# Signed Countings of Type B and D Permutations and $t, q$－Euler numbers 

游森棚

joint with 傅東山，徐祥峻，廖信傑
Department of Mathematics National
Taiwan Normal University
2019年圖論與組合數學國際研討會
暨第十屆海峽兩岸圖論與組合學研討會
Aug 19， 2019

## Outline

1 History of the Problem

- Signed countings on Permutations and Derangements
- $q$-analogue of the signed counting identities

2 Background on signed permutations and Springer numbers

- Signed permutations
- Gerneralized Euler numbers-Springer numbers

3 Signed Countings on type B and D

- Main Results

■ How we proceed the proofs?
4 Snakes and $(t, q)$-analogue of derivative polynomials
5 Discussion

## Outline

1 History of the Problem

- Signed countings on Permutations and Derangements
- $q$-analogue of the signed counting identities

Definition
Let $\mathfrak{S}_{n}$ (resp. $\mathfrak{S}_{n}^{*}$ ) denote the set of permutations (resp. derangements) on $[n]:=\{1,2, \ldots, n\}$. We may express $\sigma$ as $\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ if $\sigma(i)=\sigma_{i}$ for all $1 \leq i \leq n$.
For any $\sigma \in \mathfrak{S}_{n}$, define the descent, excedance and weak excedance numbers of $\sigma$ as follow:

■ $\operatorname{des}(\sigma):=\left|\left\{i \in[n-1]: \sigma_{i}>\sigma_{i+1}\right\}\right|$
■ $\operatorname{exc}(\sigma):=\left|\left\{i \in[n]: \sigma_{i}>i\right\}\right|$
■ $\operatorname{wex}(\sigma):=\left|\left\{i \in[n]: \sigma_{i} \geq i\right\}\right|$
Example
Let $\sigma=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 5 & 4 & 8 & 1 & 2 & 6\end{array}\right) \in \mathfrak{S}_{8}$, we also write $\sigma=73548126$.
Then $\operatorname{des}(\sigma)=3, \operatorname{exc}(\sigma)=4, \operatorname{wex}(\sigma)=5$.

An elementary result states that des, exc, wex have the same distribution in $\mathfrak{S}_{n}$ :

$$
A_{n}(y)=\sum_{\sigma \in \mathfrak{S}_{n}} y^{\operatorname{des}(\sigma)+1}=\sum_{\sigma \in \mathfrak{S}_{n}} y^{\operatorname{exc}(\sigma)+1}=\sum_{\sigma \in \mathfrak{S}_{n}} y^{\operatorname{wex}(\sigma)}
$$

The polynomial $A_{n}(y)$ is called the Eulerian polynomials and $A_{n, k}=\#\left\{\sigma \in \mathfrak{S}_{n} \mid \operatorname{wex}(\sigma)=k\right\}$ is called the Eulerian number. We usually called the statistics which have the same distribution with these three the Eulerian statistics.

## Euler numbers

## Definition

The Euler numbers $E_{n}$ are defined by

$$
\tan x+\sec x=\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}
$$

The numbers $E_{2 n}$ are called the secant numbers and the numbers $E_{2 n+1}$ are called the tangent numbers.

■ The first few values are $1,1,1,2,5,16,61,272,1385, \ldots$.

- $E_{n}$ counts the number of alternating permutations in $\mathfrak{S}_{n}$.
i.e. $\mathrm{Alt}_{n}:=\left\{\sigma \in \mathfrak{S}_{n}: \sigma_{1}>\sigma_{2}<\sigma_{3}>\ldots \sigma_{n}\right\}$.
e.g. $\mathrm{Alt}_{3}=\{213,312\}$,

Alt $_{4}=\{2143,3142,3241,4132,4231\}$.

## Signed counting identities

An interesting result occurs when we evaluate the Eulerean polynomials $A_{n}(y)$ at $y=-1$.

Theorem (Euler, 1755; Foata and Schützenberger, 1970)

$$
\sum_{\sigma \in \mathfrak{S}_{n}}(-1)^{\operatorname{exc}(\sigma)}= \begin{cases}0 & , \text { if } n \text { is even } \\ (-1)^{\frac{n-1}{2}} E_{n} & , \text { if } n \text { is odd }\end{cases}
$$

The other half shows up while we restrict our attention on the derangements in $\mathfrak{S}_{n}$ !

Theorem (Roselle, 1968)

$$
\sum_{\sigma \in \mathfrak{S}_{n}^{*}}(-1)^{\operatorname{exc}(\sigma)}= \begin{cases}(-1)^{\frac{n}{2}} E_{n} & , \text { if } n \text { is even } \\ 0 & , \text { if } n \text { is odd }\end{cases}
$$

## $q$-analogue of the signed counting identities

Definition (Crossing number of a permutation)
A crossing of a permutation $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n}$ is a pair of $(i, j)$
$(1 \leq i<j \leq n)$ such that

$$
i<j \leq \sigma_{i}<\sigma_{j} \quad \text { or } \quad \sigma_{i}<\sigma_{j}<i<j .
$$

We denote by $\operatorname{cro}(\sigma)$ the number of crossings in $\sigma$.
Crossings can be visualize via permutation diagram.
Example
Let $\sigma=4736215, \operatorname{cro}(\sigma)=3$.


Lauren Williams (2005) introduce the notion of crossing along with this $q$-analogue of Eulerean numbers

$$
\begin{gathered}
A_{n, k}(q)=\sum_{\substack{\sigma \in \mathfrak{S}_{n} \\
\mathrm{wex}(\sigma)=k}} q^{\operatorname{cro}(\sigma)} \\
A(y, q)=\sum_{k=1}^{n} A_{n, k}(q) y^{k}=\sum_{\sigma \in \mathfrak{S}_{n}} y^{\mathrm{wex}(\sigma)} q^{\operatorname{cro}(\sigma)} .
\end{gathered}
$$

Definition (Han, Randrianarivony, Zeng, 1999)
The $q$-tangent numbers $E_{2 n+1}(q)$ and the $q$-secant numbers $E_{2 n}(q)$ are defined by

$$
\sum_{n=0}^{\infty} E_{2 n+1}(q) z^{n}=\frac{1}{1-\frac{[1]_{q}[2]_{q} z}{1-\frac{[2]_{q}[3]_{q} z}{1-\frac{[3]_{q}[4]_{q} z}{\ddots}}}}, \quad \sum_{n=0}^{\infty} E_{2 n}(q) z^{n}=\frac{1}{1-\frac{[1]_{q}^{2} z}{1-\frac{[2]_{q}^{2} z}{1-\frac{[3]_{q}^{2} z}{\ddots}}}}
$$

The first few polynomials are $E_{0}(q)=E_{1}(q)=E_{2}(q)=1$,
$E_{3}(q)=1+q, E_{4}(q)=2+2 q+q^{2}, E_{5}(q)=2+5 q+5 q^{2}+3 q^{3}+q^{4}$.

The polynomial $E_{n}(q)$ has a combinatorial interpretation (Chebikin, 2008):

$$
E_{n}(q)=\sum_{\sigma \in \mathrm{Alt}_{n}} q^{31-2(\sigma)}
$$

where $\mathrm{Alt}_{n}$ is the set of alternating permutations of length $n$ and $31-2(\sigma)=\#\left\{(i, j): i+1<j, \sigma_{i+1}<\sigma_{j}<\sigma_{i}\right\}$.

Example

| Alt $_{4}$ | 2143 | 3142 | 3241 | 4132 | 4231 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $31-2$ | 0 | 1 | 0 | 2 | 1 |
| $\sum_{\sigma \in \text { Alt }_{4}} q^{31-2(\sigma)}=2+2 q+q^{2}=E_{4}(q)$ |  |  |  |  |  |

## $q$-analogue of the signed counting identities

Josuat-Vergès derived the following $q$-analogue of the signed counting identities.

Theorem (Josuat-Vergès, 2010)
For $n \geq 1$, we have
$1 \sum_{\pi \in \mathfrak{S}_{n}}(-1)^{\operatorname{wex}(\pi)} q^{\operatorname{cro}(\pi)}= \begin{cases}0 & \text { if } n \text { is even, } \\ (-1)^{\frac{n+1}{2}} E_{n}(q) & \text { if } n \text { is odd; }\end{cases}$
$\sqrt{2} \sum_{\pi \in \mathfrak{S}_{n}^{*}}\left(-\frac{1}{q}\right)^{\operatorname{wex}(\pi)} q^{\operatorname{cro}(\pi)}= \begin{cases}\left(-\frac{1}{q}\right)^{\frac{n}{2}} E_{n}(q) & \text { if } n \text { is even, } \\ 0 & \text { if } n \text { is odd. }\end{cases}$

■ Note that permutations are the combinatorial model of the symmetric group $\mathfrak{S}_{n}$, which is merely the finite irreducible Coxeter group of type A.

- For type B and type D, there are combinatorial models similar to permutations. Fortunately, the notions we have mentioned, for instance wex, cro, also have type B analogs.
- One of our purpose in this work is to extend Josuat-Vergès' $q$-analogs of signed counting identities to type B and D .


## Outline

2 Background on signed permutations and Springer numbers

- Signed permutations
- Gerneralized Euler numbers-Springer numbers


## Signed permutations

Definition
Let $[-n, n]:=\{-n,-n+1, \ldots,-1,1,2, \ldots, n\}$.

- A signed permutation of $[n]$ is a bijection $\sigma:[-n, n] \rightarrow[-n, n]$ s.t. $\sigma(-i)=-\sigma(i)$ for all $i \in[-n, n]$. For convenience, we write $-i$ as $\bar{i}$. Sometimes we express $\sigma$ as $\sigma_{1} \sigma_{2} \ldots \sigma_{n}$, where $\sigma_{i}=\sigma(i)$ for $1 \leq i \leq n$. This is called the window notation of $\sigma$.
- An even signed permutation is a signed permutation with even number of negative entries in its window notation.

Denote $B_{n}$ and $D_{n}$ the set of signed permutations and even signed permutations of $[n]$ resp., and $B_{n}^{*}\left(D_{n}^{*}\right.$ resp.) the subset of $B_{n}\left(D_{n}\right.$ resp.) without fixed points.

For example, $B_{2}=\{12, \overline{1} 2,1 \overline{2}, \overline{1} \overline{2}, 21,2 \overline{1}, \overline{2} 1, \overline{2} \overline{1}\}, D_{2}=\{12, \overline{1} \overline{2}, 21, \overline{2} \overline{1}\}$, $B_{2}^{*}=\{\overline{1} \overline{2}, 21,2 \overline{1}, \overline{2} 1, \overline{2} \overline{1}\}, D_{2}^{*}=\{\overline{1} \overline{2}, 21, \overline{2} \overline{1}\}$.

The type $B$ and $D$ analogous of signed countings we mainly consider are

$$
\sum_{\sigma \in W}(-1)^{\left\lfloor\frac{\operatorname{fvex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)} \text { and } \sum_{\sigma \in W^{*}}\left(-\frac{1}{q}\right)^{\left\lfloor\frac{\operatorname{wex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}(\sigma)}
$$

where $W=B_{n}, D_{n}$. So I will briefly introduce what the notations in the expressions mean and what the type $B$ and $D$ Euler numbers are and other related results.

The type $B$ analogous of weak excedance we need here is the flag weak excedance of signed permutations.

## Definition

For $\sigma \in B_{n}$, we define wex $(\sigma)=\#\left\{i \in[n]: \sigma_{i} \geq i\right\}$ and $\operatorname{neg}(\sigma)=\#\left\{\sigma_{i}: i \in[n], \sigma_{i}<0\right\}$. Then the flag weak excedance number is defined as

$$
\operatorname{fwex}(\sigma)=2 \operatorname{wex}(\sigma)+\operatorname{neg}(\sigma)
$$

Example
$\sigma=\left(\begin{array}{cccccccccc}\overline{5} & \overline{4} & \overline{3} & \overline{2} & \overline{1} & 1 & 2 & 3 & 4 & 5 \\ 1 & \overline{3} & 4 & \overline{2} & \overline{5} & 5 & 2 & \overline{4} & 3 & \overline{1}\end{array}\right)=52 \overline{4} 3 \overline{1} \in B_{5}$.
Then $\operatorname{wex}(\sigma)=2$ and $\operatorname{neg}(\sigma)=2 \Rightarrow \operatorname{fwex}(\sigma)=4+2=6$.

## Crossing of type B

## Definition (Corteel, Josuat-Vergès and Williams, 2011)

For $\sigma=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \in B_{n}$, a crossing of $\sigma$ is a pair $(i, j)$ with $i, j \geq 1$ such that

$$
i<j \leq \sigma_{i}<\sigma_{j} \quad \text { or } \quad-i<j \leq-\sigma_{i}<\sigma_{j} \quad \text { or } \quad i>j>\sigma_{i}>\sigma_{j}
$$

We write $\operatorname{cro}_{\mathrm{B}}(\sigma)$ as the number of crossings of $\sigma \in B_{n}$.
Type B crossings can be visualized by pignose diagram.

## Crossing of type B

Example
Let $\sigma=6 \overline{3} \overline{5} 14 \overline{7} \overline{2}$, the crossings are $(7,1),(3,1),(2,1)$

$$
\left(-i<j \leq-\sigma_{i}<\sigma_{j}\right) \text { and }(4,2),(4,3),(7,2),(7,3),(7,6)
$$

$$
\left(i>j>\sigma_{i}>\sigma_{j}\right) \text { so } \operatorname{cro}_{\mathrm{B}}(\sigma)=8
$$



Let $B_{n}(y, t, q)=\sum_{\sigma \in B_{n}} y^{\text {fiwex }(\sigma)} t^{\text {neg }(\sigma)} q^{\text {croB }(\sigma)}$. The first few values are

$$
\begin{aligned}
& B_{0}(y, t, q)=1, \quad B_{1}(y, t, q)=y^{2}+y t \\
& B_{2}(y, t, q)=y^{4}+(2 t+t q) y^{3}+\left(t^{2} q+t^{2}+1\right) y^{2}+t y
\end{aligned}
$$

Theorem (Corteel, Josuat-Vergès, Kim, 2013)
The continued fraction expansion for the generating fucntion of $B_{n}(y, t, q)$ is

$$
\begin{aligned}
& \sum_{n \geq 0} B_{n}(y, t, q) x^{n} \\
= & \frac{1}{1-\left(y^{2}+y t\right)[1]_{q} z-\frac{(1+y t q)\left(y^{2}+y t\right)[1]_{q}{ }^{2} z^{2}}{1-\left[\left(y^{2}+y t q\right)[2]_{q}+(1+y t q)[1]_{q}\right] z-\frac{\left(1+y t q^{2}\right)\left(y^{2}+y t q\right)[2]_{q}^{2} z^{2}}{}}}
\end{aligned}
$$

## Gerneralized Euler numbers-Springer numbers

Springer (1971) defined the Springer number $K(W)$ for any Coxeter group $W$. In particular, $\mathfrak{S}_{n}$ is the irreducible Coxeter group of type $A_{n-1}$ and $K\left(A_{n-1}\right)=K\left(\mathfrak{S}_{n}\right)=E_{n}$.

Definition
Let $(W, S)$ be a Coxeter system, for any $w \in W$ the (right) descent set of $w$ is defined to be

$$
\operatorname{Des}(w)=\{s \in S: \ell(w s)<\ell(w)\} .
$$

Let $J \subset S$ and $D_{J}=\{w \in W: \operatorname{Des}(w)=J\}$, then the Springer number of $W$ is defined to be the cardinality of the largest descent classes

$$
K(W):=\max _{J \subset S}\left|D_{J}\right|
$$

## Example

$W=\mathfrak{S}_{3}, S=\left\{s_{1}=(12), s_{2}=(23)\right\}$
Take $J=\left\{s_{1}\right\}$ or $\left\{s_{2}\right\}$,
$D_{J}=\{213,312\}$ or $\{132,231\}$.
Springer number $K\left(\mathfrak{S}_{3}\right)=2=E_{3}$

| $w \in \mathfrak{S}_{3}$ | $D(w)$ |
| :--- | :---: |
| $123=i d$ | $\emptyset$ |
| $132=s_{2}$ | $s_{2}$ |
| $213=s_{1}$ | $s_{1}$ |
| $231=s_{1} s_{2}$ | $s_{2}$ |
| $312=s_{2} s_{1}$ | $s_{1}$ |
| $321=s_{1} s_{2} s_{1}$ | $s_{1}, s_{2}$ |

## Gerneralized Euler numbers-Springer numbers

Denote $S_{n}:=K\left(B_{n}\right)$ and $S_{n}^{D}:=K\left(D_{n}\right)$.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E_{n}$ | 1 | 1 | 1 | 2 | 5 | 16 | 61 | $\ldots$ |
| $S_{n}$ | 1 | 1 | 3 | 11 | 57 | 361 | 2763 | $\ldots$ |
| $S_{n}^{D}$ | 1 | 1 | 1 | 5 | 23 | 151 | 1141 | $\ldots$ |

Table: Springer number of type $A, B$ and $D$

## Combinatorial models of Springer numbers-Snakes

By describing Springer number geometrically in terms of Weyl chambers, Arnold (1992) showed Springer numbers of type A, B, D count various types of snakes.

Definition
Let $\sigma=\sigma_{1} \ldots \sigma_{n} \in B_{n}$, then $\sigma \in B_{n}$ is a snake if
$\sigma_{1}>\sigma_{2}<\sigma_{3}>\ldots \sigma_{n}$.
1 Let $\mathcal{S}_{n} \subset B_{n}$ be the set of snakes of size $n$.
2 Let $\mathcal{S}_{n}^{0} \subset \mathcal{S}_{n}$ be the subset consisting of the snakes $\sigma$ with $\sigma_{1}>0$.
3 Let $\mathcal{S}_{n}^{00} \subset \mathcal{S}_{n}^{0}$ be the subset consisting of the snakes $\sigma$ with $\sigma_{1}>0$ and $(-1)^{n} \sigma_{n}<0$.

## Combinatorial models of Springer numbers-Snakes

For example, as $n=2$

$$
\mathcal{S}_{2}=\{1 \overline{2}, \overline{1} \overline{2}, 21,2 \overline{1}\}, \quad \mathcal{S}_{2}^{0}=\{1 \overline{2}, 21,2 \overline{1}\}, \quad \mathcal{S}_{2}^{00}=\{1 \overline{2}, 2 \overline{1}\}
$$

In general $\left|\mathcal{S}_{n}\right|=2^{n} E_{n},\left|\mathcal{S}_{n}^{0}\right|=S_{n},\left|\mathcal{S}_{n}^{00}\right|=2^{n-1} E_{n}$.

| $n$ | 1 | 2 | 3 | 4 | 5 | 6 | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $E_{n}$ | 1 | 1 | 2 | 5 | 16 | 61 | $\ldots$ |
| $2^{n} E_{n}$ | 2 | 4 | 16 | 80 | 512 | 3904 | $\ldots$ |
| $S_{n}$ | 1 | 3 | 11 | 57 | 361 | 2763 | $\ldots$ |
| $2^{n-1} E_{n}$ | 1 | 2 | 8 | 40 | 256 | 1952 | $\ldots$ |
| $S_{n}^{D}$ | 1 | 1 | 5 | 23 | 151 | 1141 | $\ldots$ |

## Links with derivatives of trigonometric functions

There is a surprising link between snakes and the derivatives of trigonometric fuctions. Hoffman (1999) and Josuat Vergès (2014) studied the polynomials $P_{n}, Q_{n}$ and $R_{n}$ defined as

$$
\begin{aligned}
\frac{d^{n}}{d x^{n}} \tan x & =P_{n}(\tan x) \\
\frac{d^{n}}{d x^{n}} \sec x & =Q_{n}(\tan x) \sec x \\
\frac{d^{n}}{d x^{n}} \sec ^{2} x & =R_{n}(\tan x) \sec ^{2} x
\end{aligned}
$$

For examples,

$$
\begin{array}{lll}
P_{1}(t)=1+t^{2}, & P_{2}(t)=2 t\left(1+t^{2}\right)=2 t+2 t^{3}, & P_{3}(t)=2+8 t^{2}+6 t^{4} \\
Q_{1}(t)=t, & Q_{2}(t)=t^{2}+\left(1+t^{2}\right)=1+2 t^{2}, & Q_{3}(t)=5 t+6 t^{3} \\
R_{1}(t)=2 t, & R_{2}(t)=2+6 t^{2}, & R_{3}(t)=16 t+24 t^{3}
\end{array}
$$

Observe $P_{n}(1), Q_{n}(1), R_{n}(1)$.

## Links with derivatives of trigonometric functions

Hoffman showed $P_{n}(1)=2^{n} E_{n}, Q_{n}(1)=S_{n}, P_{n}(1)-Q_{n}(1)=S_{n}^{D}$. Then Josuat-Vergès gave combinatorial interpretations to $P_{n}(t), Q_{n}(t)$ and $R_{n}(t)$ in terms of number of changes of sign cs.

Theorem (Josuat-Vergès 2014)
For all $n \geq 0$, we have

$$
P_{n}(t)=\sum_{\sigma \in \mathcal{S}_{n}} t^{\mathrm{cs}(\sigma)}, \quad Q_{n}(t)=\sum_{\sigma \in \mathcal{S}_{n}^{0}} t^{\operatorname{cs}(\sigma)}, \quad R_{n}(t)=\sum_{\sigma \in \mathcal{S}_{n+1}^{00}} t^{\operatorname{cs}(\sigma)}
$$

where $\operatorname{cs}(\sigma):=\#\left\{i: \sigma_{i} \sigma_{i+1}<0,0 \leq i \leq n\right\}$ with the following conventions

■ $\sigma_{0}=-(n+1)$ and $\sigma_{n+1}=(-1)^{n}(n+1)$ if $\sigma \in \mathcal{S}_{n}$;
■ $\sigma_{0}=0$ and $\sigma_{n+1}=(-1)^{n}(n+1)$ if $\sigma \in \mathcal{S}_{n}^{0}$;
■ $\sigma_{0}=0$ and $\sigma_{n+1}=0$ if $\sigma \in \mathcal{S}_{n}^{00}$.

## Links with derivatives of trigonometric functions

Example

$$
\begin{aligned}
& \mathcal{S}_{2}=\{(\overline{3}) 1 \overline{2}(3),(\overline{3}) \overline{1} \overline{2}(3),(\overline{3}) 21(3),(\overline{3}) 2 \overline{1}(3)\}, \text { then } \\
& \qquad \sum_{\sigma \in \mathcal{S}_{2}} t^{\operatorname{cs}(\sigma)}=t^{3}+t+t+t^{3}=2 t+2 t^{3}=P_{2}(t) \\
& \mathcal{S}_{2}^{0}=\{(0) 1 \overline{2}(3),(0) 21(3),(0) 2 \overline{1}(3)\}, \text { then } \\
& \qquad \sum_{\sigma \in \mathcal{S}_{2}^{0}} t^{\operatorname{cs}(\sigma)}=t^{2}+1+t^{2}=1+2 t^{2}=Q_{2}(t) . \\
& \mathcal{S}_{2}^{00}=\{(0) 1 \overline{2}(0),(0) 2 \overline{1}(0)\}, \text { then }
\end{aligned}
$$

$$
\sum_{\sigma \in \mathcal{S}_{2}^{00}} t^{\operatorname{cs}(\sigma)}=2 t=R_{1}(t)
$$

## $(t, q)$-analogue of derivative polynomials

Definition (Josuat-Vergès,2014)
Define two polynomials of variable $t, q$

$$
Q_{n}(t, q)=(D+U D U)^{n} 1, \quad R_{n}(t, q)=(D+D U U)^{n} 1
$$

where linear operator $D, U$ is defined by

$$
D\left(t^{n}\right)=[n]_{q} t^{n-1}, \quad U\left(t^{n}\right)=t^{n+1}
$$

## Example

$Q_{0}(t, q)=1$
$Q_{1}(t, q)=t$
$Q_{2}(t, q)=1+(1+q) t^{2}$
$Q_{3}(t, q)=$
$\left(2+2 q+q^{2}\right) t+\left(1+2 q+2 q^{2}+q^{3}\right) t^{3}$

## Example

$$
\begin{aligned}
& R_{0}(t, q)=1 \\
& R_{1}(t, q)=(1+q) t \\
& R_{2}(t, q)=(1+q)+\left(1+2 q+2 q^{2}+q^{3}\right) t^{2} \\
& R_{3}(t, q)=\left(2+5 q+5 q^{2}+3 q^{3}+q^{4}\right) t+ \\
& \left(1+3 q+5 q^{2}+6 q^{3}+5 q^{4}+3 q^{5}+q^{6}\right) t^{3}
\end{aligned}
$$

## $(t, q)$-analogue of derivative polynomials

Theorem (Josuat-Vergès, 2014)
The generating functions of $Q_{n}(t, q)$ and $R_{n}(t, q)$ are

$$
\sum_{n \geq 0} Q_{n}(t, q) z^{n}=\frac{1}{1-t[1]_{q} z-\frac{\left(1+t^{2} q\right)[1]_{q}^{2} z^{2}}{1-t q\left([1]_{q}+[2]_{q}\right) z-\frac{\left(1+t^{2} q^{3}\right)[2]_{q}^{2} z^{2}}{1-t q^{2}\left([2]_{q}+[3]_{q}\right) z--}}}
$$

and

$$
\sum_{n \geq 0} R_{n}(t, q) z^{n}=\frac{1}{1-t(1+q)[1]_{q} z-\frac{\left(1+t^{2} q^{2}\right)[1]_{q}[2]_{q} z^{2}}{1-t q(1+q)[2]_{q} z-\frac{\left(1+t^{2} q^{4}\right)[2]_{q}[3]_{q} z^{2}}{1-t q^{2}(1+q)[3]_{q} z--}}} .
$$

## Outline

3 Signed Countings on type $B$ and $D$
■ Main Results
■ How we proceed the proofs?

## $(t, q)$-Signed Countings on $B_{n}$

Surprisingly, the signed countings of type B and D turn out to be related to the derivative polynomials $Q_{n}(t, q)$ and $R_{n}(t, q)$ !

Theorem (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have
1

$$
\left.\sum_{\sigma \in B_{n}}(-1)^{\left\lfloor\frac{f v e x}{}(\sigma)\right.}\right\rfloor t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}= \begin{cases}(-1)^{\frac{n}{2}}(t+1) R_{n-1}(t, q) & , \text { if } n \text { is odd; } \\ (-1)^{\frac{n-1}{2}}(t-1) R_{n-1}(t, q) & , \text { if } n \text { is even. }\end{cases}
$$

2

$$
\sum_{\sigma \in B_{n}}(-1)^{\left\lceil\frac{f \operatorname{wex}(\sigma)}{2}\right\rceil} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}= \begin{cases}(-1)^{\frac{n}{2}}(t-1) R_{n-1}(t, q) & \text { if } n \text { is even; } \\ (-1)^{\frac{n+1}{2}}(t+1) R_{n-1}(t, q) & \text { if } n \text { is odd. }\end{cases}
$$

## $(t, q)$-Signed Countings on $D_{n}$

Corollary (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have

$$
\begin{aligned}
& \sum_{\sigma \in D_{n}}(-1)^{\left\lfloor\frac{\mathrm{fwex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\mathrm{cro}}{ }_{B}(\sigma)
\end{aligned} \sum_{\sigma \in D_{n}}(-1)^{\left.\frac{f \mathrm{fwex}(\sigma)}{2}\right\rceil} t^{\operatorname{neg}(\sigma)} q^{\mathrm{cro}_{B}(\sigma)} .
$$

## $(t, q)$-Signed Countings on $B_{n}^{*}$ and $D_{n}^{*}$

Theorem (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have
$1 \sum_{\sigma \in B_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lfloor\frac{\text { fwex }(\sigma)}{2}\right\rfloor} t^{\mathrm{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}=\left(-\frac{1}{q}\right)^{\left\lfloor\frac{n}{2}\right\rfloor} Q_{n}(t, q)$.
$2 \sum_{\sigma \in B_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lceil\frac{f \operatorname{wex}(\sigma)}{2}\right\rceil} t^{\mathrm{neg}(\sigma)} q^{\mathrm{cro}_{B}(\sigma)}=\left(-\frac{1}{q}\right)^{\left\lceil\frac{n}{2}\right\rceil} Q_{n}(t, q)$.

Corollary (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have

$$
\begin{aligned}
& \sum_{\sigma \in D_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lfloor\frac{\mathrm{fwex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}(\sigma)}=\sum_{\sigma \in D_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lceil\frac{\mathrm{fwex}(\sigma)}{2}\right\rceil} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)} \\
= & \begin{cases}\left(-\frac{1}{q}\right)^{\frac{n}{2}} Q_{n}(t, q) & \text { if } n \text { is even, } \\
0 & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Setting $t=1$ and $q=1$.
Corollary (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have
$1 \sum_{\sigma \in B_{n}}(-1)^{\left\lfloor\frac{\operatorname{twex}(\sigma)}{2}\right\rfloor}= \begin{cases}(-1)^{\frac{n}{2}} 2^{n} E_{n} & \text { if } n \text { is even, } \\ 0 & \text { if } n \text { is odd. }\end{cases}$
$2 \sum_{\sigma \in B_{n}}(-1)^{\left\lceil\frac{f \operatorname{wex}(\sigma)}{2}\right\rceil}= \begin{cases}0 & \text { if } n \text { is even; } \\ (-1)^{\frac{n+1}{2}} 2^{n} E_{n} & \text { if } n \text { is odd. }\end{cases}$
$3 \sum_{\sigma \in D_{n}}(-1)^{\left\lfloor\frac{\operatorname{mex}(\sigma)}{2}\right\rfloor}=\sum_{\sigma \in D_{n}}(-1)^{\left\lceil\frac{\lceil\operatorname{mex}(\sigma)}{2}\right\rceil}=(-1)^{\left\lfloor\frac{n+1}{2}\right\rfloor} 2^{n-1} E_{n}$.

## Corollary (Eu, Fu, Hsu, Liao 2018)

For $n \geq 1$, we have
$1 \sum_{\sigma \in B_{n}^{*}}(-1)^{\left\lfloor\frac{\lfloor\operatorname{mex}(\sigma)}{2}\right\rfloor}=(-1)^{\left\lfloor\frac{n}{2}\right\rfloor} S_{n}$.
(2) $\sum_{\sigma \in B_{n}^{*}}(-1)^{\left\lceil\frac{\lceil\operatorname{wex}(\sigma)}{2}\right\rceil}=(-1)^{\left\lceil\frac{n}{2}\right\rceil} S_{n}$.

3

$$
\sum_{\sigma \in D_{n}^{*}}(-1)^{\left\lfloor\frac{\operatorname{twex}(\sigma)}{2}\right\rfloor}=\sum_{\sigma \in D_{n}^{*}}(-1)^{\left\lceil\frac{\operatorname{fwex}(\sigma)}{2}\right\rceil}= \begin{cases}(-1)^{\frac{n}{2}} S_{n} & \text { if } n \text { is even }, \\ 0 & \text { if } n \text { is odd } .\end{cases}
$$

Recall that $P_{n}(1)-Q_{n}(1)=2^{n} E_{n}-S_{n}=S_{n}^{D}$, this implies the following identities of Springer numbers of type D.

Corollary (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have
$1 \sum_{\sigma \in B_{n}-B_{n}^{*}}(-1)^{\left\lfloor\frac{\operatorname{twex}(\sigma)}{2}\right\rfloor}= \begin{cases}(-1)^{\frac{n}{2}} S_{n}^{D} & \text { if } n \text { is even, } \\ (-1)^{\frac{n+1}{2}} S_{n} & \text { if } n \text { is odd. }\end{cases}$
$2 \sum_{\sigma \in B_{n}-B_{n}^{*}}(-1)^{\left.\frac{f \operatorname{mex}(\sigma)}{2}\right\rceil}= \begin{cases}(-1)^{\frac{n}{2}+1} S_{n} & \text { if } n \text { is even, } \\ (-1)^{\frac{n+1}{2}} S_{n}^{D} & \text { if } n \text { is odd. }\end{cases}$

Signed Countings on type B derangements

The theorem below is one of our main results. I will briefly describe how we prove the theorem, then I will show all our signed countings results on type $B$ and $D$.

Theorem (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have
$\boldsymbol{1} \sum_{\sigma \in B_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lfloor\frac{f \operatorname{wex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}=\left(-\frac{1}{q}\right)^{\left\lfloor\frac{n}{2}\right\rfloor} Q_{n}(t, q)$.
$\boldsymbol{2} \sum_{\sigma \in B_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lceil\frac{f \mathrm{fex}(\sigma)}{2}\right\rceil} t^{\mathrm{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}=\left(-\frac{1}{q}\right)^{\left\lceil\frac{n}{2}\right\rceil} Q_{n}(t, q)$.
where $\operatorname{neg}(\sigma)=\left|\left\{i \in[n] \mid \sigma_{i}<0\right\}\right|$.

Signed Countings on derangements of type B and D

## Example

$$
\begin{aligned}
& \sum_{\sigma \in B_{2}^{*}}(-1)^{\left\lfloor\frac{\operatorname{twex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{croB}(\sigma)} \\
= & \left(-\frac{1}{q}\right) t^{2}+\left(-\frac{1}{q}\right) 1+t+\left(-\frac{1}{q}\right) t q+\left(-\frac{1}{q}\right) t^{2} q \\
= & \left(-\frac{1}{q}\right)\left(t^{2}+1-t q+t q+t^{2} q\right) \\
= & \left(-\frac{1}{q}\right)\left(1+(1+q) t^{2}\right) \\
= & \left(-\frac{1}{q}\right) Q_{2}(t, q) .
\end{aligned}
$$

| $B_{2}^{*}$ | fwex | neg | cro $_{\mathrm{B}}$ |
| :---: | :---: | :---: | :---: |
| $\overline{1} \overline{2}$ | 2 | 2 | 0 |
| 21 | 2 | 0 | 0 |
| $\overline{2} 1$ | 1 | 1 | 0 |
| $2 \overline{1}$ | 3 | 1 | 1 |
| $\overline{2} \overline{1}$ | 2 | 2 | 1 |

## Weighted Motzkin paths

- A Motzkin paths of length $n$ is a lattice path from $(0,0)$ to $(n, 0)$ above the $x$-axis using steps $\mathrm{U}=(1,1), \mathrm{L}=(1,0), \mathrm{D}=(1,-1)$.
e.g. length 3 :

- Assign each step a weight $. y=h$

$$
\left\{\begin{array}{l}
\cdot p\left(\mathrm{U}^{(h)}\right)=a_{h} \\
-p\left(\mathrm{~L}^{(h)}\right)=c_{h} \\
\cdot p\left(\mathrm{D}^{h}\right)=b_{h}
\end{array}\right.
$$

For a weighted Motzkin path $\mathcal{P}=w_{1} w_{2} \ldots w_{n}$, the weight of $\mathcal{P}$ is denoted by $\rho(\mathcal{P}):=\prod_{i=1}^{n} \rho\left(w_{i}\right)$.


## Flajolet' s Fundamental Lemma

## Theorem (Flajolet' s Fundamental Lemma 1980)

Let $M_{n}$ be the set of weighted Motzkin paths of length $n$ with weights given as before. Then the generating function of path weights in $M_{n}$ for all $n$ has the expansion

$$
\sum_{n \geq 0} \sum_{\mathcal{P} \in M_{n}} \rho(\mathcal{P}) z^{n}=\frac{1}{1-c_{0} z-\frac{a_{0} b_{1} z^{2}}{1-c_{1} z-\frac{a_{1} b_{2} z^{2}}{\ddots}}}
$$

## $B_{n}$ and set $\mathcal{M}_{n}$ of corresponding paths

We had seen that generating functions of $B_{n}(y, t, q), Q_{n}(t, q), R_{n}(t, q)$ all have continued fraction expansions. For example, consider the GF of $B_{n}(y, t, q)$ :

- $c_{h}=\left(y^{2}+y t q^{h}\right)[h+1]_{q}+\left(1+y t q^{h}\right)[h]_{q}(h \geq 0)$,
$a_{h}=\left(y^{2}+y t q^{h}\right)[h]_{q} \quad(h \geq 0)$,
$b_{h}=\left(1+y t q^{h}\right)[h]_{q} \quad(h \geq 1)$.
- Set $\mathcal{M}_{n}$ of weighted bicolored Motzkin paths with weight function $\rho$ defined as
- $\rho\left(\mathrm{U}^{(h)}\right) \in\left\{y^{2}, y^{2} q, \ldots, y^{2} q^{h}\right\} \cup\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h}\right\}$,
- $\rho\left(\mathrm{L}^{(h)}\right) \in\left\{y^{2}, y^{2} q, \ldots, y^{2} q^{h}\right\} \cup\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h}\right\}$,
- $\rho\left(\mathrm{W}^{(h)}\right) \in\left\{1, q, \ldots, q^{h-1}\right\} \cup\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h-1}\right\}$ for $h \geq 1$,
- $\rho\left(\mathrm{D}^{(h+1)}\right) \in\left\{1, q, \ldots, q^{h}\right\} \cup\left\{y t q^{h+1}, y t q^{h+2}, \ldots, y t q^{2 h+1}\right\}$.

Let $\mathcal{T}_{n}^{*}$ be the set of weighted bicolored Motzkin paths of length $n$ containing no wavy level steps on the $x$-axis, with a weight function $\rho$ such that for $h \geq 0$,

■ $\rho\left(\mathrm{U}^{(h)}\right) \in\left\{1, q, \ldots, q^{h}\right\} \cup\left\{t^{2} q^{2 h+1}, t^{2} q^{2 h+2}, \ldots, t^{2} q^{3 h+1}\right\}$,

- $\rho\left(\mathrm{L}^{(h)}\right) \in\left\{t q^{h}, t q^{h+1}, \ldots, t q^{2 h}\right\}$,
- $\rho\left(\mathrm{W}^{(h)}\right) \in\left\{t q^{h}, t q^{h+1}, \ldots, t q^{2 h-1}\right\}$ for $h \geq 1$,
- $\rho\left(\mathrm{D}^{(h+1)}\right) \in\left\{1, q, \ldots, q^{h}\right\}$.

Then we have

$$
\sum_{n \geq 0} \rho\left(\mathcal{T}_{n}^{*}\right) x^{n}=\sum_{n \geq 0} Q_{n}(t, q) x^{n}
$$

## The case of $B_{n}^{*}$

Let $B_{n}^{*}(y, t, q)=\sum_{\sigma \in B_{n}^{*}} y^{\text {fwex }(\sigma)} t^{\mathrm{neg}(\sigma)} q^{\text {cro }(\sigma)}$. Observe that

$$
\begin{aligned}
B_{n}^{*}\left(\sqrt{\frac{-1}{q}}, t, q\right) & =\sum_{\substack{\sigma \in B_{n}^{*} \\
2 \mid \operatorname{fwex}(\sigma)}}\left(\frac{-1}{q}\right)^{\frac{\mathrm{fwex}(\sigma)}{2}} t^{\mathrm{neg}(\sigma)} q^{\mathrm{cro}}{ }_{B}(\sigma) \\
& +\sqrt{\frac{-1}{q}} \sum_{\substack{\sigma \in B_{n} \\
2 \nmid \mathrm{fwex}(\sigma)}}\left(\frac{-1}{q}\right)^{\frac{\mathrm{fwex}(\sigma)-1}{2}} t^{\mathrm{neg}(\sigma)} q^{\mathrm{cro}_{B}(\sigma)} .
\end{aligned}
$$

It is easy to see that

$$
\sum_{\sigma \in B_{n}^{*}}\left(\frac{-1}{q}\right)^{\left\lfloor\frac{\operatorname{fwex}(\sigma)}{2}\right\rfloor} t^{\mathrm{neg}(\sigma)} q^{\mathrm{cro}}(\sigma)=\operatorname{Re}\left(B_{n}^{*}\left(\sqrt{\frac{-1}{q}}, t, q\right)\right)+\sqrt{q} \cdot \operatorname{Im}\left(B_{n}^{*}\left(\sqrt{\frac{-1}{q}}, t, q\right)\right)
$$

and

$$
\sum_{\sigma \in B_{n}^{*}}\left(\frac{-1}{q}\right)^{\left[\frac{[\operatorname{trev}(\sigma)}{2}\right]} t^{\operatorname{reg}(\sigma)} q^{\operatorname{coseg}(\sigma)}=\operatorname{Re}\left(B_{n}^{*}\left(\sqrt{\frac{-1}{q}}, t, q\right)\right)-\sqrt{q} \cdot \operatorname{Im}\left(B_{n}^{*}\left(\sqrt{\frac{-1}{q}}, t, q\right)\right)
$$

## Paths corresponding to $B_{n}^{*}$

Theorem (Corteel, Josuat-Vergès, Kim 2013)
There is a bijection $\Gamma$ between $B_{n}$ and $\mathcal{M}_{n}$ such that

$$
\sum_{\sigma \in B_{n}} y^{\mathrm{fwex}(\sigma)} t^{\mathrm{neg}(\sigma)} q^{\mathrm{cro}_{B}(\sigma)}=\rho\left(\mathcal{M}_{n}\right)
$$

$\Gamma$ restricts on $B_{n}^{*}$ induces a bijection between $B_{n}^{*}$ and subset $\mathcal{M}_{n}^{*} \subset \mathcal{M}_{n}$ whose weight scheme is the following:

- $\rho\left(\mathrm{U}^{(h)}\right) \in\left\{y^{2}, y^{2} q, \ldots, y^{2} q^{h}\right\} \cup\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h}\right\}$,
- $\rho\left(\mathrm{L}^{(h)}\right) \in\left\{y^{2}, y^{2} q, \ldots, y^{2} q^{h}\right\} \cup\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h}\right\}$ for $h \geq 1$ and $\rho\left(\mathrm{L}^{(0)}\right) \in\{y t\}$ for $h=0$.
- $\rho\left(\mathrm{W}^{(h)}\right) \in\left\{1, q, \ldots, q^{h-1}\right\} \cup\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h-1}\right\}$ for $h \geq 1$,
- $\rho\left(\mathrm{D}^{(h+1)}\right) \in\left\{1, q, \ldots, q^{h}\right\} \cup\left\{y t q^{h+1}, y t q^{h+2}, \ldots, y t q^{2 h+1}\right\}$.


## How do we prove the signed counting identities?

We construct an involution $\Psi_{2}: \mathcal{M}_{n}^{*} \rightarrow \mathcal{M}_{n}^{*}$ that changes the weight of a path by the factor $y^{2} q$, with the following subset of $\mathcal{M}_{n}^{*}$ as the fixed points.

Let $\mathcal{G}_{n} \subset \mathcal{M}_{n}^{*}$ be the subset consisting of the paths satisfying the following conditions. For $h \geq 0$,

- $\rho\left(\mathrm{U}^{(h)}, \mathrm{D}^{(h+1)}\right)=\left(y^{2} q^{a}, q^{b}\right)$ or $\left(y t q^{h+a}, y t q^{h+1+b}\right)$ for some $a, b \in\{0,1, \ldots, h\}$, for any matching pair $\left(\mathrm{U}^{(h)}, \mathrm{D}^{(h+1)}\right)$,
- $\rho\left(\mathrm{L}^{(h)}\right) \in\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h}\right\}$,
- $\rho\left(\mathrm{W}^{(h)}\right) \in\left\{y t q^{h}, y t q^{h+1}, \ldots, y t q^{2 h-1}\right\}$ for $h \geq 1$.

Comparing the weight with those of $\mathcal{T}_{n}^{*}$, we found

$$
\rho\left(\mathcal{G}_{n}\right)=y^{n} \rho\left(\mathcal{T}_{n}^{*}\right)=y^{n} Q_{n}(t, q) .
$$

## Involution $\Psi_{2}: \mathcal{M}_{n}^{*} \longrightarrow \mathcal{M}_{n}^{*}$

$\Psi_{2}: \mathcal{M}_{n}^{*} \longrightarrow \mathcal{M}_{n}^{*}, \forall \mathcal{P} \in \mathcal{M}_{n}^{*}$,
1 If no step $y^{y^{2} q^{a}}$ ( L ) or ${ }^{\bullet} q^{a-1}(\mathrm{~W})$ then go to (2). Otherwise, $\Psi_{2}(\mathcal{P}):=\mathcal{P}$ replace the 1st $\stackrel{y^{2} q^{a}}{\bullet}\left(\cdot \mathcal{W W}_{W_{\bullet}}^{a-1}\right.$, resp.) by $\cdot \psi^{a-1} \|_{\bullet}\left(y^{y^{2} q^{a}}\right.$, resp.).
2 If no matching pair . ( $\left.y^{2} q^{a}, y t q^{h+1+b}\right)$ or $\left(y t q^{h+a}, q^{b}\right)$. $((\mathrm{U}, \mathrm{D}))$ then go to (3). Otherwise, $\Psi_{2}(\mathcal{P}):=\mathcal{P}$ replace the 1st pair . $\left.y^{2} q^{a}, y t q^{h+1+b}\right)\left(0 .\left(y t q^{h+a}, q^{b}\right)\right.$. , resp.) by

(. $\dot{y}^{2} q^{a} . y, t q^{h+1+b}$. , resp.)
$3 \mathcal{P} \in \mathcal{G}_{n}, \Psi_{2}(\mathcal{P}):=\mathcal{P}$.

## Example



## Example



Example


To sum up, we have

$$
\begin{aligned}
B_{n}^{*}\left(\sqrt{\frac{-1}{q}}, t, q\right) & =\left.\rho\left(\mathcal{M}_{n}^{*}\right)\right|_{y=\sqrt{\frac{-1}{q}}}=\left.\rho\left(\mathcal{G}_{n}\right)\right|_{y=\sqrt{\frac{-1}{q}}} \\
& =\left.y^{n} Q_{n}(t, q)\right|_{y=\sqrt{\frac{-1}{q}}} \\
& = \begin{cases}\left(\frac{-1}{q}\right)^{\frac{n}{2}} Q_{n}(t, q) & , \text { if } n \text { is even; } \\
\sqrt{\frac{-1}{q}}\left(\frac{-1}{q}\right)^{\frac{n-1}{2}} Q_{n}(t, q) & , \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \sum_{\sigma \in B_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lfloor\frac{\operatorname{tvex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}=\left(-\frac{1}{q}\right)^{\left\lfloor\frac{n}{2}\right\rfloor} Q_{n}(t, q), \\
& \sum_{\sigma \in B_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lceil\frac{\operatorname{twex}(\sigma)}{2}\right\rceil} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}=\left(-\frac{1}{q}\right)^{\left\lceil\frac{n}{2}\right\rceil} Q_{n}(t, q) .
\end{aligned}
$$

Moreover, observe that
■ Recall that $D_{n}^{*} \subset B_{n}^{*}$ consists of $\sigma \in B_{n}^{*}$ with even $\operatorname{neg}(\sigma)$.
■ The involution $\Psi_{2}$ preserve the power of $t$.
■ $\forall \mathcal{P} \in \mathcal{G}_{n}$, the parity of power of $t$ is the same as that of $n$.
Therefore, we can easily derive the case of $D_{n}^{*}$.
Corollary (Eu, Fu, Hsu, Liao 2018)
For $n \geq 1$, we have

$$
\begin{aligned}
&\left.\sum_{\sigma \in D_{n}^{*}}\left(-\frac{1}{q}\right)^{\left\lfloor\frac{\operatorname{mex}(\sigma)}{2}\right\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}(\sigma)}=\sum_{\sigma \in D_{n}^{*}}\left(-\frac{1}{q}\right)^{\lceil\lceil\operatorname{mex}(\sigma)}\right\rceil \\
& t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}(\sigma)} \\
&= \begin{cases}\left(-\frac{1}{q}\right)^{\frac{n}{2}} Q_{n}(t, q) & \text { if } n \text { is even, } \\
0 & \text { if } n \text { is odd. }\end{cases}
\end{aligned}
$$

## Outline

4 Snakes and $(t, q)$-analogue of derivative polynomials

- $\sigma \in \mathcal{S}_{n}^{0}\left(\right.$ resp. $\left.\mathcal{S}_{n}^{00}\right)$ set $\sigma_{0}:=0, \sigma_{n+1}:=(-1)^{n}(n+1)$ (resp.

$$
\left.\sigma_{0}=\sigma_{n+1}:=0\right) .
$$

- Let $\mathfrak{S}_{n}^{0}$ (resp. $\mathfrak{S}_{n}^{00}$ ) be a copy of $\mathfrak{S}_{n}$ with convention

$$
\sigma_{0}:=0, \sigma_{n+1}:=(-1)^{n}(n+1)\left(\text { resp. } \sigma_{0}=\sigma_{n+1}:=0\right)
$$

■ Denote $|\sigma|:=\left(\left|\sigma_{0}\right|\right)\left|\sigma_{1}\right| \ldots\left|\sigma_{n}\right|\left(\left|\sigma_{n+1}\right|\right)$ for $\sigma \in \mathcal{S}_{n}^{0}, \mathcal{S}_{n}^{00}$.
Let $X(\sigma)=$ Valley set with sign change of $|\sigma|$,
$Y(\sigma)=$ DD and DA set of $|\sigma|, Z(\sigma)=$ Peak set of $|\sigma|$.
Definition
Let $\pi=\pi_{1} \pi_{2} \cdots \pi_{n} \in \mathfrak{S}_{n}^{0}$ or $\mathfrak{S}_{n}^{00}$. For $1 \leq i \leq n$, we define

$$
\begin{aligned}
& 13-2(\pi, i)=\#\left\{j: 0 \leq j<i-1 \text { and } \pi_{j}<\pi_{i}<\pi_{j+1}\right\}, \\
& 2-31(\pi, i)=\#\left\{j: i<j \leq n \text { and } \pi_{j}>\pi_{i}>\pi_{j+1}\right\} .
\end{aligned}
$$

Let also 2-31 $(\pi)=\sum_{i=1}^{n} 2-31(\pi, i)$.

The enumerator $Q_{n}(t, q)$ of $\mathcal{S}_{n}^{0}$

Theorem (Eu, Fu, Hsu, Liao 2018)

$$
Q_{n}(t, q)=\sum_{\sigma \in \mathcal{S}_{n}^{0}} t^{\mathrm{cs}(\sigma)} q^{2-31(|\sigma|)+\mathrm{pat}_{Q}(\sigma)}
$$

where

$$
\begin{aligned}
\operatorname{pat}_{Q}(\sigma)= & \sum_{j \in X(\sigma)} \\
& 2(13-2(|\sigma|, j)+2-31(|\sigma|, j))-\# X(\sigma) \\
& +\sum_{j \in Y(\sigma)}(13-2(|\sigma|, j)+2-31(|\sigma|, j))
\end{aligned}
$$

## Example

| $\sigma \in \mathcal{S}_{3}^{0}$ | $2(\#$ cs $X$-blocks) | $-\# X(\sigma)$ | $\# Y$-blocks | 2 -31 $(\|\sigma\|)$ | cs |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(0) 1 \overline{1} 3(\overline{4})$ | 0 | 0 | 0 | 0 | 3 | $t^{3}$ |
| $(0) 1 \overline{3} 2(\overline{4})$ | $2 \times 1$ | -1 | 0 | 0 | 3 | $t^{3} q$ |
| $(0) 1 \overline{3} \overline{2}(\overline{4})$ | 0 | 0 | 0 | 0 | 1 | $t$ |
| $(0) 2 \overline{1} 3(\overline{4})$ | $2 \times 1$ | -1 | 0 | 0 | 3 | $t^{3} q$ |
| $(0) 213(\overline{4})$ | 0 | 0 | 0 | 0 | 1 | $t$ |
| $(0) 2 \overline{3} 1(\overline{4})$ | $2 \times 1$ | -1 | 1 | 1 | 3 | $t^{3} q^{3}$ |
| $(0) 2 \overline{3} \overline{1}(\overline{4})$ | 0 | 0 | 1 | 1 | 1 | $t q^{2}$ |
| $(0) 312(\overline{4})$ | 0 | 0 | 1 | 0 | 1 | $t q$ |
| $(0) 3 \overline{1} 2(\overline{4})$ | $2 \times 1$ | -1 | 1 | 0 | 3 | $t^{3} q^{2}$ |
| $(0) 3 \overline{2} 1(\overline{4})$ | $2 \times 1$ | -1 | 1 | 0 | 3 | $t^{3} q^{2}$ |
| $(0) 3 \overline{2} \overline{1}(\overline{4})$ | 0 | 0 | 1 | 0 | 1 | $t q$ |

$$
\begin{aligned}
& \sum_{\sigma \in \mathcal{S}_{3}^{0}} t^{\mathrm{cs}(\sigma)} q^{2-31(|\sigma|)+\mathrm{pat}_{Q}(\sigma)} \\
= & \left(2+2 q+q^{2}\right) t+\left(1+2 q+2 q^{2}+q^{3}\right) t^{3}
\end{aligned}
$$

Theorem (Eu, Fu, Hsu, Liao 2018)

$$
R_{n}(t, q)=\sum_{\sigma \in \mathcal{S}_{n+1}^{00}} t^{\mathrm{cs}(\sigma)} q^{2-31(|\sigma|)+\mathrm{pat}_{R}(\sigma)-n-1}
$$

where

$$
\begin{aligned}
\operatorname{pat}_{R}(\sigma)= & \sum_{j \in X(\sigma)} 2(13-2(|\sigma|, j)+2-31(|\sigma|, j)-1) \\
& +\sum_{j \in Y(\sigma)}(13-2(|\sigma|, j)+2-31(|\sigma|, j))+\# Z(\sigma) .
\end{aligned}
$$

Outline

5 Discussion

■ There are additional signed countings results involving type D Springer number $S_{n}^{D}$ without $(t, q)$-extension.
Any $(t, q)$-extension?
The set of snakes of type $D$ is defined to be

$$
\mathcal{S}_{n}^{D}=\left\{\sigma \in D_{n} \mid \sigma_{1}+\sigma_{2}<0 \text { and } \sigma_{1}>\sigma_{2}<\sigma_{3}>\ldots\right\} .
$$

Any relations between the distribution of signed changing on $\mathcal{S}_{n}^{D}$ and $\sum_{B_{n}-B_{n}^{*}}(-1)^{\left\lfloor\frac{\text { fwex }(\sigma)}{2}\right\rfloor} t^{\mathrm{neg}(\sigma)}$ ?

- Recall that in type A there is a notion in some sense dual to crossings which is called nestings. The joint distribution of crossing number and nesting number are symmetric in $\mathfrak{S}_{n}$. A type B analogous result had been proved in 2011 by Hamdi.
A type $B$ nesting of $\sigma$ is defined as $(i, j)$ with $i, j \geq 1$ satisfying

$$
i<j \leq \sigma_{j}<\sigma_{i} \text { or }-i<j \leq \sigma_{j}<-\sigma_{i} \text { or } j>i>\sigma_{i}>\sigma_{j}
$$

Denote nest ${ }_{B}(\sigma)$ the number of nestings in $\sigma$.
Consider the $(p, q)$-derivative $D_{p, q}$

$$
\left(D_{p, q} f\right)(t):=\frac{f(p t)-f(q t)}{(p-q) t}
$$

then $D_{p, q}\left(t^{n}\right)=[n]_{p, q} t^{n-1}$. Similarly, we may define $Q_{n}(t, p, q)$ and $R_{n}(t, p, q)$.

## Discussion

## Conjecture

For $n \geq 1$, we have
$1 \sum_{\sigma \in B_{n}}(-1)^{\left\lfloor\frac{\text { frex }(\sigma)}{2}\right\rfloor} t^{\text {neg }(\sigma)} p^{\operatorname{nest}_{B}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}=\left\{\begin{array}{l}(-1)^{\frac{n}{2}}(t+1) R_{n-1}(t, p, q) \\ , \text { if } n \text { is odd; } \\ (-1)^{\frac{n-1}{2}(t-1) R_{n-1}(t, p, q)} \\ , \text { if } n \text { is even. }\end{array}\right.$
2

$$
\sum_{\sigma \in B_{n}}(-1)^{\left\lceil\frac{f \text { wex }(\sigma)}{2}\right\rceil} t^{\operatorname{neg}(\sigma)} p^{\operatorname{nest}_{B}(\sigma)} q^{\operatorname{cro}_{B}(\sigma)}=\left\{\begin{array}{l}
(-1)^{\frac{n}{2}}(t-1) R_{n-1}(t, p, q) \\
\text { if } n \text { is even; } \\
(-1)^{\frac{n+1}{2}}(t+1) R_{n-1}(t, p, q) \\
\text { if } n \text { is odd. }
\end{array}\right.
$$

If the conjecture holds, naturally we have the derivation of type $D$ from the conjecture. However, we haven't formulate the conjecture of similar signed counting identities for set $B_{n}^{*}$ of type B derangements.

- Generalize our signed counting results to colored permutations $\mathbb{Z}_{r} \backslash \mathfrak{S}_{n}$. The results without parameter $t, q$ has been prove by Athanasiadis as a byproduct of studying the $\gamma$-nonnegativity on Eulerian polynomial of $\mathbb{Z}_{r} \swarrow \mathfrak{S}_{n}$.


## References

© S. Corteel, M. Josuat-Vergès, J.S. Kim, Crossings of signed permutations and $q$-Eulerian numbers of type $\mathrm{B}, \mathrm{J}$. Combin. 4(2) (2013) 191-228.

回 S.-P. Eu, T.-S. Fu, H. -C. Hsu, H.-C. Liao, Signed countings of types B and D permutations and $t, q$-Euler numbers, Adv. Appl. Math. 97 (2018) 1-26.
( M. Josuat-Vergès, A $q$-enumeration of alternating permutations, European J. Combin. 31 (2010) 1892-1906.
(1) M. Josuat-Vergès, Enumeration of snakes and cycle-alternating permutations, Australas. J. Combin. 60(3) (2014) 279-305.

Thanks for your attention.

