Some progress on permutation codes

Yiting Yang
College of Mathematical Science
Tongji University

The 10th Cross-strait conference on graph theory and combinatorics, Taichung

August 20, 2019

Outline

1 Introduction

2 Hamming distance

3 Chebyshev distance

4 Kendall's τ-distance

5 Some new metrics

Permutation code

Definition

Let S_{n} be the set of all permutations of length n. The permutation code C is just a subset of S_{n} equipped with a distance metric.

The length of C is n and each permutation in C is called a codeword.

Application: Powerline communication and Flash memories

Hamming and Chebyshev metrics

Definition

For two distinct permutations $\sigma, \pi \in S_{n}$, their Hamming distance $d_{H}(\sigma, \pi)$ is the number of elements that they differ.

Definition
Let $\pi=\pi_{1} \pi_{2} \ldots, \pi_{n}, \sigma=\sigma_{1} \sigma_{2} \ldots, \sigma_{n} \in S_{n}$. The Chebyshev distance between π and σ is

$$
d_{C}(\pi, \sigma)=\max \left\{\left|\pi_{j}-\sigma_{j}\right| \mid 1 \leq j \leq n\right\} .
$$

Permutation code of minimum distance d

Example

Let $\sigma=23451$ and $\pi=12543$. Then

$$
d_{H}(\sigma, \pi)=5 \quad \text { and } \quad d_{C}(\sigma, \pi)=2
$$

We say a permutation code C is a Hamming (n, d)-permutation code if the Hamming distance of any pair of distinct permutations in C is at least d.

Similarly, C is called a Chebyshev (n, d)-permutation code if the Chebyshev distance of any pair of distinct permutations in C is at least d.

$A_{H}(n, d)$ and $A_{C}(n, d)$

The maximum number of codewords in a Hamming (n, d)-permutation code is denoted by $A_{H}(n, d)$.

The maximum number of codewords in a Chebyshev (n, d)-permutation code is denoted by $A_{C}(n, d)$.

Problems:

- Construct permutation codes with large size under Hamming or Chebyshev distance.
- Find $A_{H}(n, d)$ and $A_{C}(n, d)$, or give some good lower or upper bounds of them.

Basic results on $A_{H}(n, d)$
1 . $A_{H}(n, 2)=n!$;
$2 . A_{H}(n, 3)=n!/ 2$;
$3 A_{H}(n, n)=n$;
$4 A_{H}(n, d) \leq n A_{H}(n-1, d)$.

Sphere-packing bound

Definition

Let $D(n, k)(k=0,1, \ldots, n)$ denote the set of all permutations in S_{n} which are exactly at distance k from the identity.
Clearly, $|D(n, k)|=D_{k}\binom{n}{k}$.
Let $B_{H}(n, d)$ be the size of the set of the permutations at distance at most d from the identity. Then $B_{H}(n, d)=\sum_{k=0}^{d} D_{i}\binom{n}{k}$.

Theorem

$$
A_{H}(n, d) \leq \frac{n!}{\sum_{k=0}^{\left\lfloor\frac{d-1}{2}\right\rfloor} D_{k}\binom{n}{k}}
$$

The upper bound for $A_{H}(n, 4)$

Theorem (Frankl and Deza, 1977)

$$
A_{H}(n, 4) \leq(n-1)!.
$$

Theorem (Dukes and Sawchuck, 2010)
If $k^{2} \leq n \leq k^{2}+k-2$ for some integer $k \geq 2$, then

$$
\frac{n!}{A_{H}(n, 4)} \geq 1+\frac{(n+1) n(n-1)}{n(n-1)-\left(n-k^{2}\right)\left((k+1)^{2}-n\right)((k+2)(k-1)-n)} .
$$

Gilbert-Varshamov bound

Theorem

$$
A_{H}(n, d) \geq \frac{n!}{\sum_{k=0}^{d-1} D_{k}\binom{n}{k}}
$$

Graph theory model

We define a Cayley graph

$$
\Gamma(n, d):=\Gamma\left(S_{n}, S(n, d-1)\right)
$$

where $S(n, d-1)$ is the set of all the permutations with more than $n-d$ fixed points.
By the definition, $\Gamma(n, d)$ is a regular graph of degree which equals the size of the generating set, i.e.,

$$
\Delta(n, d)=|S(n, d-1)|=\sum_{k=1}^{d-1}\binom{n}{k} D_{k} .
$$

The codewords of an (n, d) permutation code are vertices of an independent set in $\Gamma(n, d)$. Conversely, any independent set in $\Gamma(n, d)$ is an (n, d)-permutation code.

A result on the independent number

For $m \geq 1$ and $x \geq 0$, we define the function $f_{m}(x)$ by

$$
f_{m}(x)=\int_{0}^{1} \frac{(1-t)^{1 / m}}{m+(x-m) t} d t .
$$

Theorem (Li and Rousseau, 1996)
Let $m \geq 1$ be an integer, and let G be a graph of order N with average degree Δ. If any subgraph induced by a neighborhood has maximum degree less than m, then

$$
\alpha(G) \geq N \cdot f_{m}(\Delta) \geq N \cdot \frac{\log (\Delta / m)-1}{\Delta} .
$$

Our improvement for small d I

We use $G(n, d)$ to denote the subgraph induced by the neighborhood of identity in $\Gamma(n, d)$. Then $G(n, d)$ has vertex set

$$
V(G(n, d))=S(n, d-1)=\bigcup_{k=1}^{d-1} D(n, k)
$$

We denote the maximum degree in $G(n, d)$ by $m(n, d)$.
Lemma
For any positive integer $n \geq 7$, we have $m(n, 2)=0, m(n, 3)=0$, $m(n, 4)=4 n-8, m(n, 5)=7 n^{2}-31 n+34$.

Our improvement for small d II

Theorem (Gao, Yang and Ge, 2013)
Let $m^{\prime}(n, d)=m(n, d)+1$, and

$$
A_{H}^{I S}(n, d):=n!\cdot \int_{0}^{1} \frac{(1-t)^{1 / m^{\prime}(n, d)}}{m^{\prime}(n, d)+\left[\Delta(n, d)-m^{\prime}(n, d)\right] t} \cdot d t
$$

Then $A_{H}(n, d) \geq A_{H}^{I S}(n, d)$.
$A_{H}^{I S}(13,5)=2147724$ greatly improves the best known result which is $A_{H}(13,5) \geq 878778$.

Asymptotic results
Lemma
When n goes to infinity,

$$
m(n, d)=O\left(n^{d-3}\right) .
$$

Theorem (Gao, Yang and Ge, 2013)
When d is fixed and n goes to infinity, we have

$$
\frac{A_{H}^{I S}(n, d)}{A_{H}^{G V}(n, d)}=\Omega(\log (n))
$$

The case d / n is fixed

Theorem (Tait, Vardy, and Verstraete, 2015)
Let d / n be a fixed ratio with $0<d / n<1 / 2$. Then as $n \rightarrow \infty$, then

$$
A_{H}(n, d)=\Omega\left(\log n \frac{n!}{B_{H}(d-1)}\right) .
$$

Our further improvement

Theorem (Wang, Yang, Zhang and Ge, 2017)
Let n, d be integers and let p be a prime greater than or equal to n. Then, we have

$$
A_{H}(n, d) \geq \frac{n!}{p^{d-2}}
$$

Corollary
Let d be fixed and $n \rightarrow \infty$. Then

$$
A_{H}(n, d)=\Omega\left(n \frac{n!}{B_{H}(d-1)}\right) .
$$

Idea of the proof

Idea: For any graph G of order $n, \alpha(G) \geq \frac{n}{\chi(G)}$.
Consider the coloring $f: S_{n} \rightarrow \mathbb{Z}_{p}^{d-1}$ whose value at $\sigma \in S_{n}$ is defined by

$$
f(\sigma)=A \sigma(\bmod p),
$$

where A is a $(d-1) \times n$ Vandermonde matrix as follows $\left(a_{1}, a_{2} \ldots, a_{n}\right.$ are distinct numbers in $\left.\{0,1, \ldots, p-1\}\right)$:

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
a_{1} & a_{2} & \ldots & a_{n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{1}^{d-2} & a_{2}^{d-2} & \ldots & a_{n}^{d-2}
\end{array}\right)
$$

Claim: This coloring is a proper coloring with p^{d-2} colors.

Sphere-packing and GV bounds on $A_{C}(n, d)$

Let $B_{C}(n, d)$ denote the number of permutations in S_{n} within Chebyshev distance d from the identity permutation.

Theorem

$$
\frac{n!}{B_{C}(n, d-1)} \leq A_{C}(n, d) \leq \frac{n!}{B_{C}(n,\lfloor(d-1) / 2\rfloor)}
$$

Permanent and $B_{C}(n, d)$

Definition

Let A be a $n \times n$ matrix. Then the permanent of A is defined by

$$
\operatorname{per} A=\sum_{\pi \in S_{n}} a_{1, \pi_{1}} \ldots a_{n, \pi_{n}}
$$

Let $A^{(n, d)}$ be the $n \times n$ matrix with $a_{i, j}^{(n, d)}=1$ if $|i-j| \leq d$ and $a_{i, j}^{(n, d)}=0$ otherwise.
Lemma

$$
B_{C}(n, d)=\operatorname{per} A^{(n, d)}
$$

Upper bound for $B_{C}(n, d)$

Lemma

$$
\operatorname{per} A \leq \prod_{i=1}^{n}\left(r_{i}!\right)^{1 / r_{i}}
$$

where r_{i} is the number of ones in row i.
Theorem (Kløve et al., 2010)

$$
B_{C}(n, d) \leq[(2 d+1)!]^{n /(2 d+1)}
$$

Construction of $B^{(n, d)}$
Define the matrix $B^{(n, d)}$ as follows:

$$
b_{i, j}^{(n, d)}= \begin{cases}0 & \text { if } i>j+d \text { or } j>i+d \\ 2 & \text { if } i+j \leq d+1 \text { or } i+j \geq 2 n+1-d \\ 1 & \text { otherwise }\end{cases}
$$

Theorem (Kløve, 2011)

$$
\operatorname{per} B^{(n, d)} \leq 2^{2 d} \operatorname{per} A^{(n, d)}
$$

Example

$$
\begin{aligned}
A^{(6,2)} & =\left(\begin{array}{llllll}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1
\end{array}\right) \\
B^{(6,2)} & =\left(\begin{array}{llllll}
2 & 2 & 1 & 0 & 0 & 0 \\
2 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 2 \\
0 & 0 & 0 & 1 & 2 & 2
\end{array}\right)
\end{aligned}
$$

Lower bound for $B_{C}(n, d)$

Theorem
If A is an $n \times n$ matrix where the sum of the elements in any row or column is k, then

$$
\operatorname{per} A \geq n!k^{n} / n^{n} .
$$

Theorem (Kløve, 2011)

$$
B_{C}(n, d) \geq \frac{n!(2 d+1)^{n}}{2^{2 d} n^{n}}
$$

Bounds for $A_{C}(n, d)$
Theorem (Kløve, 2010)

$$
\frac{n!}{[(2 d-1)!]^{n /(2 d-1)}} \leq A_{C}(n, d) \leq \frac{2^{d-1} n^{n}}{d^{n}} .
$$

A better lower bound for $B_{C}(n, d)$
Let $B_{d, 2}$ be the upper left corner of $B^{(n, d)}$.
Theorem (Kløve, 2011)

$$
\operatorname{per} B^{(n+2 d, d)} \leq \operatorname{per} A^{(n, d)} \operatorname{per}\left(B_{d, 2}\right)^{2}
$$

Conjecture (Kløve, 2011)
For any positive integer d,

$$
\operatorname{per}\left(B_{d, 2}\right)=\sum_{m=0}^{d}\binom{d}{m}(m+1)^{d}
$$

Proof of Kløve's conjecture

Theorem (Guo and Yang, 2017)

$$
\operatorname{per}\left(B_{d, x}\right)=\sum_{m=0}^{d}\binom{d}{m}(m+1)^{d}(x-1)^{d-m} .
$$

It is equivalent to

$$
\begin{equation*}
\operatorname{per}\left(B_{d, x+1}\right)=\sum_{m=0}^{d}\binom{d}{m}(d-m+1)^{d} x^{m} . \tag{4.1}
\end{equation*}
$$

Therefore, it suffices to show that the coefficient b_{m} of x^{m} in $\operatorname{per}\left(B_{d, x+1}\right)$ is equal to $\binom{d}{m}(d-m+1)^{d}$.

What does the martix $B_{d, x+1}$ look like?

$$
\begin{gathered}
B_{2, x+1}=\left(\begin{array}{cccc}
x+1 & x+1 & 1 & 0 \\
x+1 & 1 & 1 & 1
\end{array}\right) \\
B_{3, x+1}=\left(\begin{array}{cccccc}
x+1 & x+1 & x+1 & 1 & 0 & 0 \\
x+1 & x+1 & 1 & 1 & 1 & 0 \\
x+1 & 1 & 1 & 1 & 1 & 1
\end{array}\right) .
\end{gathered}
$$

Kendall's τ-metric

Definition

Given a permutation $\sigma \in S_{n}$, an adjacent transposition, $(i, i+1)$, for some $1 \leq i \leq n-1$, is an exchange of the two adjacent elements $\sigma(i)$ and $\sigma(i+1)$ in σ.

Definition

Given two permutations $\sigma, \pi \in S_{n}$, the Kendall's τ-distance between σ and $\pi, d_{K}(\sigma, \pi)$, is defined as the minimum number of adjacent transpositions needed to transform σ into π.

Basic properties

Theorem (Barg and Mazumdar, 2010)
For $\sigma, \pi \in S_{n}$,

$$
d_{K}(\sigma, \pi)=\left|\left\{(i, j): \sigma^{-1}(i)<\sigma^{-1}(j) \wedge \pi^{-1}(i)>\pi^{-1}(j)\right\}\right|
$$

Corollary
For $\sigma, \pi \in S_{n}$,

$$
d_{K}(\sigma, \pi)+d_{K}\left(\sigma^{r}, \pi\right)=\binom{n}{2}
$$

Bounds on $A_{K}(n, d)$

Definition

A permutation code C under Kendall's τ-metric with minimum distance d is a subset of S_{n} such that any two distinct permutations σ and $\pi, d_{K}(\sigma, \pi) \geq d$.

Let $A_{K}(n, d)$ be the size of the code with the maximum size.
Theorem (Jiang, Schwartz and Bruck, 2010)

$$
\frac{n!}{B_{K}(d-1)} \leq A_{K}(n, d) \leq \frac{n!}{B_{K}\left(\left\lfloor\frac{d-1}{2}\right\rfloor\right)} .
$$

Our improvement for the lower bound
Theorem (Barg and Mazumdar, 2010)
Let $m=\left((n-2)^{t+1}-3\right) /(n-3)$, where $n-2$ is a prime power.
Then we have

$$
A_{K}(n, 2 t+1) \geq \begin{cases}n!/(t(t+1) m), & t \text { odd } ; \\ n!/(t(t+2) m), & t \text { even }\end{cases}
$$

Theorem (Wang, Yang, Zhang and Ge, 2017)
Let $m=\left((n-2)^{t+1}-3\right) /(n-3)$, where $n-2$ is a prime power.
Then we have

$$
A_{K}(n, 2 t+1) \geq \frac{n!}{(2 t+1) m}
$$

Upper bounds

Definition

An anticode \mathcal{A} of diameter D in S_{n} is a subset \mathcal{A} of S_{n} such that $d_{K}(x, y) \leq D$ for any $x, y \in \mathcal{A}$.

Theorem (Buzaglo and Etzion, 2015)
If a code $\mathcal{C} \subset S_{n}$ has minimum Kendall's τ-distance d, and an anticode $\mathcal{A} \subset S_{n}$ has maximum Kendall's τ-distance $d-1$, then

$$
|\mathcal{C}| \leq \frac{n!}{|\mathcal{A}|}
$$

Two open problems on the anticodes

Definition

Let $x, y \in S_{n}$ such that $d_{K}(x, y)=1$, the double ball of radius R centered at x and y is defined by

$$
D B(x, y, R)=B(x, R) \cup B(y, R)
$$

1. Is a ball with radius R in S_{n} always optimal as an anticode with diameter $2 R$ in S_{n}, for $2 \leq R \leq \frac{\binom{n}{2}}{2}$?
2. Is the double ball with radius R in S_{n} always optimal as an anticode with diameter $2 R+1$ in S_{n}, for $2 \leq R \leq \frac{\binom{n}{2}-1}{2}$?

Some other metrics

■ Ulam metric d_{U} : minimum number of translocations needed.

- Calay metric d_{C} : minimum number of transpositions needed.

■ Generalized Cayley metric $d_{g C}$: minimum number of interval transpositions needed.
■ Generalized Kendall τ-metric $d_{g K}$: minimum number of interval adjacent transpositions needed.
Clearly, we have the following inequality:

$$
d_{g C}\left(\pi_{1}, \pi_{2}\right) \leq d_{g K}\left(\pi_{1}, \pi_{2}\right) \leq d_{U}\left(\pi_{1}, \pi_{2}\right) \leq d_{K}\left(\pi_{1}, \pi_{2}\right)
$$

Block permutation distance

Definition

The block permutation distance between π_{1} and $\pi_{2}\left(d_{B}\left(\pi_{1}, \pi_{2}\right)\right)$ is d if and only if $(d+1)$ is the minimum number of blocks the permutation π_{1} needs to be divided into in order to obtain π_{2} through block level permutation.

Theorem (S.Yang et al.,2019)

$$
d_{g C}\left(\pi_{1}, \pi_{2}\right) \leq d_{B}\left(\pi_{1}, \pi_{2}\right) \leq 4 d_{g C}\left(\pi_{1}, \pi_{2}\right)
$$

Reference

R. Barg and A. Mazumdar, Codes in permutations and error correction for rank modulation. IEEE Trans. Inform. Theory, 56(7):3158-3165, 2010.
© S. Buzaglo and T. Etzion, Bounds on the size of permutation codes with the Kendall τ-metric. IEEE Trans. Inform. Theory, 61(6):3241-3250, 2015.

R P. J. Cameron and C. Y. Ku, Intersection families of the permutations, European J. Combin. 24 (2003) 881-890.

囯 W. Chu, C. J. Colbourn, and P. Dukes, Constructions for Permutation Codes in Powerline Commnications, Des. Codes Cryptogr. 32 (2004), 51-64.
(D. H. Smith and R. Montemanin, A new table of permutation codes, Des. Codes Cryptogr. 63 (2)(2012), 241-253.
P. Diaconis, Group Representations in probability and Statistics, Hayward, CA: Inst. Math. Statist., 1988.
P. Dukes and N. Sawchuck, bounds on permutation codes of distance four, J. Algebraic Combin. 31(1) (2010), 143-158.

R P. Frankl, M. Deza, On the maximum number of permuations with givern maximal or minimal distance, J. Combin. Theory Ser. A 22 (3) (1977), 352-360.

嗇 J. Guo and Y. Yang, Proof of a conjecture of Kløve on permutation codes under the Chebychev distance, to appear

目 A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, Rank modulation for flash memories, in Proc. IEEE Int. Symp. Information Theory, 2008, 1736-1740.

围 T．Kløve，T．Lin，S．Tsai，and W．Tzeng，Permutation Arrays Under the Chebyshev Distance，IEEE Tran．Inform．Theory， 56（6），2611－2617（2010）．

T．Kløve，Lower bounds on the size of spheres of permutations under the Chebyshev distance，Des．Codes Cryptogr．， 59 183－191（2011）．

目 D．H．Lehmer，Permutations with strongly restricted displacements，in Combinatorial Theory and its applications II， P．Erdos，A．Renyi，and V．T．Sos，Eds．Amsterdam，The Netherlands：North Holland， 1970.

图 N．Pavlidou，A．J．H．Vinck，J．Yazdani and B．Honary， Powerline communications：State of the art and future trends， IEEE Communications Magazine，（2003），34－40．

囲 Y．Li and C．C．Rousseau，On book－complete graph Ramsey numbers，J．Combin．Theory Ser．B 68（1）（1996），36－44．

围 M．Tait，A．Vardy，and J．Verstraete，Asymptotic improvement of the gilbert－varshamov bound on the size of permutation codes．arXiv preprint arXiv：1311．4925， 2013.

R X．Wang，Y．Zhang，Y．Yang，and G．Ge，New bounds of permutation codes under Hamming metric and Kendall τ－metric，Des．Codes Cryptogr．，85（3）（2017），533－545．

圊 J．H．van Lint and R．M．Wilson，A Course in Combinatorics， 2nd ed．Cambridge，U．K．：Cambridge Univ．Press， 2011.

雷 F．Gao，Y．Yang，and G．Ge，An Improvement on the Gilbert－Varshamov Bound for Permutation Codes，IEEE Tran． Inform．Theory， 59 （5），3059－3063（2013）．

雷 Y. Chee and V. K. Vu, Breakpoint analysis and permutation codes in generalized Kendall tau and Cayley metrics, in Proc. IEEE Int. Symp. Inf. Theory, Hawaii, USA, Jun. 2014, 2959C2963.S. Yang, C. Shoeny and Lara Dolecek, Theoretical Bounds and Constructions of Codes in the Generalized Cayley Metric. IEEE Trans. Information Theory, 65(8): 4746-4763 (2019).

LSome new metrics

Thank you!

