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Propagation Model

* IC
* LT
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IC Model

Use the directed network to represent a social network G = (V,E).
Each node has two states, active and inactive.
Each arc (u,v) is assigned with a probability puv, when u is active,

v is also activated with probability puv.
Initially, every node is inactive. To start an information diffusion

process, a set of nodes, called seeds, are activated.
The process consists of discrete steps.
In each step, each newly activated node would try to influence its

out-neighbors.
An active node has only one chance to influence its out-neighbors.
The process ends when no node is activated in current step.
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Influence function maximization problem

Influence function maximization problem is proposed as follow:

max
|S|≤k

f (S)

where f (S) is nonnegative increase set function.

Theorem

Sub-modular influence function maximization problem max
S⊆V,|S|≤k

σ(S) is

NP hard.

Theorem

Greedy Algorithm for sub-modular function maximization problem
max

S⊆V,|S|≤k
σ(S) returns 1−1/e -approximate solution.
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Marginal Gain

Computation the spread value of a given S is #p hard.
Traditionally, f (S) is evaluated through random sampling

method§e.g. Monte Carlo simulation, simulation numberº
Is there effective way to evaluate f (S) directly for any given S?
YES! A successive iteration update method (SIUM) to compute

f (S) from the marginal gain perspective is given.

Definition
(marginal gain). Suppose that f : 2V → R+ is non-negative set value
function, where V is ground set. For any subset S of V ,
∆vf (S) = f (S∪{v})− f (S) is called marginal gain of v ∈ V\S at S.
Additionally, we can define ∆T f (S) = f (S∪T)− f (S) as marginal gain of
T ⊆ V\S at S in the similar way.

7 / 71



Marginal Gain

Based on the definition of marginal gain, we have the following
property:

For a given set S⊆ V and any subset T ⊆ S then we have

f (S) = f (S\T)+∆T f (S\T) = f (T)+∆S\T f (T)

for any given set value function f .

Definition (submodular function)
Suppose that f : 2V → R+ is non-negative set value function, where V is
ground set. f is called sub-modular if for any subset S1 , S2 of V with
S1 ⊆ S2 ⊆ V, and any v ∈ V\S2, we have ∆vf (S1)≥ ∆vf (S2), where
∆vf (S) = f (S∪{v})− f (S).
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Marginal Gain Formulation

Theorem
(Marginal Gain Formulation) Let σ(S) = ∑u∈V qS

u is the influence
function value (or the spread value) of a given S, where qS

u is the active
probability (or expectation equivalently) of the node u when S is
selected as seed set under the IC propagation model. Denote pvu the
probability of node v can activate node u along a given path. Using
these notations, we have
σ(S) = ∑u∈V [pvu +(1−pvu)q

S\v
u ] for any S and v ∈ S.
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Proof.
according to property above we have

σ(S) = σ(S\v)+∆vσ(S\v)

Where σ(S\v) = ∑u∈V qS\v
u and

∆vσ(S\v) = ∑
u∈V

[1− (1−qS\v
u )(1−pvu)−qS\v

u ]

= ∑
u∈V

(1−qS\v
u )pvu).

Thus we have

σ(S) = ∑
u∈V

[qS\v
u +(1−qS\v

u )pvu]

= ∑
u∈V

[pvu +(1−pvu)q
S\v
u ].
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GCMP Formulation

One way to boost content spread problem is to increase the
number of connected edges between users. Some social network sites
such as Facebook and Twitter provide the function for users that could
recommend friends of your friends to you to make possible
connections.

Vineet Chaoji et al.£2012¤first formulate the problem of
boosting content spread on social network by seeking to add up to k
connections per user such that the probabilistic propagation of content
in the social network is maximized.

Note: 1. This problem is NP-hard and the spread function is not
submodular. Vineet Chaoji et al. construct a more restricted variant
that is submodular and devised an approximation algorithm.

2. But their content spread function under IC and RMPP model
has some limitations.
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Limitations of Vineet Chaoji et al.’s work

1. Computing the expected number of nodes with specific content
C is #P-hard. They derived a RMPP (Restricted Maximum Probability
Path) model from a heuristic first proposed by Chen et al. which
restricts influence propagation between a pair of nodes to be only
along the MPP.

RMPP= MPP + at most one edge from X.
The spread function under RMPP model to be submodular but the

content spread problem is still NP-hard.
2.The information propagation may not reflect the real flow on the

network and the content spread node under RMPP model will have a
large deviation from the actual value.

3. A predefined number of new links is added for each user, a
case which not necessarily reflects to real-world application.

4. Higher computational cost, less scalable.
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GCMP Formulation

From a marginal increment perspective to describe the content
spread function value as accurate as possible. Our formulation based
on (IC) model.

For the given acyclic directed social network G(V,E,P), denote pi

is the probability with which node i shares content independently with
each of its neighbors and qcE

v,S is the content spread of a content c ∈ C
contained at v ∈ V under the topology of E with seed set S(strictly
speaking, here S is Sc ) and qcE

S = (· · · ,qcE
v,S, · · ·)

T is the content spread
vector under the topology of E with seed set S.

Then we have the following formula to calculate the marginal gain
∆est q

cE
t,S of content spread of c at node t when an edge est ∈ X is added

to current topology of E.
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GCMP Formulation

Theorem

The marginal gain ∆est q
cE
v,S of content spread of c at node v when an

edge est ∈ X from a candidate set is added to current topology of E is
calculated recursively as follows:

∆est q
cE
t,S = (1−qcE

t,S)psqcE
s,S

And for any v ∈ Nout(t), where Nout(t) is the out-neighbor set of vertex t,
we have

∆est q
cE
v,S =

1−qcE
v,S

1−ptqcE
t,S

pt∆est q
cE
t,S (1)

Furthermore, for other vertex v ∈ V that can be reachable from vertex t,
we can update the marginal gain similarly according to the topology
order in recursive manner. We have ∆est q

cE
v,S = 0, for the vertex which is

unreachable from vertex t during this process.
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GCMP Formulation

Note to Th. During the process of updating marginal spread, if
there are paths from vertex t reach to different in-neighbor nodes of
node w, the marginal gain of spread of w should be updated according
to equation 1 multi-times. But the overall marginal gain of content
spread for w is independent of the update orders.

Definition
(Generalized Content Maximization Problem (GCMP):) Given a
directed acyclic graph G = (V,E,P), a constant K and content set C
with given initial seed setsSc for each c ∈ C, find an edge set
X ⊆ X̄ = {eij : i, j ∈ V, i ∈ Nj, j ∈ Ni} where Ni is the candidate node set of
i such that: (1) At most K edges from X, (2)f (X) is maximum.

Note: In this definition, total cardinality of the edge set is
constraint.
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Main Contributions

1. Content spread maximization problem is formulated in a
marginal gain incremental way with almost no loss of the content
spread.

2. The non-submodularity of the content spread function is given
with analysis. Both submodular lower-bound and upper-bound of the
original content spread function is presented and a Marginal Increment
based Sandwich algorithm (MIS) that guarantees a data-dependent
approximation factor is devised in the sandwich framework.

3. A novel heuristic scalable algorithm of boosting content spread
in social networks IRFA is proposed.
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Submodular bounds

The objective function of GCMP
f (X) = ∑c∈C ∑v∈V (qcE

v,S +∑est∈X ∆est q
c(E

⋃
Xst)

v,S ) is still non-submodular. In
order to elaborate on the structure of f (X), we can re-write it in
marginal increment form. Denote X = {es1t1 ,es2t2 , · · · ,esK tK},
Xk = {es1t1 , · · · ,esktk}, k = 0,1, · · · ,K and X0 = /0 for convenience. Then
we have f (X) = f (X0)+∑

K
k=1 ∆esktk

f (Xk−1),here f (X0) = ∑c∈C ∑v∈V qcE
v,S

and ∆esktk
f (Xk−1) = ∑c∈C ∑v∈V ∆esktk

qc(E
⋃

Xk−1)
v,S ,k = 1, · · · ,K. Fortunately,

each term ∆esktk
qc(E

⋃
Xk−1)

v,S in ∆esktk
f (Xk−1) is monotone decrease with

qc(E
⋃

Xk−1)
v,S . Thus we have the following monotone decrease property of

f (X).
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Submodular bounds

Property: Content spread function f (X) = f (X0)+∑
K
k=1 ∆esktk

f (Xk−1)

is monotone decrease with qc(E
⋃

Xk−1)
v,S , for v ∈ V and k = 1, · · · ,K.

However, the monotone decrease property does not guarantee
the sub-modularity of the objective function f (X), this is just because
the neighbor relationship will change during the new edges added.

To see this structure change clearly, we denote
N+

E (v) = {u ∈ V|(v,u) ∈ E} the out-neighbor of vertex v for each v ∈ V.
Obviously we have the inclusion relationship
N+

E (v)⊆ N+
E
⋃

X1(v)⊆ N+
E
⋃

X2(v)⊆ ·· · ⊆ N+
E
⋃

XK (v)⊆ N+
E
⋃

X̄(v). With this
notation,

∆esktk
f (Xk−1) can be rewritten in a more detailed expression:

∆esktk
f (Xk−1)

= ∑
c∈C

∑
v∈V

∆esktk
qc(E

⋃
Xk−1)

v,S

= ∑
c∈C

(∆esktk
qc(E

⋃
Xk−1)

tk,S

+ ∑
v1∈N+

E
⋃

Xk−1 (tk)

∆esktk
qc(E

⋃
Xk−1)

v1,S

+ ∑
v2∈N+

E
⋃

Xk−1 (v1),v1∈N+

E
⋃

Xk−1 (tk)

∆esktk
qc(E

⋃
Xk−1)

v2,S

+ · · ·+

∑
vD∈N+

E
⋃

Xk−1 (vD−1),vD−1∈N+

E
⋃

Xk−1 (vD−2)

∆esktk
qc(E

⋃
Xk−1)

vD,S )

here D = Dk is the largest hops number among all the paths originate
from the vertex tk and k = 1,2, · · · ,K.
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Submodular bounds

The reason for f (X) is not sub-modular lies in that the
out-neighbor set of a vertex v ∈ V may become larger and larger with
new edges added in the boost content spread update process.
However, for a given GCMP, E, P and S that contains content c are all
fixed. When we further fix the in-neighbor relationship of all vertexes
v ∈ V during the whole recommendations boost update process, the
number of marginal gain terms will remain unchanged during the
whole procedure. Due to the monotone increase property of qc(E

⋃
Xk−1)

v,S

with respect to edge set Xk−1 , for each newly added edge esktk , the
resultant marginal gain term of content spread ∆esktk

qc(E
⋃

Xk−1)
v,S becomes

monotone decrease with qc(E
⋃

Xk−1)
v,S , for v ∈ V and thus further make it

possible to guarantee that the associate content spread function is
submodular. Next we construct submodular bounds objective functions
by reasonably imposing restriction on the neighborhood structure of
each vertex v ∈ V.
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Submodular bounds

The lower bound of objective function is constructed as follow:
f (X) = f (X0)+∑

K
k=1 ∆esktk

f (Xk−1), where

∆esktk
f (Xk−1)

= ∑
c∈C

∑
v∈V

∆esktk
qc(E

⋃
Xk−1)

v,S

= ∑
c∈C

(∆esktk
qc(E

⋃
Xk−1)

tk,S

+ ∑
v1∈N+

E (tk)

∆esktk
qc(E

⋃
Xk−1)

v1,S

+ ∑
v2∈N+

E (v1),v1∈N+
E (tk)

∆esktk
qc(E

⋃
Xk−1)

v2,S

+ · · ·+ ∑
vD∈N+

E (vD−1),vD−1∈N+
E (vD−2)

∆esktk
qc(E

⋃
Xk−1)

vD,S )

k = 1,2, · · · ,K.
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Submodular bounds

f (X) defined above is lower bound of f (X) because that all the

term ∆esktk
qc(E

⋃
Xk−1)

v,S in f (X) is nonnegative and must be included in f (X)
due to the inclusion relationship
N+

E (v)⊆ N+
E
⋃

X1(v)⊆ N+
E
⋃

X2(v)⊆ ·· · ⊆ N+
E
⋃

XK (v)⊆ N+
E
⋃

X̄(v).
Furthermore, f (X) have the following nice submodular property.

Theorem

The lower bound of objective function f (X) = f (X0)+∑
K
k=1 ∆esktk

f (Xk−1)
defined above is submodular with respect to X.
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Submodular bounds

The upper bound is f (X) = f (X)−∑est∈X\X ∆est f (X), where

f (X) = ∑
c∈C

∑
v∈V

qc(E
⋃

X)
v,S

and ∀est ∈ X\X
∆est f (X)

= ∑
c∈C

∑
v∈V

∆est q
c(E

⋃
X)

v,S

= ∑
c∈C

(∆est q
c(E

⋃
X)

tk,S

+ ∑
v1∈N+

E (tk)

∆est q
c(E

⋃
X)

v1,S

+ ∑
v2∈N+

E (v1),v1∈N+
E (tk)

∆est q
c(E

⋃
X)

v2,S

+ · · ·+ ∑
vD∈N+

E (vD−1),vD−1∈N+
E (vD−2)

∆est q
c(E

⋃
X)

vD,S )
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Submodular bounds

f (X) defined above is upper bound of f (X) because that
f (X)− f (X) = (f (X)−∑est∈X\X ∆est f (X))− (f (X0)+∑

K
k=1 ∆esktk

f (Xk−1))≥
∑est∈X\X (∆est f (X

lst−1))−∆est f (X)))≥ 0, here lst denote the edge est is the
lst-th edge added into the recommendations boost network among all
edges in X. The last inequality holds because ∆est f (X

lst−1) has at least
the same number of items as ∆est f (X) has and
∆est q

c(E
⋃

Xlst−1)
v,S ≥ ∆est q

c(E
⋃

X)
v,S due to the monotone decrease property.

Similarly, f (X) have the following nice sub-modular property.

Theorem

The upper bound of objective function f (X) = f (X)−∑est∈X\X ∆est f (X)
defined above is submodular with respect to X.
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MIS algorithm

Generally speaking, there is no effective way to optimize or
approximate a non-submodular function. Lu et al.(2015) proposed a
sandwich approximation strategy, which approximates the
non-submodular objective function by approximating its submodular
lower-bound and upper-bound.

For GCMP, although the original contend spread function f (X) is
non-submodular, we have obtained the submodular lower f (X) and
upper bound f (X).

Therefore the Sandwich framework can be applied and we devise
MIS that guarantees a data dependent approximation factor.
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MIS Algorithm

The sandwich approximation strategy works as follows:
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Approximation Ratio

A data dependent approximation factor is

Theorem

Let X∗ be the seed set returned by MIS and X∗A is the optimal solutions
to maximizing the original spread, then we have

f (X∗)≥ max{ f (XU)

f (U)
α,

f (X∗L)
f (X∗A)

β}f (X∗A).

α = β = 1− 1
e for both submodular bounds, thus we have

Corollary

Let X∗ be the seed set returned by MIS and X∗A is the optimal solutions
to maximizing the original spread, then we have

f (X∗)≥ max{ f (XU)

f (U)
,

f (X∗L)
f (X∗A)

}(1− 1
e
)f (X∗A).
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IRFA algorithm

How to obtain high quality solution to the original problem f (X)?
We present IRFA: IRFA=influence ranking of single node + fast

adjustment according to the recommendations selected.
Intuitively it is beneficial to set up the connection between the

seed node and the strong influence node to boost content spread.
Then how to rank the influence of single node? In order to obtain
influence information, denote σE

v the spread factor if {v} is the only
seed node in the given social network G = (V,E,P) under the edge set
E and σE = (· · · ,σE

v , · · ·)T is the corresponding spread vector under the
topology determined by E. We denote σE = ∑0≤l≤D σ l = ∑0≤l≤D Ale,
where e = (1,1, · · · ,1)n is n-dimensional vectors with all components of
1 and A = (aij)n×n is the adjacency propagation matrix of G with
aij = pij = pi, if eij ∈ E and 0 otherwise. D is the diameter of the network
G. Usually σ l, l = 0,1, · · · ,D reflects the l-th hop propagation spread of
all vertex in the network.
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An Example

Figure 1 gives an example to demonstrate how we calculate σE.
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Marginal Gain

Using this spread influence information we know how to establish
connections to maximize the spread.

Suppose that node 7 is the only node that have content c, if we
add another connection among 7’s two-hop neighbors, node 3
(σE3 = 2) is better than node 5 (σE5 = 1) because 3 has higher spread
capability or we can say 3 is more influential than 5.

As for the spread vector, we have the following properties.
Property: For a directed acyclic graph G, if D=diameter(G), then

AD+k = 0, for all k = 1,2, · · · .
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Marginal Gain

The property of the spread vector from an average point of view.
Suppose d is the average out-degree of the network and p is the

average propagation probability. Then we have
Property: 1)‖σ l‖1 = n(dp)l, l = 0,1, · · · ,D, where ‖σ l‖1 = ∑

n
u=1 σ l(u)

denotes the 1-norm of n-dimension vector σ l.
Especially,‖σ0‖1 = n,‖σ1‖1 = ndp.

2)‖σ‖1 = ∑
D
l=0 ‖σ l‖1 ≤ n

1−dp
, if dp < 1 ; ‖σ‖1 = ∑

D
l=0 ‖σ l‖1 = (D+1)n,

if dp = 1; ‖σ‖1 = ∑
D
l=0 ‖σ l‖1 ≤ n(dp)D+1

dp−1
, ifdp > 1.

3) If dp << 1, every node at most have 1
1−dp

influence in average
sense, which can be reach a good approximation by only using 0-step
and 1-step influence vector.
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IR algorithm of single node

Based on these properties, we present the influence ranking
algorithm of single node (IR) below.
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IRFA

For the GCMP, what we really care about is how much the spread
increment caused by new edges added, not content spread itself.

So another important factor that influences the spread increment
should be considered.

qcE
v,S: the content spread of c ∈ C contained at v ∈ V under the

topology of E which is equivalent to the accumulated activate
probability of each node received before the edge added.
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IRFA

The main idea of IRFA is to select the node with maximum of
weighted influence in the sense of (1−qcE

t,S)σ
E(t) from the candidate

set of vertex s, and add the connection (s, t) into edge set.
That is, add edge (s, t) in X such that

t = argmaxv:(s,v)∈Xs
(1−qc(E

⋃
X)

v,S )σE(v), where qc(E
⋃

X)
v,S is the probability

that node v becomes activated after the diffusion process when the
edge set is E

⋃
X and the seed set that contains c is S.

In order to maintain the current information of influence of each
node, a fast update adjustment procedure is needed.
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IRFA

The influence fast update adjustment procedure (FA(s, t)) is as
follow.

FA(s, t): After the edge (s, t) is added into the current edge set, first
update σE

⋃
(X

⋃
{est})(s) = σE

⋃
X(s)+psσ

E
⋃

X(t); then
σE

⋃
(X

⋃
{est})(v) = σE

⋃
X(v) remains unchanged for the descendant node

of node t (include t itself); at last reversely update the ancestor node
according to σE

⋃
(X

⋃
{est})(v) = σE

⋃
X(v)+∆est σ

E
⋃

X(v), here
∆est σ

E
⋃

X(v) = pv∆est σ
E
⋃

X(u) for u ∈ N+
E
⋃

X(v).
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IRFA

Now we present the overall algorithm of IRFA to compute the
solution of GCMP.
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Complexity analysis

Initialization: O(|D|m+∑c∈C |Sc|m).
Total K iterations: O(k(|X|+2m)).
Time complexity: O(|D|m+(∑c∈C |Sc|m)+ k(|X|+2m)) .
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PERFORMANCE EVALUATION
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PERFORMANCE EVALUATION
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PERFORMANCE EVALUATION
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PERFORMANCE EVALUATION
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PERFORMANCE EVALUATION
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MAP Formulation

In above social network, every node represents a user. If an
activity requires a group of users to participate, then this activity can
be represented by this group of users. Therefore, all activities form a
hyper-edge set of a hypergraph with the node set V, denoted by A .
The profit c : A → R+ is a non-negative function. For any seed set S,
denote by I(S) the set of active nodes at end of the diffusion process
with seed set S initially. The expected profit of activities generated by
active nodes would be defined as

f (S) = E

[
∑

A⊆I(S),A∈A
c(A)

]
.

Definition (Maximizing Activity Profit)
Given a social network G = (V,E) with the IC model, a collection of
activities, A , a profit function c : A → R+, and a positive integer k, find
a set S of k seeds to maximize the expected total profit of activities
consisting of users activated by S through influence.
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MAP Formulation

From the definition of MAP, we can see that it is a generation of
many classical IM problems:

1. Influence maximization problem. When A is defined as A = V
only including all the single vertex activity and c : A → R+ is defined as
c(v) = |v|= 1, Influence maximization problem is a special case of
Maximizing Activity Profit.

2. Activity maximization problem. When A is defined as A = E
only including all the edge set activity and c : A → R+ is defined as
c(e) = we, Activity maximization problem is a special case of
Maximizing Activity Profit.
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Main Contributions

1. We propose a novel MAP problem to maximize the expected
total profit in a social network.

2. The objective function for the MAP is neither submodular nor
supermodular. We present an approximate algorithm that yields an
approximation ratio of 1

∆+2 provided that the supermodular degree is
bounded with ∆.

3. We also develop an exchange-based algorithm to further
improve the quality of the solution.
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Complexity

The complexity results of Maximizing Activity Profit problem.

Theorem
(NP-hardness). The Maximizing Activity Profit problem is NP-hard.

Theorem
(#P-hardness). For a given set S, the computation of

f (S) = E

[
∑

A⊆I(S),A∈A
c(A)

]

is #P-hard.
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Modularity

The properties of the objective function of MAP is neither
submodular nor supermodular.

Definition (supermodular function)
Suppose that f : 2V → R+ is non-negative set value function, where V is
ground set. f is called super-modular if for any subset S1 , S2 of V with
S1 ⊆ S2 ⊆ V, and any v ∈ V\S2, we have ∆vf (S1)≤ ∆vf (S2).
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Modularity

Theorem
(non-submodularity). The objective function

f (S) = E

[
∑

A⊆I(S),A∈A
c(A)

]

of Maximizing Activity Profit is non-submodular.

Similarly, we have

Theorem
(non-supermodularity). The objective function

f (S) = E

[
∑

A⊆I(S),A∈A
c(A)

]

of Maximizing Activity Profit is non-supermodular.
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supermodular degree algorithm

We use the supermodular degree to measure to what degree the
non-submodular version violates the submodularity inspired by M.
Feldman et al.(2014). When the supermodular degree is bounded,
denoted by ∆, an algorithm Improved Extendible System Greedy with
consistant approximation ratio 1

(∆+2) is proposed.

Definition
(supermodular set) Given a monotone set value objective function
f (·), the supermodular set of a node v ∈ V is
D+

f (v) = {v́ ∈ V|∆vf (S∪{v́})> ∆vf (S),∃S⊆ V} , which includes all nodes
that might increase the marginal gain of v ∈ V.

Definition
(supermodular degree). The supermodular degree, denoted by ∆, is
defined as the maximum cardinality among all supermodular sets, i.e.,
∆ = maxv∈V | D+

f (v) |.
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It is obvious that when ∆=0 the function f (·) is submodular. As for
the nonsubmodular case of MAP with bounded ∆, we design improved
greedy with average marginal gain algorithm similarly to the naive
Extendible System Greedy as follow.
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IMEG Algorithm
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New Rule

In the above Improved Extendible System Greedy algorithm
(IMEG), we use a new rule to select the nodes which maximizes the
average marginal gain of nodes selected instead of total incremental.
This rule is more beneficial due to the monotone property of the
objective function always select the nodes in modular set as large as
possible.

51 / 71



Approximation Ratio

The IESG algorithm designed above have 1
(∆+2) approximation

ratio.

Theorem

Algorithm IESG has an approximation ratio of 1
(∆+2) to the optimal

algorithm.
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Optimization Condition

Although IESG returns 1
(∆+2) -approximate solution to MAPP, it is

still a big gap between the approximate solution obtained and the
optimal one in theory. How to determine whether an approximate
solution can be improved or not is still a fundamental question.

Theorem
(optimization criterion). Suppose S∗ is the optimum solution of the
MAP, then

min
S⊆S∗

∆Sf (S∗\S)≥ max
S⊆V\S∗

∆Sf (S∗\SR) (2)

where SR = argminS⊆S∗ ∆Sf (S∗\S) and

f (S) = E

[
∑

A⊆I(S),A∈A
c(A)

]
.
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Optimization Condition

Proof.
Proof: Suppose minS⊆S∗ ∆Sf (S∗\S)≥maxS⊆V\S∗ ∆Sf (S∗\SR) is not
satisfied, then there exists SA ⊆ V\S∗ such that
∆SR f (S∗\SR)< ∆SA f (S∗\SR).
On the other hand

f (S∗) = f (S∗\SR)+∆SR f (S∗\SR) (3)

f (S∗−SR +SA) = f (S∗\SR)+∆SA f (S∗\SR) (4)

Therefore f (S∗−SR +SA)> f (S∗). This is conflict with the optimality of
S∗ .
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Optimization Condition

When just the singleton subset of S∗ is considered, a corollary of
the above optimization criterion is immediately obtained as follow.

(Corollary:necessary condition for optimality) Suppose S∗ is the
optimum solution of the Maximizing Activity Profit problem, then

min
1≤i≤k

∆vi f (S
∗\{vi})≥ max

v∈V\S∗
∆vf (S∗\{vR}) (5)

where vR = min1≤i≤k ∆vi f (S
∗\{vi}).
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M-convexity of feasible region

Now we turn to the property of the feasible region of MAP. The
feasible region of MAPP is an M-convex set.

Theorem
(M-convexity of feasible region) The feasible region of Maximizing
Activity Profit problem F = {S|S ∈ {0,1}V ∧

‖ S ‖1= k} is M-convex set.

Proof.
For S1,S2 ∈ F and u ∈ supp+(S1−S2), there exists v ∈ supp−(S1−S2)
such that S1−χu +χv ∈ F and S2 +χu−χv ∈ F, where χu is the indicator
vector of singleton set {u} . In fact, any v ∈ S2\S1 is candidate that
meets the requirements. By the definition of M-convex set, it follows
the theorem.
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Exchange Improvement Property

By the M-convexity of feasible region of MAP, a feasible solution is
reserved unchanged under exchange operations. So we have the
following:

Theorem
(exchange improvement property) For any feasible solution S of
Maximizing Activity Profit problem, if necessary condition for optimality
is not satisfied, then S can be improved through exchange operations.

Proof.
According to the optimization criterion and M-convexity of feasible
region, S−χvR +χvA ∈ F outperforms S, that is,
f (S−χvR +χvA) = f (S)+∆vA f (S\{vR})−∆vR f (S\{vR})> f (S), if necessary
condition for optimality is not satisfied.
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Exchange Improvement Property

Now the definition of non-improvable solution of MAP is presented.

Definition
(non-improvable solution). S is said to be non-improvable solution of
MAP, if the necessary condition for optimality (Corollary) is satisfied.

Based on the exchange improvement property mentioned above,
we can design exchange improvement algorithm (EIA) as follow.

The basic idea behind the EIA is replace the point with the
minimum marginal gain in the current solution with the maximum
marginal gain point in V\S .
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Exchange Improvement Algorithm
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NP-harness of Supermodular Set Determine

Insurmountable difficulties to solve the MAP in practice: 1) the
NP-haedness of the problem and 2) the #P-hardness of the objective
function value computation. Furthermore 3) compute the
supermodular set is still NP-hardness.

In improved greedy algorithm (IESG), we should determine
supermodular set D+

f (v) for each node v ∈ V at the initial phase.
Unfortunately, decide whether a node u in supermodular set D+

f (v) of
given v is NP-hard.

Theorem
(NP-harness of supermodular set determine). To determine whether a
node u is in supermodular set D+

f (v) of given v is NP-hard.
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Upper Bound

Thus we have an upper bound of

f (S) = E

[
∑

A⊆I(S),A∈A
c(A)

]

which can be reformulated as f (S)≤ ∑A⊆I(S),A∈A (c(A)minv∈A{qS
v}). The

upper bound can be frther reformulated as
f (S) = ∑A⊆I(S),A∈A (c(A) 1

|A| ∑v∈A{qS
v}) due to the inequality

minv∈A{qS
v} ≤ 1

|A| ∑v∈A{qS
v}.
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Submodularity of Upper Bound

Theorem
(submodularity of upper bound). The upper bound objective function
f (S) of Maximizing Activity Profit is submodular.

Proof.
This is because the upper bound of objective function of MAPP
f (S) = ∑A⊆I(S),A∈A (c(A) 1

|A| ∑v∈A{qS
v}) = ∑v∈V qS

vc(v), where
c(v) = ∑A∈A

1
|A|c(A). This is a weight version of influence maximization

problem which is submodular.
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Thank You for your attention!
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