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Introduction

Permutation code

Definition
Let Sn be the set of all permutations of length n. The permutation
code C is just a subset of Sn equipped with a distance metric.

The length of C is n and each permutation in C is called a
codeword.

Application: Powerline communication and Flash memories
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Introduction

Hamming and Chebyshev metrics

Definition
For two distinct permutations σ, π ∈ Sn, their Hamming distance
dH(σ, π) is the number of elements that they differ.

Definition
Let π = π1π2 . . . , πn, σ = σ1σ2 . . . , σn ∈ Sn. The Chebyshev
distance between π and σ is

dC(π, σ) = max{|πj − σj ||1 ≤ j ≤ n}.
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Introduction

Permutation code of minimum distance d

Example

Let σ = 23451 and π = 12543. Then

dH(σ, π) = 5 and dC(σ, π) = 2.

We say a permutation code C is a Hamming (n, d)-permutation
code if the Hamming distance of any pair of distinct permutations
in C is at least d.

Similarly, C is called a Chebyshev (n, d)-permutation code if the
Chebyshev distance of any pair of distinct permutations in C is at
least d.
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Introduction

AH(n, d) and AC(n, d)

The maximum number of codewords in a Hamming
(n, d)-permutation code is denoted by AH(n, d).

The maximum number of codewords in a Chebyshev
(n, d)-permutation code is denoted by AC(n, d).

Problems:
• Construct permutation codes with large size under Hamming or
Chebyshev distance.

• Find AH(n, d) and AC(n, d), or give some good lower or upper
bounds of them.
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Hamming distance

Basic results on AH(n, d)

1 AH(n, 2) = n!;

2 AH(n, 3) = n!/2;

3 AH(n, n) = n;

4 AH(n, d) ≤ nAH(n− 1, d).
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Hamming distance

Sphere-packing bound

Definition
Let D(n, k) (k = 0, 1, . . . , n) denote the set of all permutations in
Sn which are exactly at distance k from the identity.

Clearly, |D(n, k)| = Dk

(
n
k

)
.

Let BH(n, d) be the size of the set of the permutations at distance
at most d from the identity. Then BH(n, d) =

∑d
k=0Di

(
n
k

)
.

Theorem

AH(n, d) ≤ n!∑b d−1
2
c

k=0 Dk

(
n
k

) .
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Hamming distance

The upper bound for AH(n, 4)

Theorem (Frankl and Deza, 1977)

AH(n, 4) ≤ (n− 1)!.

Theorem (Dukes and Sawchuck, 2010)

If k2 ≤ n ≤ k2 + k − 2 for some integer k ≥ 2, then

n!

AH(n, 4)
≥ 1+

(n+ 1)n(n− 1)

n(n− 1)− (n− k2)((k + 1)2 − n)((k + 2)(k − 1)− n)
.
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Hamming distance

Gilbert-Varshamov bound

Theorem

AH(n, d) ≥ n!∑d−1
k=0Dk

(
n
k

) .
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Hamming distance

Graph theory model

We define a Cayley graph

Γ(n, d) := Γ(Sn, S(n, d− 1)),

where S(n, d− 1) is the set of all the permutations with more than
n− d fixed points.
By the definition, Γ(n, d) is a regular graph of degree which equals
the size of the generating set, i.e.,

∆(n, d) = |S(n, d− 1)| =
d−1∑
k=1

(
n

k

)
Dk.

The codewords of an (n, d) permutation code are vertices of an
independent set in Γ(n, d). Conversely, any independent set in
Γ(n, d) is an (n, d)-permutation code.
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Hamming distance

A result on the independent number

For m ≥ 1 and x ≥ 0, we define the function fm(x) by

fm(x) =

∫ 1

0

(1− t)1/m

m+ (x−m)t
dt.

Theorem (Li and Rousseau, 1996)

Let m ≥ 1 be an integer, and let G be a graph of order N with
average degree ∆. If any subgraph induced by a neighborhood has
maximum degree less than m, then

α(G) ≥ N · fm(∆) ≥ N · log(∆/m)− 1

∆
.
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Hamming distance

Our improvement for small d I

We use G(n, d) to denote the subgraph induced by the
neighborhood of identity in Γ(n, d). Then G(n, d) has vertex set

V (G(n, d)) = S(n, d− 1) =

d−1⋃
k=1

D(n, k).

We denote the maximum degree in G(n, d) by m(n, d).

Lemma
For any positive integer n ≥ 7, we have m(n, 2) = 0, m(n, 3) = 0,
m(n, 4) = 4n− 8, m(n, 5) = 7n2 − 31n+ 34.
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Hamming distance

Our improvement for small d II

Theorem (Gao, Yang and Ge, 2013)

Let m′(n, d) = m(n, d) + 1, and

AISH (n, d) := n! ·
∫ 1

0

(1− t)1/m′(n,d)

m′(n, d) + [∆(n, d)−m′(n, d)] t
· dt.

Then AH(n, d) ≥ AISH (n, d).

AISH (13, 5) = 2147724 greatly improves the best known result
which is AH(13, 5) ≥ 878778.
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Hamming distance

Asymptotic results

Lemma
When n goes to infinity,

m(n, d) = O(nd−3).

Theorem (Gao, Yang and Ge, 2013)

When d is fixed and n goes to infinity, we have

AISH (n, d)

AGVH (n, d)
= Ω(log(n)).
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Hamming distance

The case d/n is fixed

Theorem (Tait, Vardy, and Verstraete, 2015)

Let d/n be a fixed ratio with 0 < d/n < 1/2. Then as n→∞,
then

AH(n, d) = Ω

(
log n

n!

BH(d− 1)

)
.
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Hamming distance

Our further improvement

Theorem (Wang, Yang, Zhang and Ge, 2017)

Let n, d be integers and let p be a prime greater than or equal to
n. Then, we have

AH(n, d) ≥ n!

pd−2
.

Corollary

Let d be fixed and n→∞. Then

AH(n, d) = Ω

(
n

n!

BH(d− 1)

)
.
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Hamming distance

Idea of the proof

Idea: For any graph G of order n, α(G) ≥ n
χ(G) .

Consider the coloring f : Sn → Zd−1p whose value at σ ∈ Sn is
defined by

f(σ) = Aσ(mod p),

where A is a (d− 1)× n Vandermonde matrix as follows
(a1, a2 . . . , an are distinct numbers in {0, 1, . . . , p− 1}):

1 1 . . . 1
a1 a2 . . . an
...

...
. . .

...

ad−21 ad−22 . . . ad−2n


Claim: This coloring is a proper coloring with pd−2 colors.
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Chebyshev distance

Sphere-packing and GV bounds on AC(n, d)

Let BC(n, d) denote the number of permutations in Sn within
Chebyshev distance d from the identity permutation.

Theorem

n!

BC(n, d− 1)
≤ AC(n, d) ≤ n!

BC(n, b(d− 1)/2c)
.
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Chebyshev distance

Permanent and BC(n, d)

Definition
Let A be a n× n matrix. Then the permanent of A is defined by

perA =
∑
π∈Sn

a1,π1 . . . an,πn .

Let A(n,d) be the n× n matrix with a
(n,d)
i,j = 1 if |i− j| ≤ d and

a
(n,d)
i,j = 0 otherwise.

Lemma

BC(n, d) = perA(n,d).
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Chebyshev distance

Upper bound for BC(n, d)

Lemma

perA ≤
n∏
i=1

(ri!)
1/ri ,

where ri is the number of ones in row i.

Theorem (Kløve et al., 2010)

BC(n, d) ≤ [(2d+ 1)!]n/(2d+1).
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Chebyshev distance

Construction of B(n,d)

Define the matrix B(n,d) as follows:

b
(n,d)
i,j =


0 if i > j + d or j > i+ d,
2 if i+ j ≤ d+ 1 or i+ j ≥ 2n+ 1− d,
1 otherwise.

Theorem (Kløve, 2011)

perB(n,d) ≤ 22dperA(n,d).
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Chebyshev distance

Example

A(6,2) =



1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 1 1
0 0 0 1 1 1



B(6,2) =



2 2 1 0 0 0
2 1 1 1 0 0
1 1 1 1 1 0
0 1 1 1 1 1
0 0 1 1 1 2
0 0 0 1 2 2
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Chebyshev distance

Lower bound for BC(n, d)

Theorem
If A is an n× n matrix where the sum of the elements in any row
or column is k, then

perA ≥ n!kn/nn.

Theorem (Kløve, 2011)

BC(n, d) ≥ n!(2d+ 1)n

22dnn
.



Some progress on permutation codes

Chebyshev distance

Bounds for AC(n, d)

Theorem (Kløve, 2010)

n!

[(2d− 1)!]n/(2d−1)
≤ AC(n, d) ≤ 2d−1nn

dn
.
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Chebyshev distance

A better lower bound for BC(n, d)

Let Bd,2 be the upper left corner of B(n,d).

Theorem (Kløve, 2011)

perB(n+2d,d) ≤ perA(n,d)per(Bd,2)
2.

Conjecture (Kløve, 2011)

For any positive integer d,

per(Bd,2) =

d∑
m=0

(
d

m

)
(m+ 1)d.



Some progress on permutation codes

Chebyshev distance

Proof of Kløve’s conjecture

Theorem (Guo and Yang, 2017)

per(Bd,x) =

d∑
m=0

(
d

m

)
(m+ 1)d(x− 1)d−m.

It is equivalent to

per(Bd,x+1) =

d∑
m=0

(
d

m

)
(d−m+ 1)dxm. (4.1)

Therefore, it suffices to show that the coefficient bm of xm in
per(Bd,x+1) is equal to

(
d
m

)
(d−m+ 1)d.
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Chebyshev distance

What does the martix Bd,x+1 look like?

B2,x+1 =

(
x+ 1 x+ 1 1 0
x+ 1 1 1 1

)
,

B3,x+1 =

x+ 1 x+ 1 x+ 1 1 0 0
x+ 1 x+ 1 1 1 1 0
x+ 1 1 1 1 1 1

 .
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Kendall’s τ -distance

Kendall’s τ -metric

Definition
Given a permutation σ ∈ Sn, an adjacent transposition, (i, i+ 1),
for some 1 ≤ i ≤ n− 1, is an exchange of the two adjacent
elements σ(i) and σ(i+ 1) in σ.

Definition
Given two permutations σ, π ∈ Sn, the Kendall’s τ -distance
between σ and π, dK(σ, π), is defined as the minimum number of
adjacent transpositions needed to transform σ into π.
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Kendall’s τ -distance

Basic properties

Theorem (Barg and Mazumdar, 2010)

For σ, π ∈ Sn,

dK(σ, π) = |{(i, j) : σ−1(i) < σ−1(j) ∧ π−1(i) > π−1(j)}|.

Corollary

For σ, π ∈ Sn,

dK(σ, π) + dK(σr, π) =

(
n

2

)
.
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Kendall’s τ -distance

Bounds on AK(n, d)

Definition
A permutation code C under Kendall’s τ -metric with minimum
distance d is a subset of Sn such that any two distinct
permutations σ and π, dK(σ, π) ≥ d.

Let AK(n, d) be the size of the code with the maximum size.

Theorem (Jiang, Schwartz and Bruck, 2010)

n!

BK(d− 1)
≤ AK(n, d) ≤ n!

BK(bd−12 c)
.
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Kendall’s τ -distance

Our improvement for the lower bound

Theorem (Barg and Mazumdar, 2010)

Let m = ((n− 2)t+1 − 3)/(n− 3), where n− 2 is a prime power.
Then we have

AK(n, 2t+ 1) ≥
{
n!/(t(t+ 1)m), t odd;
n!/(t(t+ 2)m), t even.

Theorem (Wang, Yang, Zhang and Ge, 2017)

Let m = ((n− 2)t+1 − 3)/(n− 3), where n− 2 is a prime power.
Then we have

AK(n, 2t+ 1) ≥ n!

(2t+ 1)m
.
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Kendall’s τ -distance

Upper bounds

Definition
An anticode A of diameter D in Sn is a subset A of Sn such that
dK(x, y) ≤ D for any x, y ∈ A.

Theorem (Buzaglo and Etzion, 2015)

If a code C ⊂ Sn has minimum Kendall’s τ -distance d, and an
anticode A ⊂ Sn has maximum Kendall’s τ -distance d− 1, then

|C| ≤ n!

|A|
.
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Kendall’s τ -distance

Two open problems on the anticodes

Definition
Let x, y ∈ Sn such that dK(x, y) = 1, the double ball of radius R
centered at x and y is defined by

DB(x, y,R) = B(x,R) ∪B(y,R).

1. Is a ball with radius R in Sn always optimal as an anticode with

diameter 2R in Sn, for 2 ≤ R ≤ (n2)
2 ?

2. Is the double ball with radius R in Sn always optimal as an

anticode with diameter 2R+ 1 in Sn, for 2 ≤ R ≤ (n2)−1
2 ?
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Some new metrics

Some other metrics

Ulam metric dU : minimum number of translocations needed.

Calay metric dC : minimum number of transpositions needed.

Generalized Cayley metric dgC : minimum number of interval
transpositions needed.

Generalized Kendall τ -metric dgK : minimum number of
interval adjacent transpositions needed.
Clearly, we have the following inequality:

dgC(π1, π2) ≤ dgK(π1, π2) ≤ dU (π1, π2) ≤ dK(π1, π2).
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Some new metrics

Block permutation distance

Definition
The block permutation distance between π1 and π2 (dB(π1, π2))is
d if and only if (d+ 1) is the minimum number of blocks the
permutation π1 needs to be divided into in order to obtain π2
through block level permutation.

Theorem (S.Yang et al.,2019)

dgC(π1, π2) ≤ dB(π1, π2) ≤ 4dgC(π1, π2).
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Some new metrics
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Thank you!
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