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Given a set A, we define its sum set to be the set

A + A := {a + b : a,b ∈ A}

and its product set to be

AA := {ab : a,b ∈ A}.

Erdös and Szemerédi (1983) conjectured that at least one of
these two sets has near-quadratic growth. Precisely, it was
conjectured

max{|A + A|, |AA|} ≥ Cε|A|2−ε,

for any ε > 0. (i.e. |A|2
(log |A|)b )



Why did they come up with this lower bound ?
Consider A as

A = {1,2,3, · · · ,N},

in other words, A is an arithmetic progression and so A + A is
small, but AA is quadratically large.
On the other hand, consider

A = {2,22,23, · · · ,2N},

a geometric progression, then AA is small, but A + A is
quadratically large.



There have been some important progress for this problem, but
it is still widely open. On the other hand, the same problem in
prime fields was proved by Bourgain, Katz and Tao in 2004 that

max{|A + A|, |AA|} ≥ |A|1+ε,

for any A ⊂ Fp with |A| < p1−δ. The result has been found
extremely useful in various research problems.



The breakthrough work of H. A. Helfgott asserts that if E is a
subset of SL2(Fp) and not contained in any proper subgroup
with |E | < p3−δ, then |E ·E ·E | > c|E |1+ε for some ε = ε(δ) > 0.
This result confirms a longstanding conjecture of Babai.



Another important application of the BKT sum-product theorem
is the following (resolved a longstanding open problem in
analytic number theory).

Theorem (Bourgain-Konyagin)

Let H be a multiplicative subgroup of F∗p with size of pδ. Then
uniformly for all a 6= 0, we have

|
∑
x∈H

exp(ax)| ≤ |H|
pε
,

for some ε = ε(δ) > 0.



Exponential sum estimates have applications to Fourier
transform.

Recall: Given a set A ⊂ Fp, we define the Fourier transform of
the set A by

χ̂A(ξ) =
1
p

∑
x∈A

exp(−ξ · x)



Take an example. Consider A = {a2 : a ∈ Fp}, then Gauss
exponential sum estimate will tell us that when ξ 6= 0 the set A
has large Fourier decay. In other words.

|χ̂A(ξ)|is small when ξ 6= 0.

We actually can directly compute the value.



|
∑

a∈F exp(−ξ · a2)|2 =
∑

a,b∈F exp(−ξ(a2 − b2)) =∑
a,h∈F exp(−ξ(a2 − (a + h)2))

=
∑

h∈F exp(−ξh2)
∑

a∈F exp(−ξ2ah).
However, if h 6= 0, the sum

∑
a∈F exp(−ξ2ah) = 0 because of

the orthogonal property. Thus we can conclude that

|
∑
a∈F

exp(−ξ · a2)|2 = |F |.

This gives |χ̂A(ξ)| ≤ 1
|F |1/2



Above example shows that exponential sum estimate helps
Fourier transform. Let us look at an example that shows Fourier
transform helps additive combinatorics.

Theorem (J. Bourgain)

Let A ⊂ Fp with |A| > |F |3/4. Then AA + AA + AA = F.



AA + AA + AA = F

Look at this expression in analytic number theory way, it says :

The equation a1a2 + a3a4 + a5a6 = c is always solvable in A for
any c ∈ F as long as the size of the set A is large enough.



Define f (x) = 1
|A|
∑

a∈A χa·A(x). Clearly the support of f is AA. If
we take Fourier transform and use Cauchy-Schwartz inequality
and use previous Fourier decay estimate, we obtain for ξ 6= 0,

|̂f (ξ)| ≤ 1
|F |1/2 .

f ∗ f ∗ f (x) =
∑

ξ∈F f̂ (ξ)3 exp(ξx) ≥ |̂f (0)|3 −
∑

ξ 6=0 |̂f (ξ)|3 > 0.
Since the support of f ∗ f ∗ f is AA + AA + AA, it is done.



Summary: Exponential sum estimates→ Fourier transform→
Additive combinatorics.

Our below results show the converse direction. Using
techniques in Additive combinatorics to obtain some nontrivial
estimate for some certain exponential sums.



Let Fp be a prime field, χ be a non-trivial multiplicative
character of F∗p.
The well-known graph Paley conjecture: any two sets A,B ⊂ Fp
with |A|, |B| > pδ, there exists γ = γ(δ) such that the following
estimate holds: ∣∣∣∣∣∣

∑
a∈A,b∈B

χ(a + b)

∣∣∣∣∣∣ < p−γ |A||B|.



The conjecture remains widely open. There have been some
progress if we make some assumptions on the size of |A|, |B| or
some additional structures on the sets A,B. For example,
It was showed by M-C Chang that if we have

|A| > p
4
9+δ,

|B| > p
4
9+δ,

|B + B| < K |B|.

Then ∣∣∣∣∣∣
∑

a∈A,b∈B

χ(a + b)

∣∣∣∣∣∣ < p−γ |A||B|.



Later Shkredov and Volostnov , using Croot-Sisask lemma on
almost periodicity of convolutions of characteristic functions of
sets, further improved this theorem with an additional
assumption on additive sets.
Suppose that

|A| > p
12
31+δ,

|B| > p
12
31+δ,

|A + A| < K |A|,

|A + B| < L|B|.

Then we have∣∣∣∣∣∣
∑

a∈A,b∈B

χ(a + b)

∣∣∣∣∣∣ <
√

L log 2K
δ log p

|A||B|.



Inspired by the structures of the sets A,B, we may make some
more progress on the exponential sums estimates if we find
more techniques from additive combinatorics and the
connections between these problems.

This is the goal of our result. We did not make any progress for
the graph Paley conjecture, but we find an interesting
connection if we consider the following exponential sums.



Given four sets T ,U,V ,W and two sequences of weights
α = (αt), β = (βu,v ,w ) with

max
t∈T
|αt | ≤ 1, max

(u,v ,w)∈U×V×W
|βu,v ,w | ≤ 1,

We consider the following exponential sum

S =
∑

t∈T ,u∈U,v∈V ,w∈W

αtβuvwχ(t + f (u, v ,w)), (1)

where f is a polynomial in three variables in Fp[x , y , z].



Our results include several previous results obtained by analytic
number theory techniques. In particular, the cases
f (x , y , z) = x + yz or f (x , y , z) = x(y + z).



Theorem
Let M = max{U,V ,W}. then for any fixed integer n ≥ 1, we
have

S �
(
(UVW )1− 1

4n + M1/2n(UVW )1− 1
2n

)
·

T 1/2p1/2 if n = 1

Tp
1

4n + T
1
2 p

1
2n if n ≥ 2.



For example,
1 If U ∼ V ∼W ∼ T ∼ N, then by setting n = 1, we have

S � N11/4p1/2,

which is non-trivial whenever N ≥ p
2
5+ε for some ε > 0.

2 Suppose that T ≥ pε for some ε > 0 and U ∼ V ∼W .
Taking n = b2

ε c+ 1, we have

S � UVWT
( p

UVW

)1/4n
,

which is non-trivial as long as UVW > p1+ε for some ε > 0.



For two variables polynomials, we also have similar results. In
other words, we can consider:

S =
∑

t∈T ,u∈U,v∈V

αtβuvχ(t + f (u, v)).

and obtain
S .

TUV
pδ

,

for some δ > 0,



One of the key ingredients in our proofs is the energy estimate
for polynomials for which we use point-plane incidences
estimate and some combinatorial arguments.

Energy estimate is one of the most important topics in the area
of additive combinatorics.



Energy estimates:

Given two sets A,B. The energy, denoted by E(A,B), is the
quantity

|{(a,b,a′,b′) ∈ (A× B × A× B) : a + b = a′ + b′}|.

A trivial but sharp upper bound is |A||B|2 or |A|2|B|.



|{(a,b,a′,b′) ∈ (A× B × A× B) : a + b = a′ + b′}|.

On the other hand, if we have some structures information for
A,B, we can expect to get a better upper bound. For example:

If we know A,B have lots of multiplicative structures, how can
we get a better upper bound ?



Remark: If we know the information of the energy estimate,
there is a famous theorem by Balog-Szemeredi-Gowers which
gives some information for the structures of the sets A,B.



Various energy estimates:

Given a two (or three) variables polynomial f (x , y), what can we
say about the energy:

E = |{(a,b,a′,b′) : f (a,b) = f (a′,b′)}|,

and

E = |{(a,b, c,a′,b′, c′) : f (a,b, c) = f (a′,b′, c′)}|



For three variables polynomials, we have the following estimate:

E � (UVW )3/2 + MUVW + V 2W 2,

where M = max{U,V ,W}.



After some reductions, we can assume that
f (x , y , z) = axy + bxz + cyz + r(x) + s(y) + t(z) where one of
a,b, c ∈ Fp is not zero, and r , s, t are polynomials in one
variable with degree at most two. Furthermore, from the
symmetric property of f (x , y , z) we only need to consider the
following three cases:



(Case 1) f (x , y , z) = axy + bxz + r(x) + s(y) + t(z) with a 6= 0
and deg(t) = 2.
(Case 2) f (x , y , z) = axy + bxz + r(x) + s(y) + t(z) with a 6= 0
and deg(t) = 1.
(Case 3) f (x , y , z) = axy + bxz + cyz + r(x) + s(y) + t(z) with
a,b, c 6= 0.



Our proofs use the followings:
The first one is the point-plane incidences estimate by Rudnev.

Theorem (2015 Adv in Math)

Let P denote a set of points in F3
p and S a set of planes in F3

p.
Assume that there is no line that contains k points of P and is
contained in k planes of S. Then we have

I(P,S) := |{(p, s) : p ∈ P, s ∈ S}| � |P|1/2|S|+ k |S|.



Second, we also use the following theorem.

Lemma (Kővari–Sós–Turán)

Let G = (A ∪ B,E(G)) be a K2,t -free bipartite graph. Then the
number of edges between A and B is bounded by

|E(G)| � t1/2|A||B|1/2 + |B|.



Let E be the number of tuples (x , y , z, x ′, y ′, z ′) such that
f (x , y , z) = f (x ′, y ′, z ′), where the polynomial f takes the form in
Case 1. This implies that

ayx−ax ′y ′+(bxz+r(x)+t(z)−s(y ′)) = bx ′z ′+r(x ′)+t(z ′)−s(y).

We can view this relationship as an incidence between a point

set and a plane set in F3
p.



Let P be the following point set:

{(x , y ′,bxz + r(x)+ t(z)− s(y ′)) : (x , y ′, z) ∈ U ×V ×W} ⊂ F3
p,

and S be the following plane set

{ayX−ax ′Y+Z = bx ′z ′+r(x ′)+t(z ′)−s(y) : (x ′, y , z ′) ∈ U×V×W}.



Something that we need to be careful is the multiplicity of the
point set and plan set. We need to make sure these sets are
not degenerate.

For each fixed (u, v ,w) ∈ P, at most two elements (x , y ′, z) in
U × V ×W reproduce (u, v ,w), because deg(t) = 2. In fact, we
can take x = u, y ′ = v , and z values are solutions to

t(z) + buz + r(u)− s(v) = w .

Similarly, we can check each fixed plane in S can be
determined by at most two elements (x ′, y , z ′), and each
element in U × V ×W determines a point in P and a plane in
S. All of this gives us

|P| ∼ |S| ∼ UVW and E ∼ I(P,S).



To bound I(P.S), we apply Rudnev’s point-plane incidence
theorem. Again, we need to check the assumptions.

First we count the number of collinear points in P. Let P ′ be the
projection of P onto the first two coordinates, i.e. P ′ = U × V .
Thus any line contains at most max{U,V} points unless it is
vertical. In the case of vertical lines, we can see that no plane
in S contains such lines, because the z-coordinate of normal
vectors of planes in S is one. Therefore, we can apply the
incidence Theorem with k = max{U,V} to get

E � (UVW )3/2 + U2VW + UV 2W .

Remark: Case 1 is simple.



Case 2: deg(t) = 1. In other words,
f (x , y , z) = axy +bxz + r(x)+ s(y)+mz for some m ∈ F∗p. Still,
we define the set P of points and the set S of planes as follows:

P = {(x , y ′,bxz + r(x) + mz − s(y ′))}

S = {ayX − ax ′Y + Z = bx ′z ′ + r(x ′) + mz ′ − s(y)}.



The reason that Case 2 is more difficult is that if
u = −m/b ∈ U, then the triples (−m/b, v ,w) ∈ P can be
determined by many triples (x , y ′, z) ∈ U × V ×W . For this
case, we need to do some more technical steps. So If
−m/b 6∈ U, previous arguments can be applied.

Thus we now assume that u = −m/b ∈ U. As above, we first
need to estimate the sizes of P and S. For (u, v ,w) ∈ P and
(x , y ′, z) ∈ U × V ×W , we consider the following system of
three equations:



u = x , v = y ′, w = buz + r(u) + mz − s(v).

Since u = −m/b ∈ U, then we have

u = x , v = y ′, w = r(u)− s(v) for all z ∈W . (2)

Let P1 be the set of points (u, v ,w) ∈ P with u = −m/b. Then
P1 is a set with V points, since for any v = y ′ ∈ V , w is
determined uniquely. Above equation and the definition of P1,
we have that each point in P1 is determined by W triples
(x , y ′, z) ∈ U × V ×W . Let P2 = P \ P1. Now notice that each
point in P2 is determined by exactly one triple
(x , y ′, z) ∈ U × V ×W .



Using the same arguments, we also partition the set of planes
S into two sets S1 and S2 with S2 = S \ S1 so that |S1| = V ,
each plane in S1 is determined by W triples
(x ′, y , z ′) ∈ U × V ×W , and each plane in S2 is determined by
exactly one triple (x ′, y , z ′) ∈ U × V ×W .



It now follows that each incidence between P1 and S2, or
between P2 and S1 contributes to E by W , each incidence
between P1 and S1 contributes to E by W 2, and each incidence
between P2 and S2 contributes to E by one. Namely we have

E �W 2 · I(P1,S1) + W · I(P1,S2) + W · I(P2,S1) + I(P2,S2).



It is not hard to show

I(P1,S1)� V 2.

To bound I(P2,S2), recall that each element of P2 and S2 is
determined by exactly one element (x , y , z) ∈ U × V ×W with
x 6= −m/b. Hence, using the same arguments, we can show

I(P2,S2)� (UVW )3/2 + U2VW + UV 2W .

To bound I(P1,S2), we will use graph Lemma.

Lemma (Kővari–Sós–Turán)

Let G = (A ∪ B,E(G)) be a K2,t -free bipartite graph. Then the
number of edges between A and B is bounded by

|E(G)| � t1/2|A||B|1/2 + |B|.



Thus if we let A := P1 and B := S2, it can be directly checked
that the graph (A ∪ B,E(G)) is K2,V free, it follows that

I(P1,S2) = E(G)� V 1/2V (UVW )1/2+UVW = U1/2W 1/2V 2+UVW .

Similarly, we also have

I(P2,S1)� U1/2W 1/2V 2 + UVW .

Combining everything, we have proved that

E � (UVW )3/2 + UV 2W + U2VW + UVW 2 + V 2W 2 + U1/2V 2W 3/2

� (UVW )3/2 + UV 2W + U2VW + UVW 2 + V 2W 2.



Case 3:
Recall, we aim to estimate E : the number of tuples
(x , y , z, x ′, y ′, z ′) satisfying the equation

f (x , y , z) = f (x ′, y ′, z ′), (3)

f (x , y , z) = axy + bxz + cyz + dx2 + ey2 + gz2 + hx + iy + jz,

where a,b, c 6= 0 and d ,e,g,h, i , j ∈ Fp.



After some reductions, we can assume that one of the
equations ib = ja and 4eg = c2 is not satisfied. The equation
(3) can be rewritten as

(ay + bz)x − x ′(ay ′ + bz ′) + dx2 − e(y ′)2 − cy ′z ′ − g(z ′)2 + hx − iy ′ − jz ′

= d(x ′)2 − ey2 − cyz − gz2 + hx ′ − iy − jz.



Let us view it as an incidence between a point set and a plane
set as following:

P = {(x ,ay ′+bz ′,dx2−e(y ′)2−cy ′z ′−g(z ′)2 +hx− iy ′− jz ′)},

where (x , y ′, z ′) ∈ U × V ×W .

S = {(ay+bz)X−x ′Y+Z = d(x ′)2−ey2−cyz−gz2+hx ′−iy−jz},

where (x ′, y , z) ∈ U × V ×W .



Again, we estimate the sizes of P and S. For a given point
(u, v ,w) ∈ P, we now count the number of triples
(x , y ′, z ′) ∈ U × V ×W such that

u = x , v = ay ′+bz ′, w = dx2−e(y ′)2−cy ′z ′−g(z ′)2+hx−iy ′−jz ′.

These equations yield that(
b2e − abc + a2g

)
(y ′)2 +

(
bcv − 2agv + ib2 − jab

)
y ′

+
(
b2w − b2du2 + gv2 − b2hx + bjv

)
= 0.

We now fall into the following two cases:



Case 1: If either b2e − abc + a2g or bcv − 2agv + ib2 − jab is
non-zero.
Case 2: If both b2e− abc + a2g and bcv − 2agv + ib2 − jab are
zero.
These cases actually make some steps very technical. But
after all, we still get what we want that:

E � (UVW )3/2 + (V + W + U)(UVW ).



Putting everything together. Sketch of the proof of the result.
Since max(u,v ,w)∈U×V×W |βuvw | ≤ 1, we have

|S| ≤
∑

u∈,v∈,w∈

∣∣∣∣∣∑
t∈
αtχ(t + f (u, v ,w))

∣∣∣∣∣ .
For λ ∈ Fp, let N(U,V ,W , λ) be the number of solutions of the
equation

f (u, v ,w) = λ,

with (u, v ,w) ∈ U × V ×W .



It is clear that we have∑
λ∈Fp

N(U,V ,W , λ) = UVW ,

and ∑
λ∈Fp

N(U,V ,W , λ)2 = E ,

where E is the number of tuples
(u, v ,w ,u′, v ′,w ′) ∈ (U × V ×W )2 such that

f (u, v ,w) = f (u′, v ′,w ′).



Thus we have

|S| ≤
∑
λ∈Fp

N(U,V ,W , λ)

∣∣∣∣∣∑
t∈T

αtχ(t + λ)

∣∣∣∣∣ .
Using the Hölder inequality, we have

|S|2n ≤

∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t + λ)

∣∣∣∣∣
2n
 ·

∑
λ∈Fp

N(U,V ,W , λ)
2n

2n−1

2n−1

�

∑
λ∈Fp

N(U,V ,W , λ)

2n−2∑
λ∈Fp

N(U,V ,W , λ)2


·

∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t + λ)

∣∣∣∣∣
2n


= (UVW )2n−2 · E ·
(∑

λ∈Fp

∣∣∑
t∈T αtχ(t + λ)

∣∣2n
)
.



Finally, the estimate is reduced to the estimate of∑
λ∈Fp

∣∣∣∣∣∑
t∈T

αtχ(t + λ)

∣∣∣∣∣
2n
 .

Theorem (Iwaniec and Kowsalski)

For T ⊂ F∗p and a sequence of weights α = (αt)t∈ with
maxt∈ |αt | ≤ 1, and for any fixed integer n ≥ 1, we have

∑
λ∈Fp

∣∣∣∣∣∑
t∈
αtχ(λ+ t)

∣∣∣∣∣
2n

�

{
Tp if n = 1
T 2np1/2 + T np if n ≥ 2.



Therefore, we have

|S| ≤(
(UVW )1− 1

4n + M1/2n(UVW )1− 1
2n +

UVW
U1/n

)
·

{
T 1/2p1/2 if n = 1
Tp1/4n + T 1/2p1/2n.



It is joint work with Thang Pham, a postdoctoral fellow at UCSD.



Thank you for your attention.


