, 8} and B = {6, 7, 9}.

1 2 4 5 6 8
3 4 6 7 8 9

1 2 5
3 4 8
6
7
9

Theorem
For any positive integer n, and 0 ≤ k ≤ n we have

Rq(n, k) =
∑

T∈RInck(2×n)

qmaj(T) =
qn+k(k−3)/2

[n − k + 1]

[
2n − k

k

][
2n − 2k
n − k

]
. (6)
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Row-increasing tableaux of shape (n − a, a)

Major index polynomial for row-increasing tableaux of shape (n − a, a):

R(n−a,a),k(q) = qa+k(k−3)/2 [n − 2a + 1]
[n − a − k + 1]

[
n − k

k

][
n − 2k
a − k

]
.

Summing over a, we get the major index polynomial for all row-increasing
tableaux with n cells and at most two rows:

⌊ n
2 ⌋∑

a=k
R(n−a,a),k(q) = qk(k−1)/2

[
n − k

k

][
n − 2k
⌊n

2 ⌋ − k

]
.

The result for increasing tableaux is more complicated. For example, we have

S(n−a,a),k =
2a2 − 3na − a + n2 + n − k

(n − a + 1)(n − a)

(
n − k

k

)(
n − 2k
a − k

)
.

and
⌊ n

2 ⌋∑
a=k

S(n−a,a),k =
⌈n

2 ⌉ − k
⌈n

2 ⌉

(
n − k

k

)(
n − 2k
⌊n

2 ⌋ − k

)
.
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Amajor index polynomial for RInck(2 × n)

We also study the amajor index polynomial of SSYTs in RInck(2 × n).

R̃q(n, k) =
∑

T∈RInck(2×n)

qamaj(T) =
qk(k−1)/2

[n − k + 1]

[
2n − k

k

][
2n − 2k
n − k

]
.

We will prove the above formula by showing that∑
T∈RInck(2×n)

qmaj(T) = qn−k ·
∑

T∈RInck(2×n)

qamaj(T).

For example, there are 6 row-increasing tableaux in RInc2(2 × 3), with the
(maj, amaj) pairs (4, 3), (4, 5), (2, 4), (5, 1), (3, 3), (6, 2).

1 2 3
1 2 4

1 3 4
2 3 4

1 2 4
1 3 4

1 2 3
1 3 4

1 2 4
2 3 4

1 2 3
2 3 4

We want to establish a bijection Φ : RInck(2 × n) 7→ RInck(2 × n) such that
maj(Φ(T)) = amaj(T) + n − k.
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The general result

Theorem
There is a bijection Φ : RInck(2 × n) 7→ RInck(2 × n) that preserves the
second row, and

maj(Φ(T)) = amaj(T) + n − k.

T : 1 2 4 5 6 9 10 12 13 14 16 18 20
2 3 6 7 8 9 11 13 15 16 17 19 20

1 4 5 10 12 14 18
2 3 6 7 8 9 11 13 15 16 17 19 20

Φ(T) : 1 3 4 5 8 9 10 11 12 14 15 18 19
2 3 6 7 8 9 11 13 15 16 17 19 20

Figure: An example of the map Φ with n = 13, k = 6, and l = 3.
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The prime case

A row-increasing tableau T is prime if for each integer j satisfies
T1,j+1 = T2,j + 1, T2,j+1 also appears in row 1 in T.
pRIncm

k (λ): prime row-increasing tableaux of shape λ with set of entries
{m + 1,m + 2, . . . ,m + n − k}.
For each T ∈ pRIncm

k (2× n), let A be the set of numbers that appear twice,
and B be the set of numbers that appear in the second row immediately left
of an element of A in cyclic order.
Let g(T) be the tableau of shape 2× n obtained by first deleting all elements
in A from the first row and then inserting all elements in B into the first row
and list them in increasing order, and keep the entries in row 2 unchanged.
In the following example, we have A = {2, 6, 9} and B = {3, 8, 9}.

T :
1 2 4 5 6 9
2 3 6 7 8 9

g
−→

g(T) :
1 3 4 5 8 9
2 3 6 7 8 9
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Lemma
The map g is an injection from pRIncm

k (2 × n) to RIncm
k (2 × n) which

satisfies the following:

1) If T2,1 appears only once in T, then g(T)1,i+1 ≤ g(T)2,i for each
i, 1 ≤ i ≤ n − 1;

2) T2,1 appears twice in T if and only if g(T)1,n = g(T)2,n.

Sketch of Proof: there are two cases:

• T2,1 appears only once in T;

T :
5 7 8 10 11 12
6 8 9 12 13 14

g
−→

g(T) :
5 6 7 9 10 11
6 8 9 12 13 14
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Lemma
The map g is an injection from pRIncm

k (2 × n) to RIncm
k (2 × n) which

satisfies the following:

1) If T2,1 appears only once in T, then g(T)1,i+1 ≤ g(T)2,i for each
i, 1 ≤ i ≤ n − 1;

2) T2,1 appears twice in T if and only if g(T)1,n = g(T)2,n.

Sketch of Proof: there are two cases:

• T2,1 appears twice in T;

T : 1 2 4 5 6 9
2 3 6 7 8 9

g
−→

g(T) : 1 3 4 5 8 9
2 3 6 7 8 9

T̃ : 1 2 3 4 5 8
2 3 6 7 8 9
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Lemma
For each T ∈ pRIncm

k (2 × n) we have

maj(g(T)) =

{
amaj(T) + n − k, if T1,1 = T2,1;

amaj(T) + m + n − k, if T1,1 ̸= T2,1.
(7)

T :
5 6 8 9 10 13
7 8 11 12 13 14

g
−→

g(T) :
5 6 7 9 10 12
7 8 11 12 13 14

T0 :
5 6 9 10

7 8 11 12 13 14

1. D(g(T)) \ D(T0) = A(T) \ A(T0).

and therefore maj(g(T))− maj(T0) = amaj(T)− amaj(T0);
2. When T1,1 ̸= T2,1, maj(T0) = amaj(T0) + m + n − k.
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Standard Young tableaux in a (k, l)-hook

fλ : the number of SYTs of shape λ;
H(k, l;n) = {λ = (λ1, λ2, · · · )|λ ⊢ n, λk+1 ≤ l};

S(k, l;n) =
∑

λ∈H(k,l;n) fλ : number of SYTs in a (k, l)-hook.
25/35



Known results on S(k, l; n) for small k and l

For the “stripe” case, it is known that

S(2, 0;n) =
(

n
⌊n

2 ⌋

)
; S(3, 0;n) =

∑
j≥0

1
j + 1

(
n
2j

)(
2j
j

)
.

S(4, 0;n) = C⌊ n+1
2 ⌋·C⌈ n+1

2 ⌉, and S(5, 0;n) = 6
⌊ n

2 ⌋∑
i=0

(
n
2i

)
·Ci·

(2i + 2)!
(i + 2)!(i + 3)! .

Here Cn = 1
n+1

(2n
n
)

is the n-th Catalan number.
D. Gouyou-Beauchamps, Standard Young tableaux of height 4 and 5,
European J. Combin. 10 1989 69–82.
For the “hook” sums, only S(1, 1;n) and S(2, 1;n) = S(1, 2;n) is known. It
is easy to see that S(1, 1;n) = 2n−1. A. Regev proved that

S(2, 1;n) = S(1, 2;n) = 1
2
∑
j≥1

(
n
j

)(
n − j

j

)
+ 1, (8)

and pointed out that this is related to Motzkin paths.
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Counting SYTs and Motzkin paths

A Motzkin path of order n is a lattice path in Z× Z, from (0, 0) to (n, 0),
using up-steps (1, 1), down-steps (1,−1) and flat-steps (1, 0) that never
goes below the x-axis.

r r r r r r r r r r r r r r r r��@@ �� @@ ��@@

It is a well-known result that the cardinality of Mn is the n-th Motzkin
number. Note that S(3, 0;n) is exactly the n-th Motzkin number, and a nice
bijection between S(3, 0;n) and Mn is given by Eu.
S. Eu, Skew-standard Tableaux with Three Rows, Adv. Appl. Math. 45(4)
2010, 463–469.
A hump in a Motzkin path is an up step followed by zero or more flat steps
followed by a down step. If such a path is allowed to go below the x-axis, it
is called a super Motzkin path. SMn: super Motzkin paths of order n, hmn:
total number of humps in all Motzkin paths of order n.
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Motzkin paths, humps, and sumper Motzkin paths

A. Regev (2010) counted hmn by a recurrence relation and the WZ method
and found the following interesting relations and asked for combinatorial
proofs.

hmn =
1
2 (#SMn − 1); (9)

S(2, 1;n) = hmn + 1. (10)

Ding and Du (2012) gave bijective proofs of this equations, and also proved
that similar relation holds for Schröder Paths.
Later Mansour and Shattuck (2013) extended this study to (k, a)-paths and
proved that similar relation holds between humps in (k, a)-paths and super
(k, a)-paths by studying their generating functions.

(k + 1)
∑

P∈Pn(k,a)

#Humps(P) = |SPn(k, a)| − δa|n, (11)

where δa|n = 1 if a divides n or 0 otherwise.
Bijective proofs were given by Du, Nie and Sun (2015) and Yan (2015).
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S(2, 1; n) and super Motzkin paths

Combining the above two equations

hmn =
1
2 (#SMn − 1);

S(2, 1;n) = hmn + 1.

we get
S(2, 1;n) = 1

2 (#SMn + 1). (12)

SM∗D
n : super Motzkin paths in SMn whose last non-flat step (if any) is a

down step. It is easy to see that

#SM∗D
n =

1
2 (#SMn + 1) = 1

2
∑
j≥1

(
n
j

)(
n − j

j

)
+ 1. (13)

Our main idea is to give a one-to-one correspondence between S(2, 1;n) and
SM∗D

n .
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Tight 012-words

Let W = w1w2 · · ·wn be a word of length n on the alphabet {0, 1, 2}. For
each integer k = 0, 1, 2, let fk(W) denote the number of k’s in
w1,w2, . . . ,wn. We say that W is a tight 012-word of length n if

1) f0(w1w2 . . .wj) ≥ f2(w1w2 . . .wj), j = 1, 2, . . . ,n;
2) For each j = 1, 2, . . . ,n − 1, f0(w1w2 . . .wj) > f2(w1w2 . . .wj) when

wj+1 = 1.

Wn: all tight 012-words of length n. W∗2
n : all tight 012-words of length n

whose last nonzero number is 2.
For example, when n = 4, there are 19 tight 012-words:
0000, 0001, 0002, 0010, 0011, 0012, 0020, 0021, 0022, 0100, 0101, 0110,
0111, 0102, 0112, 0120, 0200, 0201, 0202,

Theorem
For any positive integer n, there is a bijection ϕ : S(2, 1;n) 7→ W∗2

n .
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SYT and the corresponding tight 012-word

1 2 4 7 10
3 5 9 12
6
8
11

7→ W = 0 0 2 0 1 1 0 2 1 0 2 2

Figure: A standard Young tableaux and the corresponding tight 012-word.

A = {a1, a2, . . . , as}<: the set of numbers appear in row 1 of T;
B = {b1, b2, . . . , bn−s}< = [n] \ A.
ϕ(T) = W = w1w2 · · ·wn such that:
wa1 = wa2 = · · · = was = 0, wbn−s = 2, and for each i = 1, 2, . . . ,n − s − 1,
we set wbi = 2 if bi+1 appears in row 2 of T, and wbi = 1 otherwise.
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Tight 012-words and super Motzkin paths

Theorem
For any positive integer n, there is a bijection ψ : SMn 7→ Wn.

r r r r r r r r r r r r r r r r�@
@
@�

�
�

� @
@ 7→ 0 2 0 0 0 2 1 1 0 1 0 1 2 1 2

r r r r r r r r r r r r r r r r�@
@
@�

�
�

� @
@ 7→ 0 2 0 0 0 2 1 1 0 1 0 1 2 1 2

r r r r r r r r r r r r r r r r�@
@
@�

�
�

� @
@ 7→ 0 2 0 0 0 2 1 1 0 1 0 1 2 1 2
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Why do we define the tight 012-words?
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Using the Feynman Method

Richard Feynman: You have to keep a dozen of your favorite problems
constantly present in your mind. Every time you hear or read a new trick or
a new result, test it against each of your twelve problems to see whether it
helps. Every once in a while there will be a hit, and people will say, “How
did he do it? He must be a genius!”

Gian-Carlo Rota, Ten Lessons I Wish I Had Been Taught, Notices of the
AMS, 44(1), 1997.
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Thank you!
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