The A_{α} -spectra of graphs

Huiqiu Lin

Department of Mathematics East China University of Science and Technology

Joint work with Xiaogang Liu, Jinlong Shu and Jie Xue

2019-08

- 3 The *k*-th largest eigenvalue
- 4 Graphs determined by A_{α} -spectra

Outline

2 Spectral radius

- 3 The *k*-th largest eigenvalue
 - 4 Graphs determined by A_{α} -spectra

Basic notations

- Let G be a graph with vertex set { $v_1, v_2, ..., v_n$ }. The degree of the vertex v_i is denoted by d_i .
- Adjacency matrix: $A(G) = (a_{ij})_{n \times n}$,

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \sim v_j, \\ 0 & \text{if } v_i \nsim v_j. \end{cases}$$

- Degree matrix: $D(G) = diag(d_1, d_2, \ldots, d_n)$
- Laplacian matrix: L(G) = D(G) A(G)
- Signless Laplacian matrix: Q(G) = D(G) + A(G)
- Laplacian matrix and signless Laplacian matrix are all positive semi-definite, they contain the same eigenvalues if *G* is a bipartite graph.
- The Laplacian spectrum and signless Laplacian spectrum are given by the adjacency spectrum if G is a regular graph.

• In extremal spectral graph theory, there are many similar conclusions with respect to A-matrix and Q-matrix.

Graph type	Objective	Extremal graph
unicycle graphs	maximize the spectral radius	same
	/ signless Laplaican spectral radius	
bicyclic graphs	maximize the spectral radius	same
	/ signless Laplaican spectral radius	
graphs with	maximize the spectral radius	same
given diameter	/signless Laplaican spectral radius	
graphs with	minimize the spectral radius	same
given clique number	/signless Laplaican spectral radius	

 However, there are also a lot of differences between adjacency spectra and signless Laplacian spectra, and the research on Q(G) has shown that it is a remarkable matrix, unique in many respects. In order to study both similarities and differences between A(G) and Q(G), Nikiforov [1] introduced a new matrix $A_{\alpha}(G)$:

For a real number $\alpha \in [0,1]$, the A_{α} -matrix of G is

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G),$$

where A(G) is the adjacency matrix and D(G) is the degree diagonal matrix of G.

- A_{α} -eigenvalues: $\lambda_1(A_{\alpha}(G)) \geq \lambda_2(A_{\alpha}(G)) \geq \cdots \geq \lambda_n(A_{\alpha}(G))$
- A_{α} -spectral radius: $\lambda_1(A_{\alpha}(G))$

- if
$$\alpha = 0$$
, then $A_{\alpha}(G) = A(G)$

- if $\alpha = 1/2$, then $A_{\alpha}(G) = \frac{1}{2}Q(G)$

- if
$$\alpha = 1$$
 then $A_{\alpha}(G) = D(G)$

^[1] V. Nikiforov, *Merging the A- and Q-spectral theories*, Appl. Anal. Discrete Math. 11 (2017) 81-107.

For a graph G, the A_{α} -eigenvalues are increasing in α .

Theorem ([1] Nikiforov 2017)

Let $1 \ge \alpha \ge \beta \ge 0$. If G is a graph of order n, then

 $\lambda_k(A_\alpha(G)) \geq \lambda_k(A_\beta(G))$

for any $k \in [n]$. If G is connected, then inequality is strict, unless k = 1 and G is regular.

Take
$$\alpha = 0, \frac{1}{2}, 1$$
, thus $(A_0(G) = D(G), A_1(G) = A(G))$
 $\lambda_k(D(G)) \ge \lambda_k(A_{\frac{1}{2}}(G)) \ge \lambda_k(A(G)).$

Take k = 1, thus

$$2\Delta(G) \ge q(G) \ge 2\rho(G),$$

where $\Delta(G)$ is the maximum degree, q(G) is the signless Laplacian spectral radius and $\rho(G)$ is the spectral radius of G, respectively.

ECNU

Positive semidefiniteness of $A_{\alpha}(G)$

Note that the signless Laplacian matrix is positive semidefinite, that is, $A_{\frac{1}{2}}(G)$ is positive semidefinite.

Theorem ([2] Nikiforov and Rojo 2017)

Let G be a graph. If $\alpha \ge 1/2$, then $A_{\alpha}(G)$ is positive semidefinite. If $\alpha > 1/2$ and G has no isolated vertices, then $A_{\alpha}(G)$ is positive definite.

[2] V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl. 519 (2017) 156-163.

Outline

- 3 The *k*-th largest eigenvalue
- 4 Graphs determined by A_{α} -spectra

Theorem ([1] Nikiforov 2017)

Let $r \ge 2$ and G be an r-chromatic graph of order n.

- (1) If $\alpha < 1 1/r$, then $\lambda_1(A_\alpha(G)) \le \lambda_1(A_\alpha(T_r(n)))$, with equality if and only if $G \cong T_r(n)$ (*r*-partite Turán graph)
- (2) If $\alpha > 1 1/r$, then $\lambda_1(A_\alpha(G)) \le \lambda_1(A_\alpha(S_{n,r-1}))$, with equality if and only if $G \cong S_{n,r-1}$ ($\mathbf{K}_{r-1} \lor \mathbf{K}_{n-r+1}^c$).
- (3) If $\alpha = 1 1/r$, then $\lambda_1(A_\alpha(G)) \le (1 1/r)n$, with equality if and only if G is a complete r-partite graph.

Theorem ([1] Nikiforov 2017)

Let $r \ge 2$ and G be a K_{r+1} -free graph of order n.

- (1) If $\alpha < 1 1/r$, then $\lambda_1(A_\alpha(G)) \le \lambda_1(A_\alpha(T_r(n)))$, with equality if and only if $G \cong T_r(n)$.
- (2) If $\alpha > 1 1/r$, then $\lambda_1(A_\alpha(G)) \le \lambda_1(A_\alpha(S_{n,r-1}))$, with equality if and only if $G \cong S_{n,r-1}$.
- (3) If $\alpha = 1 1/r$, then $\lambda_1(A_\alpha(G)) \le (1 1/r)n$, with equality if and only if G is a complete r-partite graph.

The techniques used here are partially from [*He, Jin and Zhang:* Sharp bounds for the signless Laplacian spectral radius in terms of clique number, LAA 438 (2013) 3851-3861.]

Theorem ([3] Nikiforov, Pastén, Rojo and Soto 2017)

If T is a tree of order n, then

```
\lambda_1(A_\alpha(T)) \leq \lambda_1(A_\alpha(K_{1,n-1})).
```

Equality holds if and only if $T \cong K_{1,n-1}$.

Theorem ([3] Nikiforov, Pastén, Rojo and Soto 2017)

If G is a connected graph of order n, then

 $\lambda_1(A_\alpha(G)) \geq \lambda_1(A_\alpha(P_n)).$

Equality holds if and only if $G \cong P_n$.

ECNU

^[3] V. Nikiforov, G. Pastén, O. Rojo, R.L. Soto, On the $A_{\alpha}(G)$ -spectra of trees, LAA 520 (2017) 286-305.

Graph transformations on spectral radius

Let G be a connected graph and u, v be two distinct vertices of V(G). Let $G_{p,q}(u, v)$ be the graph obtained by attaching the paths P_p to u and P_q to v. The following problem is inspired by the results of Li and Feng [5].

Problem ([4] Nikiforov and Rojo 2018)

For which connected graphs G the following statement is true: Let $\alpha \in [0, 1)$ and let u and v be non-adjacent vertices of G of degree at least 2. If $q \ge 1$ and $p \ge q + 2$, then $\rho_{\alpha}(G_{p,q}(u, v)) < \rho_{\alpha}(G_{p-1,q+1}(u, v)).$

[5] Q. Li, K. Feng, On the largest eigenvalue of graphs, Acta Math. Appl. Sin. 2 (1979) 167-175.

ECNU

^[4] V. Nikiforov, O. Rojo, On the α -index of graphs with pendent paths. Linear Algebra Appl. 550 (2018) 87-104.

Let G be a connected graph and $u, v \in V(G)$ with $d(u), d(v) \ge 2$. Suppose that u and v is connected by a path $w_0(=v)w_1 \cdots w_{s-1}w_s(=u)$ where $d(w_i) = 2$ for $1 \le i \le s-1$. Let $G_{p,s,q}(u, v)$ be the graph obtained by attaching the paths P_p to u and P_q to v.

Theorem (Lin, Huang and Xue 2018)

Let $0 \le \alpha < 1$. If $p - q \ge \max\{s + 1, 2\}$, then $\rho_{\alpha}(\mathcal{G}_{p-1,s,q+1}(u, v)) > \rho_{\alpha}(\mathcal{G}_{p,s,q}(u, v))$.

^[6] H. Lin, X. Huang, J. Xue, A note on the A_{α} -spectral radius of graphs, Linear Algebra Appl. 557 (2018) 430–437.

The above theorem implies that the following conjecture is true.

Conjecture ([4] Nikiforov and Rojo 2018)

Let $0 \le \alpha < 1$ and s = 0, 1. If $p \ge q + 2$, then $\rho_{\alpha}(\mathcal{G}_{p,s,q}(u, v)) < \rho_{\alpha}(\mathcal{G}_{p-1,s,q+1}(u, v))$.

It needs to be noticed that, the above conjecture is independently confirmed by Guo and Zhou [7].

[7] H. Guo, B. Zhou, On the α -spectral radius of graphs, arXiv:1805.03456.

An internal path of G is a path P (or cycle) with vertices v_1, v_2, \ldots, v_k (or $v_1 = v_k$) such that $d_G(v_1) \ge 3$, $d_G(v_2) \ge 3$ and $d_G(v_2) = \cdots = d_G(v_{k-1}) = 2$.

Theorem ([8] Li, Chen and Meng 2019)

Let G be a connected graph with $\alpha \in [0, 1)$ and uv be some edge on an internal path of G. Let G_{uv} denote the graph obtained from G by subdivision of edge uv into edges uw and wv. Then $\rho_{\alpha}(G_{uv}) < \rho_{\alpha}(G)$.

A simple application of this transformation is that

If G is a unicyclic graph, then $\rho_{\alpha}(G) \leq \rho_{\alpha}(K_{1,n-1}+e)$, and the equality holds iff $G \cong K_{1,n-1} + e$.

[8] D. Li, Y. Chen, J. Meng, The A_{α} -spectral radius of trees and unicyclic graphs with given degree sequence, Appl. Math. Comput. 363 (2019) 124622.

The k-th largest eigenvalue

Theorem (Lin, Xue and Shu 2018)

Let G be a graph with n vertices. If $\alpha \ge 1/2$ and $e \notin E(G)$, then

 $\lambda_k(A_{\alpha}(G+e)) \geq \lambda_k(A_{\alpha}(G)).$

 \vartriangleright Using this theorem, we get an upper bound on the A_{α} -eigenvalue when $\alpha \geq 1/2$:

$$\lambda_k(A_\alpha(G)) \leq \lambda_k(A_\alpha(K_n)) = \alpha n - 1.$$

Problem

Which graphs satisfy $\lambda_k(A_\alpha(G)) = \alpha n - 1$?

[9] H. Lin, J. Xue, J. Shu, On the A_{α} -spectra of graphs, Linear Algebra Appl. 556 (2018) 210–219.

ECNU

When α = 1/2, de Lima and Nikiforov [10] showed that
λ_k(A_{1/2}(G)) = 1/2 n − 1 for k ≥ 2 if and only if G has either k
balanced bipartite components or k + 1 bipartite components.

Theorem (Lin, Xue and Shu 2018)

Let G be a graph with n vertices and $\alpha > 1/2$. Then

$$\lambda_k(A_\alpha(G)) \leq \alpha n - 1$$

for $k \ge 2$, and equality holds if and only if G has k vertices of degree n-1.

[10] L.S. de Lima, V. Nikiforov, On the second largest eigenvalue of the signless Laplacian, Linear Algebra Appl. 438 (2013) 1215–1222.

Chen, Li and Meng [11] showed that if $\Delta(G) < n-1$ and $1/2 < \alpha < 1$ then $\lambda_k(A_\alpha(G)) \le (n-2)\alpha$.

Theorem ([11] Chen, Li and Meng 2019)

Let G be a graph of order n and $\Delta(G) < n-1$. If 1/2 < lpha < 1 then

$$\lambda_k(A_\alpha(G)) = (n-2)\alpha$$

if and only if $G \cong K_{\underbrace{2,\ldots,2}_{k-1}} \lor H$, where $\Delta(H) < n-2k-3$.

^[11] Y. Chen, D. Li, J. Meng, On the second largest A_{α} -eigenvalues of graphs, Linear Algebra Appl. 580 (2019) 343–358.

The least eigenvalue

Lower bounds for the least eigenvalue:

• Let T be a tree of order $n \ge 2$. If $\frac{1}{2} < \alpha < 1$, then

$$\lambda_n(A_\alpha(T)) \geq 2\alpha - 1,$$

the equality holds if and only if $T \cong K_2$.

Theorem (Lin, Xue and Shu 2018)

Let G be a graph on n vertices with $\alpha > \frac{1}{2}$. If G has no isolated vertices, then

$$\lambda_n(A_\alpha(G)) \geq 2\alpha - 1,$$

the equality holds if and only if there is a component isomorphic to \mathcal{K}_2 .

Outline

2 Spectral radius

Graphs determined by A_{α} -spectra

Graphs determined by their A_{α} -spectra

The study of spectral characterizations of graphs has a long history. In [9, Concluding remarks], van Dam and Haemers proposed the following problem:

Problem

Which linear combination of D(G), A(G) and J gives the most DS graphs?

From [12, Table 1], van Dam and Haemers claimed that the signless Laplacian matrix Q(G) = D(G) + A(G) would be a good candidate.

^[12] E.R. van Dam, W.H. Haemers, Which graphs are determined by their spectrum? Linear Algebra Appl. 373 (2003) 241–272.

Definition

A graph G is said to be determined by its A_{α} -spectrum if all graphs having the same $\overline{A_{\alpha}}$ -spectrum as G are isomorphic to G.

We focus on which graphs are determined by their A_{α} -spectra.

By enumerating the A_{α} -characteristic polynomials for all graphs on at most 10 vertices (see [13, Table 1]), it seems that A_{α} -spectra (especially, $\alpha > \frac{1}{2}$) are much more efficient than Q-spectra when we use them to distinguish graphs.

[13] X. Liu, S. Liu, On the A_{α} -characteristic polynomial of a graph, Linear Algebra Appl. 546 (2018) 274–288.

Proposition (Lin, Liu and Xue 2018)

Let $\alpha \in [0, 1]$. If G and G' are two graphs with the same A_{α} -spectra, then we have the following statements:

(P1)
$$|V(G)| = |V(G')|;$$

(P2) |E(G)| = |E(G')|;

(P3) If G is r-regular, then G' is r-regular;

Suppose that $d_1 \ge d_2 \ge \cdots \ge d_n$ and $d'_1 \ge d'_2 \ge \cdots \ge d'_n$ are the degree sequences of *G* and *G'*, respectively. If $\alpha \in (0, 1]$, then

(P4)
$$\sum_{1 \le i < j \le n} d_i d_j = \sum_{1 \le i < j \le n} d'_i d'_j;$$

(P5) $\sum_{1 \le i \le n} d_i^2 = \sum_{1 \le i \le n} d'_i^2.$

[14] H. Lin X. Liu, J. Xue, Graphs determined by their A_{α} -spectra, Discrete Math. 342 (2019) 441–450.

ECNU

• G^c : the complement of a graph G.

Theorem (Lin, Liu and Xue 2018)

The following graphs are determined by their A_{α} -spectra:

- (a) the complete graph K_n ;
- (b) the star $K_{1,n-1}$ for $1/2 < \alpha \leq 1$;
- (c) the path P_n for $0 \le \alpha < 1$;
- (d) the complement of a path P_n^c for $0 \le \alpha < 1$;
- (e) the union of cycles $\bigcup_{i=1}^{s} C_{n_i}$ for $0 \le \alpha < 1$;

(f)
$$(\bigcup_{i=1}^{s} C_{n_i})^c$$
 for $0 \le \alpha < 1$;

- (g) $kK_2 \bigcup (n-2k)K_1$ where $1 \le k \le \lfloor \frac{n}{2} \rfloor$ and $0 \le \alpha \le 1$;
- (h) $(kK_2 \bigcup (n-2k)K_1)^c$ where $1 \le k \le \lfloor \frac{n}{2} \rfloor$ and $0 \le \alpha \le 1$.

Theorem ([11] Chen, Li and Meng 2019)

If $1/2 < \alpha < 1$, then the firefly graph $F_{r,s,t}$ is determined by its A_{α} -spectrum.

More graphs determined by their A_{α} -spectra

 \triangleright The join of a clique and an irregular graph:

Theorem (Lin, Liu and Xue 2018)

Let $m, n \geq 2$. Then $K_m \vee P_n$ is determined by its A_{α} -spectra for $\frac{1}{2} < \alpha < 1$.

 \triangleright The join of a clique and a regular graph:

Theorem (Lin, Liu and Xue 2018)

Let G be a regular graph. If $1/2 < \alpha < 1$, then G is determined by its A_{α} -spectrum if and only if $G \vee K_m$ $(m \ge 2)$ is also determined by its A_{α} -spectrum.

Thank you for your attention!