The A_{α}-spectra of graphs

Huiqiu Lin

Department of Mathematics
East China University of Science and Technology

Joint work with Xiaogang Liu, Jinlong Shu and Jie Xue

2019-08

Outline

(1) Basic notations
(2) Spectral radius
(3) The k-th largest eigenvalue
4) Graphs determined by A_{α}-spectra

Outline

(1) Basic notations
(2) Spectral radius
(3) The k-th largest eigenvalue

4 Graphs determined by A_{α}-spectra

Basic notations

- Let G be a graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. The degree of the vertex v_{i} is denoted by d_{i}.
- Adjacency matrix: $A(G)=\left(a_{i j}\right)_{n \times n}$,

$$
a_{i j}=\left\{\begin{array}{lll}
1 & \text { if } \quad v_{i} \sim v_{j} \\
0 & \text { if } & v_{i} \nsim v_{j} .
\end{array}\right.
$$

- Degree matrix: $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$
- Laplacian matrix: $L(G)=D(G)-A(G)$
- Signless Laplacian matrix: $Q(G)=D(G)+A(G)$
- Laplacian matrix and signless Laplacian matrix are all positive semi-definite, they contain the same eigenvalues if G is a bipartite graph.
- The Laplacian spectrum and signless Laplacian spectrum are given by the adjacency spectrum if G is a regular graph.
- In extremal spectral graph theory, there are many similar conclusions with respect to A-matrix and Q-matrix.

Graph type	Objective	Extremal graph
unicycle graphs	maximize the spectral radius / signless Laplaican spectral radius	same
bicyclic graphs	maximize the spectral radius / signless Laplaican spectral radius	same
graphs with given diameter	maximize the spectral radius /signless Laplaican spectral radius	same
graphs with given clique number \ldots	minimize the spectral radius /signless Laplaican spectral radius	same

- However, there are also a lot of differences between adjacency spectra and signless Laplacian spectra, and the research on $Q(G)$ has shown that it is a remarkable matrix, unique in many respects.

In order to study both similarities and differences between $A(G)$ and $Q(G)$, Nikiforov [1] introduced a new matrix $A_{\alpha}(G)$:

For a real number $\alpha \in[0,1]$, the A_{α}-matrix of G is

$$
A_{\alpha}(G)=\alpha D(G)+(1-\alpha) A(G)
$$

where $A(G)$ is the adjacency matrix and $D(G)$ is the degree diagonal matrix of G.

- A_{α}-eigenvalues: $\lambda_{1}\left(A_{\alpha}(G)\right) \geq \lambda_{2}\left(A_{\alpha}(G)\right) \geq \cdots \geq \lambda_{n}\left(A_{\alpha}(G)\right)$
- A_{α}-spectral radius: $\lambda_{1}\left(A_{\alpha}(G)\right)$
- if $\alpha=0$, then $A_{\alpha}(G)=A(G)$
- if $\alpha=1 / 2$, then $A_{\alpha}(G)=\frac{1}{2} Q(G)$
- if $\alpha=1$ then $A_{\alpha}(G)=D(G)$

[^0]For a graph G, the A_{α}-eigenvalues are increasing in α.

Theorem ([1] Nikiforov 2017)

Let $1 \geq \alpha \geq \beta \geq 0$. If G is a graph of order n, then

$$
\lambda_{k}\left(A_{\alpha}(G)\right) \geq \lambda_{k}\left(A_{\beta}(G)\right)
$$

for any $k \in[n]$. If G is connected, then inequality is strict, unless $k=1$ and G is regular.

Take $\alpha=0, \frac{1}{2}, 1$, thus $\quad\left(A_{0}(G)=D(G), A_{1}(G)=A(G)\right)$

$$
\lambda_{k}(D(G)) \geq \lambda_{k}\left(A_{\frac{1}{2}}(G)\right) \geq \lambda_{k}(A(G))
$$

Take $k=1$, thus

$$
2 \Delta(G) \geq q(G) \geq 2 \rho(G)
$$

where $\Delta(G)$ is the maximum degree, $q(G)$ is the signless Laplacian spectral radius and $\rho(G)$ is the spectral radius of G, respectively.

Positive semidefiniteness of $A_{\alpha}(G)$

Note that the signless Laplacian matrix is positive semidefinite, that is, $A_{\frac{1}{2}}(G)$ is positive semidefinite.

Theorem ([2] Nikiforov and Rojo 2017)

Let G be a graph. If $\alpha \geq 1 / 2$, then $A_{\alpha}(G)$ is positive semidefinite. If $\alpha>1 / 2$ and G has no isolated vertices, then $A_{\alpha}(G)$ is positive definite.

[^1]
Outline

(1) Basic notations

(2) Spectral radius
(3) The k-th largest eigenvalue

4 Graphs determined by A_{α}-spectra

Theorem ([1] Nikiforov 2017)

Let $r \geq 2$ and G be an r-chromatic graph of order n.
(1) If $\alpha<1-1 / r$, then $\lambda_{1}\left(A_{\alpha}(G)\right) \leq \lambda_{1}\left(A_{\alpha}\left(T_{r}(n)\right)\right)$, with equality if and only if $G \cong T_{r}(n)$ (r-partite Turán graph)
(2) If $\alpha>1-1 / r$, then $\lambda_{1}\left(A_{\alpha}(G)\right) \leq \lambda_{1}\left(A_{\alpha}\left(S_{n, r-1}\right)\right)$, with equality if and only if $G \cong S_{n, r-1}\left(\mathbf{K}_{\mathbf{r}-\mathbf{1}} \vee \mathbf{K}_{\mathbf{n}-\mathbf{r}+\mathbf{1}}^{\mathbf{c}}\right)$.
(3) If $\alpha=1-1 / r$, then $\lambda_{1}\left(A_{\alpha}(G)\right) \leq(1-1 / r) n$, with equality if and only if G is a complete r-partite graph.

Theorem ([1] Nikiforov 2017)

Let $r \geq 2$ and G be a K_{r+1}-free graph of order n.
(1) If $\alpha<1-1 / r$, then $\lambda_{1}\left(A_{\alpha}(G)\right) \leq \lambda_{1}\left(A_{\alpha}\left(T_{r}(n)\right)\right)$, with equality if and only if $G \cong T_{r}(n)$.
(2) If $\alpha>1-1 / r$, then $\lambda_{1}\left(A_{\alpha}(G)\right) \leq \lambda_{1}\left(A_{\alpha}\left(S_{n, r-1}\right)\right)$, with equality if and only if $G \cong S_{n, r-1}$.
(3) If $\alpha=1-1 / r$, then $\lambda_{1}\left(A_{\alpha}(G)\right) \leq(1-1 / r) n$, with equality if and only if G is a complete r-partite graph.

The techniques used here are partially from [He , Jin and Zhang: Sharp bounds for the signless Laplacian spectral radius in terms of clique number, LAA 438 (2013) 3851-3861.]

Theorem ([3] Nikiforov, Pastén, Rojo and Soto 2017)

If T is a tree of order n, then

$$
\lambda_{1}\left(A_{\alpha}(T)\right) \leq \lambda_{1}\left(A_{\alpha}\left(K_{1, n-1}\right)\right)
$$

Equality holds if and only if $T \cong K_{1, n-1}$.

Theorem ([3] Nikiforov, Pastén, Rojo and Soto 2017)

If G is a connected graph of order n, then

$$
\lambda_{1}\left(A_{\alpha}(G)\right) \geq \lambda_{1}\left(A_{\alpha}\left(P_{n}\right)\right)
$$

Equality holds if and only if $G \cong P_{n}$.
[3] V. Nikiforov, G. Pastén, O. Rojo, R.L. Soto, On the $A_{\alpha}(G)$-spectra of trees, LAA 520 (2017) 286-305.

Graph transformations on spectral radius

Let G be a connected graph and u, v be two distinct vertices of $V(G)$. Let $G_{p, q}(u, v)$ be the graph obtained by attaching the paths P_{p} to u and P_{q} to v. The following problem is inspired by the results of Li and Feng [5].

Problem ([4] Nikiforov and Rojo 2018)

For which connected graphs G the following statement is true: Let $\alpha \in[0,1)$ and let u and v be non-adjacent vertices of G of degree at least 2 . If $q \geq 1$ and $p \geq q+2$, then $\rho_{\alpha}\left(G_{p, q}(u, v)\right)<\rho_{\alpha}\left(G_{p-1, q+1}(u, v)\right)$.
[4] V. Nikiforov, O. Rojo, On the α-index of graphs with pendent paths. Linear Algebra Appl. 550 (2018) 87-104.
[5] Q. Li, K. Feng, On the largest eigenvalue of graphs, Acta Math. Appl. Sin. 2 (1979) 167-175.

Let G be a connected graph and $u, v \in V(G)$ with $d(u), d(v) \geq 2$. Suppose that u and v is connected by a path $w_{0}(=v) w_{1} \cdots w_{s-1} w_{s}(=u)$ where $d\left(w_{i}\right)=2$ for $1 \leq i \leq s-1$. Let $G_{p, s, q}(u, v)$ be the graph obtained by attaching the paths P_{p} to u and P_{q} to v.

Theorem (Lin, Huang and Xue 2018)

Let $0 \leq \alpha<1$. If $p-q \geq \max \{s+1,2\}$, then
$\rho_{\alpha}\left(G_{p-1, s, q+1}(u, v)\right)>\rho_{\alpha}\left(G_{p, s, q}(u, v)\right)$.

[^2]The above theorem implies that the following conjecture is true.

Conjecture ([4] Nikiforov and Rojo 2018)

Let $0 \leq \alpha<1$ and $s=0,1$. If $p \geq q+2$, then
$\rho_{\alpha}\left(G_{p, s, q}(u, v)\right)<\rho_{\alpha}\left(G_{p-1, s, q+1}(u, v)\right)$.
It needs to be noticed that, the above conjecture is independently confirmed by Guo and Zhou [7].

[^3]An internal path of G is a path P (or cycle) with vertices $v_{1}, v_{2}, \ldots, v_{k}$ (or $v_{1}=v_{k}$) such that $d_{G}\left(v_{1}\right) \geq 3, d_{G}\left(v_{2}\right) \geq 3$ and $d_{G}\left(v_{2}\right)=\cdots=d_{G}\left(v_{k-1}\right)=2$.

Theorem ([8] Li, Chen and Meng 2019)

Let G be a connected graph with $\alpha \in[0,1)$ and $u v$ be some edge on an internal path of G. Let $G_{u v}$ denote the graph obtained from G by subdivision of edge $u v$ into edges $u w$ and $w v$. Then $\rho_{\alpha}\left(G_{u v}\right)<\rho_{\alpha}(G)$.

A simple application of this transformation is that
If G is a unicyclic graph, then $\rho_{\alpha}(G) \leq \rho_{\alpha}\left(K_{1, n-1}+e\right)$, and the equality holds iff $G \cong K_{1, n-1}+e$.

[^4]
Outline

(1) Basic notations

(2) Spectral radius
(3) The k-th largest eigenvalue

4 Graphs determined by A_{α}-spectra

The k-th largest eigenvalue

Theorem (Lin, Xue and Shu 2018)

Let G be a graph with n vertices. If $\alpha \geq 1 / 2$ and $e \notin E(G)$, then

$$
\lambda_{k}\left(A_{\alpha}(G+e)\right) \geq \lambda_{k}\left(A_{\alpha}(G)\right)
$$

\triangleright Using this theorem, we get an upper bound on the A_{α}-eigenvalue when $\alpha \geq 1 / 2$:

$$
\lambda_{k}\left(A_{\alpha}(G)\right) \leq \lambda_{k}\left(A_{\alpha}\left(K_{n}\right)\right)=\alpha n-1 .
$$

Problem

Which graphs satisfy $\lambda_{k}\left(A_{\alpha}(G)\right)=\alpha n-1$?
[9] H. Lin, J. Xue, J. Shu, On the A_{α}-spectra of graphs, Linear Algebra Appl. 556 (2018) 210-219.

- When $\alpha=1 / 2$, de Lima and Nikiforov [10] showed that $\lambda_{k}\left(A_{\frac{1}{2}}(G)\right)=\frac{1}{2} n-1$ for $k \geq 2$ if and only if G has either k balanced bipartite components or $k+1$ bipartite components.

Theorem (Lin, Xue and Shu 2018)

Let G be a graph with n vertices and $\alpha>1 / 2$. Then

$$
\lambda_{k}\left(A_{\alpha}(G)\right) \leq \alpha n-1
$$

for $k \geq 2$, and equality holds if and only if G has k vertices of degree $n-1$.

[^5]Chen, Li and Meng [11] showed that if $\Delta(G)<n-1$ and $1 / 2<\alpha<1$ then $\lambda_{k}\left(A_{\alpha}(G)\right) \leq(n-2) \alpha$.

Theorem ([11] Chen, Li and Meng 2019)

Let G be a graph of order n and $\Delta(G)<n-1$. If $1 / 2<\alpha<1$ then

$$
\lambda_{k}\left(A_{\alpha}(G)\right)=(n-2) \alpha
$$

if and only if $G \cong K_{k-1}^{\underbrace{}_{2, \ldots, 2}} \vee H$, where $\Delta(H)<n-2 k-3$.

[^6]
The least eigenvalue

Lower bounds for the least eigenvalue:

- Let T be a tree of order $n \geq 2$. If $\frac{1}{2}<\alpha<1$, then

$$
\lambda_{n}\left(A_{\alpha}(T)\right) \geq 2 \alpha-1
$$

the equality holds if and only if $T \cong K_{2}$.

Theorem (Lin, Xue and Shu 2018)

Let G be a graph on n vertices with $\alpha>\frac{1}{2}$. If G has no isolated vertices, then

$$
\lambda_{n}\left(A_{\alpha}(G)\right) \geq 2 \alpha-1,
$$

the equality holds if and only if there is a component isomorphic to K_{2}.

Outline

(1) Basic notations

(2) Spectral radius
(3) The k-th largest eigenvalue
(4) Graphs determined by A_{α}-spectra

Graphs determined by their A_{α}-spectra

The study of spectral characterizations of graphs has a long history. In [9, Concluding remarks], van Dam and Haemers proposed the following problem:

Problem

Which linear combination of $D(G), A(G)$ and J gives the most $D S$ graphs?

From [12, Table 1], van Dam and Haemers claimed that the signless Laplacian matrix $Q(G)=D(G)+A(G)$ would be a good candidate.

[^7]
Definition

A graph G is said to be determined by its A_{α}-spectrum if all graphs having the same A_{α}-spectrum as G are isomorphic to G.

We focus on which graphs are determined by their A_{α}-spectra.
By enumerating the A_{α}-characteristic polynomials for all graphs on at most 10 vertices (see [13, Table 1]), it seems that A_{α}-spectra (especially, $\alpha>\frac{1}{2}$) are much more efficient than Q-spectra when we use them to distinguish graphs.

[^8]
Proposition (Lin, Liu and Xue 2018)

Let $\alpha \in[0,1]$. If G and G^{\prime} are two graphs with the same A_{α}-spectra, then we have the following statements:
(P1) $|V(G)|=\left|V\left(G^{\prime}\right)\right|$;
(P2) $|E(G)|=\left|E\left(G^{\prime}\right)\right|$;
(P3) If G is r-regular, then G^{\prime} is r-regular;
Suppose that $d_{1} \geq d_{2} \geq \cdots \geq d_{n}$ and $d_{1}^{\prime} \geq d_{2}^{\prime} \geq \cdots \geq d_{n}^{\prime}$ are the degree sequences of G and G^{\prime}, respectively. If $\alpha \in(0,1]$, then
(P4) $\sum_{1 \leq i<j \leq n} d_{i} d_{j}=\sum_{1 \leq i<j \leq n} d_{i}^{\prime} d_{j}^{\prime}$;
(P5) $\sum_{1 \leq i \leq n} d_{i}^{2}=\sum_{1 \leq i \leq n} d^{\prime 2}$.

[^9]- G^{c} : the complement of a graph G.

Theorem (Lin, Liu and Xue 2018)

The following graphs are determined by their A_{α}-spectra:
(a) the complete graph K_{n};
(b) the star $K_{1, n-1}$ for $1 / 2<\alpha \leq 1$;
(c) the path P_{n} for $0 \leq \alpha<1$;
(d) the complement of a path P_{n}^{c} for $0 \leq \alpha<1$;
(e) the union of cycles $\bigcup_{i=1}^{s} C_{n_{i}}$ for $0 \leq \alpha<1$;
(f) $\left(\bigcup_{i=1}^{s} C_{n_{i}}\right)^{c}$ for $0 \leq \alpha<1$;
(g) $k K_{2} \bigcup(n-2 k) K_{1}$ where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $0 \leq \alpha \leq 1$;
(h) $\left(k K_{2} \bigcup(n-2 k) K_{1}\right)^{c}$ where $1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$ and $0 \leq \alpha \leq 1$.

$$
F_{r, s, t}
$$

Theorem ([11] Chen, Li and Meng 2019)

If $1 / 2<\alpha<1$, then the firefly graph $F_{r, s, t}$ is determined by its A_{α}-spectrum.

More graphs determined by their A_{α}-spectra

\triangleright The join of a clique and an irregular graph:

Theorem (Lin, Liu and Xue 2018)

Let $m, n \geq 2$. Then $K_{m} \vee P_{n}$ is determined by its A_{α}-spectra for $\frac{1}{2}<\alpha<1$.
\triangleright The join of a clique and a regular graph:

Theorem (Lin, Liu and Xue 2018)

Let G be a regular graph. If $1 / 2<\alpha<1$, then G is determined by its A_{α}-spectrum if and only if $G \vee K_{m}(m \geq 2)$ is also determined by its A_{α}-spectrum.

Thank you for your attention!

[^0]: [1] V. Nikiforov, Merging the A - and Q-spectral theories, Appl. Anal. Discrete Math. 11 (2017) 81-107.

[^1]: [2] V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl. 519 (2017) 156-163.

[^2]: [6] H. Lin, X. Huang, J. Xue, A note on the A_{α}-spectral radius of graphs, Linear Algebra Appl. 557 (2018) 430-437.

[^3]: [7] H. Guo, B. Zhou, On the α-spectral radius of graphs, arXiv:1805.03456.

[^4]: [8] D. Li, Y. Chen, J. Meng, The A_{α}-spectral radius of trees and unicyclic graphs with given degree sequence, Appl. Math. Comput. 363 (2019) 124622.

[^5]: [10] L.S. de Lima, V. Nikiforov, On the second largest eigenvalue of the signless Laplacian, Linear Algebra Appl. 438 (2013) 1215-1222.

[^6]: [11] Y. Chen, D. Li, J. Meng, On the second largest A_{α}-eigenvalues of graphs, Linear Algebra Appl. 580 (2019) 343-358.

[^7]: [12] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003) 241-272.

[^8]: [13] X. Liu, S. Liu, On the A_{α}-characteristic polynomial of a graph, Linear Algebra Appl. 546 (2018) 274-288.

[^9]: [14] H. Lin X. Liu, J. Xue, Graphs determined by their A_{α}-spectra, Discrete Math. 342 (2019) 441-450.

