Signed Countings of Type B and D Permutations and t, q-Euler numbers

游森棚

joint with 傅東山, 徐祥峻, 廖信傑

Department of Mathematics National

Taiwan Normal University

2019年圖論與組合數學國際研討會

暨第十屆海峽兩岸圖論與組合學研討會

Aug 19, 2019

Outline

1 History of the Problem

- Signed countings on Permutations and Derangements
- \blacksquare q-analogue of the signed counting identities
- 2 Background on signed permutations and Springer numbers
 - Signed permutations
 - Gerneralized Euler numbers-Springer numbers
- 3 Signed Countings on type B and D
 - Main Results
 - How we proceed the proofs?
- 4 Snakes and (t,q)-analogue of derivative polynomials

5 Discussion

Outline

- Signed countings on Permutations and Derangements
- q-analogue of the signed counting identities

Signed countings on Permutations and Derangements

Definition

Let \mathfrak{S}_n (resp. \mathfrak{S}_n^*) denote the set of permutations (resp. derangements) on $[n] := \{1, 2, \ldots, n\}$. We may express σ as $\sigma_1 \sigma_2 \ldots \sigma_n$ if $\sigma(i) = \sigma_i$ for all $1 \le i \le n$. For any $\sigma \in \mathfrak{S}_n$, define the *descent*, *excedance* and *weak excedance* numbers of σ as follow:

$$\begin{array}{l} \bullet \ \operatorname{des}(\sigma) := |\{i \in [n-1] : \sigma_i > \sigma_{i+1}\}| \\ \bullet \ \operatorname{exc}(\sigma) := |\{i \in [n] : \sigma_i > i\}| \\ \bullet \ \operatorname{wex}(\sigma) := |\{i \in [n] : \sigma_i \ge i\}| \end{array}$$

Example

Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 3 & 5 & 4 & 8 & 1 & 2 & 6 \end{pmatrix} \in \mathfrak{S}_8$$
, we also write $\sigma = 73548126$.
Then $\operatorname{des}(\sigma) = 3$, $\operatorname{exc}(\sigma) = 4$, $\operatorname{wex}(\sigma) = 5$.

An elementary result states that des, exc, wex have the same distribution in \mathfrak{S}_n :

$$A_n(y) = \sum_{\sigma \in \mathfrak{S}_n} y^{\mathsf{des}(\sigma)+1} = \sum_{\sigma \in \mathfrak{S}_n} y^{\mathsf{exc}(\sigma)+1} = \sum_{\sigma \in \mathfrak{S}_n} y^{\mathsf{wex}(\sigma)}.$$

The polynomial $A_n(y)$ is called the *Eulerian polynomials* and $A_{n,k} = \#\{\sigma \in \mathfrak{S}_n | wex(\sigma) = k\}$ is called the *Eulerian number*. We usually called the statistics which have the same distribution with these three the *Eulerian statistics*.

Definition

The Euler numbers E_n are defined by

$$\tan x + \sec x = \sum_{n \ge 0} E_n \frac{x^n}{n!}$$

The numbers E_{2n} are called the *secant numbers* and the numbers E_{2n+1} are called the *tangent numbers*.

 \blacksquare The first few values are $1,1,1,2,5,16,61,272,1385,\ldots$

Signed counting identities

An interesting result occurs when we evaluate the Eulerean polynomials $A_n(y)$ at y = -1.

Theorem (Euler, 1755; Foata and Schützenberger, 1970)

$$\sum_{\sigma \in \mathfrak{S}_n} (-1)^{\mathsf{exc}(\sigma)} = \begin{cases} 0 & \text{, if } n \text{ is even,} \\ (-1)^{\frac{n-1}{2}} E_n & \text{, if } n \text{ is odd.} \end{cases}$$

The other half shows up while we restrict our attention on the derangements in $\mathfrak{S}_n!$

Theorem (Roselle, 1968)

$$\sum_{\sigma \in \mathfrak{S}_n^*} (-1)^{\mathsf{exc}(\sigma)} = \begin{cases} (-1)^{\frac{n}{2}} E_n & \text{, if } n \text{ is even,} \\ 0 & \text{, if } n \text{ is odd.} \end{cases}$$

q-analogue of the signed counting identities

Definition (Crossing number of a permutation)

A crossing of a permutation $\sigma = \sigma_1 \sigma_2 \dots \sigma_n$ is a pair of (i, j) $(1 \le i < j \le n)$ such that

$$i < j \le \sigma_i < \sigma_j$$
 or $\sigma_i < \sigma_j < i < j.$

We denote by $cro(\sigma)$ the number of crossings in σ .

Crossings can be visualize via permutation diagram.

Example

Let $\sigma = 4736215$, $cro(\sigma) = 3$.

Lauren Williams (2005) introduce the notion of crossing along with this q-analogue of Eulerean numbers

$$A_{n,k}(q) = \sum_{\substack{\sigma \in \mathfrak{S}_n \\ \mathsf{wex}(\sigma) = k}} q^{\mathsf{cro}(\sigma)}$$

$$A(y,q) = \sum_{k=1}^{n} A_{n,k}(q) y^{k} = \sum_{\sigma \in \mathfrak{S}_{n}} y^{\mathsf{wex}(\sigma)} q^{\mathsf{cro}(\sigma)}.$$

q-Euler numbers

Definition (Han, Randrianarivony, Zeng, 1999)

The *q*-tangent numbers $E_{2n+1}(q)$ and the *q*-secant numbers $E_{2n}(q)$ are defined by

$$\sum_{n=0}^{\infty} E_{2n+1}(q) z^n = \frac{1}{1 - \frac{[1]_q [2]_q z}{1 - \frac{[2]_q [3]_q z}{1 - \frac{[3]_q [4]_q z}{1 - \frac{[3]_q [4]_q z}{.}}}}, \qquad \sum_{n=0}^{\infty} E_{2n}(q) z^n = \frac{1}{1 - \frac{[1]_q^2 z}{1 - \frac{[2]_q^2 z}{1 - \frac{[3]_q^2 z}{.}}}$$

The first few polynomials are $E_0(q) = E_1(q) = E_2(q) = 1$, $E_3(q) = 1 + q$, $E_4(q) = 2 + 2q + q^2$, $E_5(q) = 2 + 5q + 5q^2 + 3q^3 + q^4$.

q-Euler numbers

The polynomial $E_n(q)$ has a combinatorial interpretation (Chebikin,2008):

$$E_n(q) = \sum_{\sigma \in \mathsf{Alt}_n} q^{\mathsf{31-2}(\sigma)}$$

where Alt_n is the set of alternating permutations of length n and $31-2(\sigma) = \#\{(i,j): i+1 < j, \sigma_{i+1} < \sigma_j < \sigma_i\}.$

Example

Alt_4	2143	3142	3241	4132	4231				
31-2	0	1	0	2	1				
$\begin{array}{c c c c c c c c c }\hline 31-2 & 0 & 1 & 0 & 2 & 1\\ \hline \sum_{\sigma \in Alt_4} q^{31-2(\sigma)} = 2 + 2q + q^2 = E_4(q) \\ \hline \end{array}$									

q-analogue of the signed counting identities

Josuat-Vergès derived the following $q\mbox{-}{analogue}$ of the signed counting identities.

Theorem (Josuat-Vergès, 2010)

For
$$n \ge 1$$
, we have

$$\sum_{\pi \in \mathfrak{S}_n} (-1)^{\mathsf{wex}(\pi)} q^{\mathsf{cro}(\pi)} = \begin{cases} 0 & \text{if } n \text{ is even,} \\ (-1)^{\frac{n+1}{2}} E_n(q) & \text{if } n \text{ is odd;} \end{cases}$$

$$\sum_{\pi \in \mathfrak{S}_n^*} (-\frac{1}{q})^{\mathsf{wex}(\pi)} q^{\mathsf{cro}(\pi)} = \begin{cases} \left(-\frac{1}{q}\right)^{\frac{n}{2}} E_n(q) & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases}$$

- Note that permutations are the combinatorial model of the symmetric group S_n, which is merely the finite irreducible Coxeter group of type A.
- For type B and type D, there are combinatorial models similar to permutations. Fortunately, the notions we have mentioned, for instance wex, cro, also have type B analogs.
- One of our purpose in this work is to extend Josuat-Vergès' q-analogs of signed counting identities to type B and D.

2 Background on signed permutations and Springer numbers

- Signed permutations
- Gerneralized Euler numbers-Springer numbers

Signed permutations

Definition

Let $[-n, n] := \{-n, -n + 1, \dots, -1, 1, 2, \dots, n\}.$

- A signed permutation of [n] is a bijection $\sigma : [-n, n] \rightarrow [-n, n]$ s.t. $\sigma(-i) = -\sigma(i)$ for all $i \in [-n, n]$. For convenience, we write -i as \overline{i} . Sometimes we express σ as $\sigma_1 \sigma_2 \dots \sigma_n$, where $\sigma_i = \sigma(i)$ for $1 \leq i \leq n$. This is called the *window notation* of σ .
- An *even signed permutation* is a signed permutation with even number of negative entries in its window notation.

Denote B_n and D_n the set of signed permutations and even signed permutations of [n] resp., and B_n^* (D_n^* resp.) the subset of B_n (D_n resp.) without fixed points.

For example, $B_2 = \{12, \overline{1}2, 1\overline{2}, \overline{1}\overline{2}, 21, 2\overline{1}, \overline{2}1, \overline{2}\overline{1}\}, D_2 = \{12, \overline{1}\overline{2}, 21, \overline{2}\overline{1}\}, B_2^* = \{\overline{1}\overline{2}, 21, 2\overline{1}, \overline{2}\overline{1}\}, D_2^* = \{\overline{1}\overline{2}, 21, \overline{2}\overline{1}\}.$

The type B and D analogous of signed countings we mainly consider are

$$\sum_{\sigma \in W} (-1)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_B(\sigma)} \text{ and } \sum_{\sigma \in W^*} \left(-\frac{1}{q} \right)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_B(\sigma)}$$

where $W = B_n$, D_n . So I will briefly introduce what the notations in the expressions mean and what the type B and D Euler numbers are and other related results.

The type B analogous of weak excedance we need here is the *flag weak excedance* of signed permutations.

Definition

For $\sigma \in B_n$, we define wex $(\sigma) = \#\{i \in [n] : \sigma_i \ge i\}$ and neg $(\sigma) = \#\{\sigma_i : i \in [n], \sigma_i < 0\}$. Then the *flag weak excedance number* is defined as

$$\mathsf{fwex}(\sigma) = 2\mathsf{wex}(\sigma) + \mathsf{neg}(\sigma).$$

Example

Definition (Corteel, Josuat-Vergès and Williams, 2011)

For $\sigma=\sigma_1\sigma_2\cdots\sigma_n\in B_n,$ a crossing of σ is a pair (i,j) with $i,j\geq 1$ such that

$$i < j \leq \sigma_i < \sigma_j \quad \text{or} \quad -i < j \leq -\sigma_i < \sigma_j \quad \text{or} \quad i > j > \sigma_i > \sigma_j.$$

We write $\operatorname{cro}_{\mathsf{B}}(\sigma)$ as the number of crossings of $\sigma \in B_n$.

Type B crossings can be visualized by *pignose diagram*.

Crossing of type B

Example

Let
$$\sigma = 6\overline{3}\overline{5}14\overline{7}\overline{2}$$
, the crossings are $(7,1), (3,1), (2,1)$
 $(-i < j \le -\sigma_i < \sigma_j)$ and $(4,2), (4,3), (7,2), (7,3), (7,6)$
 $(i > j > \sigma_i > \sigma_j)$ so $\operatorname{cro}_{\mathsf{B}}(\sigma) = 8$.

Type B analogous of *q*-Eulerian polynomials

Let
$$B_n(y, t, q) = \sum_{\sigma \in B_n} y^{\text{fwex}(\sigma)} t^{\text{neg}(\sigma)} q^{\text{cro}_B(\sigma)}$$
. The first few values are
 $B_0(y, t, q) = 1, \quad B_1(y, t, q) = y^2 + yt,$
 $B_2(y, t, q) = y^4 + (2t + tq)y^3 + (t^2q + t^2 + 1)y^2 + ty.$

Theorem (Corteel, Josuat-Vergès, Kim, 2013)

The continued fraction expansion for the generating fuction of $B_n(\boldsymbol{y},t,\boldsymbol{q})$ is

$$= \frac{1}{1 - (y^2 + yt)[1]_q z - \frac{(1 + ytq)(y^2 + yt)[1]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[1]_q]z - \frac{(1 + ytq^2)(y^2 + ytq)[2]_q^2 z^2}{1 - [(y^2 + ytq)[2]_q + (1 + ytq)[2]_q + (1$$

Gerneralized Euler numbers-Springer numbers

Springer (1971) defined the Springer number K(W) for any Coxeter group W. In particular, \mathfrak{S}_n is the irreducible Coxeter group of type A_{n-1} and $K(A_{n-1}) = K(\mathfrak{S}_n) = E_n$.

Definition

Let (W,S) be a Coxeter system, for any $w\in W$ the (right) descent set of w is defined to be

$$\mathsf{Des}(w) = \{ s \in S : \ell(ws) < \ell(w) \}.$$

Let $J \subset S$ and $D_J = \{w \in W : Des(w) = J\}$, then the *Springer number* of W is defined to be the cardinality of the largest descent classes

$$K(W) := \max_{J \subset S} |D_J|$$

Gerneralized Euler numbers-Springer numbers

Example

$$W = \mathfrak{S}_3, S = \{s_1 = (12), s_2 = (23)\}$$
 w

 Take $J = \{s_1\}$ or $\{s_2\}$,
 12

 $D_J = \{213, 312\}$ or $\{132, 231\}$.
 13

 Springer number $K(\mathfrak{S}_3) = 2 = E_3$
 21

$w\in\mathfrak{S}_3$	D(w)
123 = id	Ø
$132 = s_2$	s_2
$213 = s_1$	s_1
$231 = s_1 s_2$	s_2
$312 = s_2 s_1$	s_1
$321 = s_1 s_2 s_1$	s_1, s_2

Gerneralized Euler numbers-Springer numbers

Denote $S_n := K(B_n)$ and $S_n^D := K(D_n)$.

n	0	1	2	3	4	5	6	
E_n	1	1	1	2	5	16	61	
S_n	1	1	3	11	57	361	2763	
S_n^D	1	1	1	5	23	151	1141	

Table: Springer number of type A, B and D

Combinatorial models of Springer numbers-Snakes

By describing Springer number geometrically in terms of Weyl chambers, Arnold (1992) showed Springer numbers of type A, B, D count various types of *snakes*.

Definition

Let $\sigma = \sigma_1 \dots \sigma_n \in B_n$, then $\sigma \in B_n$ is a *snake* if

$$\sigma_1 > \sigma_2 < \sigma_3 > \ldots \sigma_n.$$

- **1** Let $S_n \subset B_n$ be the set of snakes of size n.
- **2** Let $S_n^0 \subset S_n$ be the subset consisting of the snakes σ with $\sigma_1 > 0$.
- 3 Let $S_n^{00} \subset S_n^0$ be the subset consisting of the snakes σ with $\sigma_1 > 0$ and $(-1)^n \sigma_n < 0$.

Combinatorial models of Springer numbers-Snakes

For example, as n = 2

$$S_2 = \{1\bar{2}, \bar{1}\bar{2}, 21, 2\bar{1}\}, \qquad S_2^0 = \{1\bar{2}, 21, 2\bar{1}\}, \qquad S_2^{00} = \{1\bar{2}, 2\bar{1}\}.$$

In general $|\mathcal{S}_n| = 2^n E_n$, $|\mathcal{S}_n^0| = S_n$, $|\mathcal{S}_n^{00}| = 2^{n-1} E_n$.

n	1	2	3	4	5	6	
E_n	1	1	2	5	16	61	
$2^n E_n$	2	4	16	80	512	3904	
S_n	1	3	11	57	361	2763	
$2^{n-1}E_n$	1	2	8	40	256	1952	
S_n^D	1	1	5	23	151	1141	

Links with derivatives of trigonometric functions

There is a surprising link between snakes and the derivatives of trigonometric fuctions. Hoffman (1999) and Josuat Vergès (2014) studied the polynomials P_n , Q_n and R_n defined as

$$\frac{d^n}{dx^n} \tan x = P_n(\tan x)$$
$$\frac{d^n}{dx^n} \sec x = Q_n(\tan x) \sec x$$
$$\frac{d^n}{dx^n} \sec^2 x = R_n(\tan x) \sec^2 x.$$

 $\begin{array}{ll} \text{For examples,} \\ P_1(t) = 1 + t^2, & P_2(t) = 2t(1+t^2) = 2t+2t^3, \\ Q_1(t) = t, & Q_2(t) = t^2 + (1+t^2) = 1+2t^2, \\ R_1(t) = 2t, & R_2(t) = 2+6t^2, \\ \end{array} \qquad \begin{array}{ll} P_3(t) = 2 + 8t^2 + 6t^4. \\ Q_3(t) = 5t+6t^3. \\ R_3(t) = 16t+24t^3. \end{array}$

Observe $P_n(1), Q_n(1), R_n(1)$.

Links with derivatives of trigonometric functions

Hoffman showed $P_n(1) = 2^n E_n$, $Q_n(1) = S_n$, $P_n(1) - Q_n(1) = S_n^D$. Then Josuat-Vergès gave combinatorial interpretations to $P_n(t)$, $Q_n(t)$ and $R_n(t)$ in terms of number of *changes of sign* cs.

Theorem (Josuat-Vergès 2014)

For all $n \ge 0$, we have

$$P_n(t) = \sum_{\sigma \in \mathcal{S}_n} t^{\mathsf{cs}(\sigma)}, \qquad Q_n(t) = \sum_{\sigma \in \mathcal{S}_n^0} t^{\mathsf{cs}(\sigma)}, \qquad R_n(t) = \sum_{\sigma \in \mathcal{S}_{n+1}^{00}} t^{\mathsf{cs}(\sigma)},$$

where ${\rm cs}(\sigma):=\#\{i:\sigma_i\sigma_{i+1}<0, 0\leq i\leq n\}$ with the following conventions

•
$$\sigma_0 = -(n+1)$$
 and $\sigma_{n+1} = (-1)^n (n+1)$ if $\sigma \in S_n$;
• $\sigma_0 = 0$ and $\sigma_{n+1} = (-1)^n (n+1)$ if $\sigma \in S_n^0$;
• $\sigma_0 = 0$ and $\sigma_{n+1} = 0$ if $\sigma \in S_n^{00}$.

Links with derivatives of trigonometric functions

Example

 $\mathcal{S}_2 = \{(\bar{3})1\bar{2}(3), (\bar{3})\bar{1}\bar{2}(3), (\bar{3})21(3), (\bar{3})2\bar{1}(3)\},$ then

$$\sum_{\sigma \in S_2} t^{\mathsf{cs}(\sigma)} = t^3 + t + t + t^3 = 2t + 2t^3 = P_2(t)$$

$$\mathcal{S}_2^0=\{(0)1\bar{2}(3),(0)21(3),(0)2\bar{1}(3)\},$$
 then
$$\sum_{\sigma\in\mathcal{S}_2^0}t^{\mathrm{cs}(\sigma)}=t^2+1+t^2=1+2t^2=Q_2(t).$$

 $\mathcal{S}_2^{00} = \{(0)1\bar{2}(0), (0)2\bar{1}(0)\}$, then

$$\sum_{\sigma \in \mathcal{S}_2^{00}} t^{\mathsf{cs}(\sigma)} = 2t = R_1(t).$$

(t,q)-analogue of derivative polynomials

Definition (Josuat-Vergès, 2014)

Define two polynomials of variable t, q

$$Q_n(t,q) = (D + UDU)^n 1, \quad R_n(t,q) = (D + DUU)^n 1,$$

where linear operator D,U is defined by

$$D(t^n) = [n]_q t^{n-1}, \quad U(t^n) = t^{n+1}.$$

Example

 $\begin{array}{l} Q_0(t,q) = 1 \\ Q_1(t,q) = t \\ Q_2(t,q) = 1 + (1+q)t^2 \\ Q_3(t,q) = \\ (2+2q+q^2)t + (1+2q+2q^2+q^3)t^3 \end{array}$

Example

$$\begin{split} R_0(t,q) &= 1 \\ R_1(t,q) &= (1+q)t \\ R_2(t,q) &= (1+q) + (1+2q+2q^2+q^3)t^2 \\ R_3(t,q) &= (2+5q+5q^2+3q^3+q^4)t + \\ (1+3q+5q^2+6q^3+5q^4+3q^5+q^6)t^3. \end{split}$$

(t,q)-analogue of derivative polynomials

Theorem (Josuat-Vergès, 2014)

The generating functions of $Q_n(t,q)$ and $R_n(t,q)$ are

$$\sum_{n\geq 0} Q_n(t,q) z^n = \frac{1}{1 - t[1]_q z - \frac{(1 + t^2 q)[1]_q^2 z^2}{1 - tq([1]_q + [2]_q) z - \frac{(1 + t^2 q^3)[2]_q^2 z^2}{1 - tq^2([2]_q + [3]_q) z - \dots}}}$$

and

$$\sum_{n\geq 0} R_n(t,q) z^n = \frac{1}{1 - t(1+q)[1]_q z - \frac{(1+t^2q^2)[1]_q[2]_q z^2}{1 - tq(1+q)[2]_q z - \frac{(1+t^2q^4)[2]_q[3]_q z^2}{1 - tq^2(1+q)[3]_q z - \frac{1}{t^2}}}$$

Outline

3 Signed Countings on type B and D

- Main Results
- How we proceed the proofs?

Surprisingly, the signed countings of type B and D turn out to be related to the derivative polynomials $Q_n(t,q)$ and $R_n(t,q)$!

Theorem (Eu, Fu, Hsu, Liao 2018)

Corollary (Eu, Fu, Hsu, Liao 2018)

For $n \ge 1$, we have

$$\begin{split} &\sum_{\sigma\in D_n}(-1)^{\lfloor\frac{\mathsf{fwex}(\sigma)}{2}\rfloor}t^{\mathsf{neg}(\sigma)}q^{\mathsf{cro}_B(\sigma)} = \sum_{\sigma\in D_n}(-1)^{\lceil\frac{\mathsf{fwex}(\sigma)}{2}\rceil}t^{\mathsf{neg}(\sigma)}q^{\mathsf{cro}_B(\sigma)} \\ &= \begin{cases} (-1)^{\frac{n}{2}}tR_{n-1}(t,q) & \text{if }n \text{ is even,} \\ (-1)^{\frac{n+1}{2}}R_{n-1}(t,q) & \text{if }n \text{ is odd.} \end{cases} \end{split}$$

(t,q)-Signed Countings on B_n^* and D_n^*

Theorem (Eu, Fu, Hsu, Liao 2018)

For $n \ge 1$, we have $\mathbf{1} \sum_{\sigma \in B_n^*} \left(-\frac{1}{q} \right)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_B(\sigma)} = \left(-\frac{1}{q} \right)^{\lfloor \frac{n}{2} \rfloor} Q_n(t,q).$ $\mathbf{2} \sum_{\sigma \in B_n^*} \left(-\frac{1}{q} \right)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_B(\sigma)} = \left(-\frac{1}{q} \right)^{\lceil \frac{n}{2} \rceil} Q_n(t,q).$

Corollary (Eu, Fu, Hsu, Liao 2018)

For $n \ge 1$, we have

$$\begin{split} &\sum_{\sigma\in D_n^*} \left(-\frac{1}{q}\right)^{\lfloor\frac{\operatorname{kvex}(\sigma)}{2}\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_B(\sigma)} = \sum_{\sigma\in D_n^*} \left(-\frac{1}{q}\right)^{\lceil\frac{\operatorname{kvex}(\sigma)}{2}\rceil} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_B(\sigma)} \\ &= \begin{cases} \left(-\frac{1}{q}\right)^{\frac{n}{2}} Q_n(t,q) & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases} \end{cases}$$

Type B and D extension of Euler's result

Setting t = 1 and q = 1.

Corollary (Eu, Fu, Hsu, Liao 2018)

For $n \geq 1$, we have

$$\label{eq:second} \mathbb{1} \ \sum_{\sigma \in B_n} (-1)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} = \left\{ \begin{array}{ll} (-1)^{\frac{n}{2}} 2^n E_n & \text{ if } n \text{ is even,} \\ 0 & \text{ if } n \text{ is odd.} \end{array} \right.$$

$$\sum_{\sigma \in B_n} (-1)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} = \begin{cases} 0 & \text{if } n \text{ is even;} \\ (-1)^{\frac{n+1}{2}} 2^n E_n & \text{if } n \text{ is odd.} \end{cases}$$

$$\mathbf{3} \quad \sum_{\sigma \in D_n} (-1)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} = \sum_{\sigma \in D_n} (-1)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} = (-1)^{\lfloor \frac{n+1}{2} \rfloor} 2^{n-1} E_n.$$

Type B and D extension of Roselle's result

 $\sigma \in D_n^*$

Corollary (Eu, Fu, Hsu, Liao 2018)

 $\sigma \in D_{-}^{*}$

For $n \geq 1$, we have $\sum (-1)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} = (-1)^{\lfloor \frac{n}{2} \rfloor} S_n.$ $\sigma \in B^*$ $\sum (-1)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} = (-1)^{\lceil \frac{n}{2} \rceil} S_n.$ $\sigma \in B^*$ 3 $\sum (-1)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} = \sum (-1)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} = \begin{cases} (-1)^{\frac{n}{2}} S_n & \text{if } n \text{ is even,} \end{cases}$

$$= \begin{cases} 0 & \text{if } n \text{ is odd.} \end{cases}$$

Corollary (Eu. Fu. Hsu, Liao 2018)

Recall that $P_n(1) - Q_n(1) = 2^n E_n - S_n = S_n^D$, this implies the following identities of Springer numbers of type D.

For $n \ge 1$, we have $\sum_{\sigma \in B_n - B_n^*} (-1)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} = \begin{cases} (-1)^{\frac{n}{2}} S_n^D & \text{if } n \text{ is even,} \\ (-1)^{\frac{n+1}{2}} S_n & \text{if } n \text{ is odd.} \end{cases}$ $\sum_{\sigma \in B_n - B_n^*} (-1)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} = \begin{cases} (-1)^{\frac{n}{2} + 1} S_n & \text{if } n \text{ is even,} \\ (-1)^{\frac{n+1}{2}} S_n^D & \text{if } n \text{ is odd.} \end{cases}$

Signed Countings on type B derangements

The theorem below is one of our main results. I will briefly describe how we prove the theorem, then I will show all our signed countings results on type B and D.

Theorem (Eu, Fu, Hsu, Liao 2018)

For
$$n \geq 1$$
, we have

$$\sum_{\sigma \in B_n^*} \left(-\frac{1}{q}\right)^{\lfloor \frac{\operatorname{fwex}(\sigma)}{2} \rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_B(\sigma)} = \left(-\frac{1}{q}\right)^{\lfloor \frac{n}{2} \rfloor} Q_n(t,q).$$

$$\sum_{\sigma \in B_n^*} \left(-\frac{1}{q}\right)^{\lceil \frac{\operatorname{fwex}(\sigma)}{2} \rceil} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_B(\sigma)} = \left(-\frac{1}{q}\right)^{\lceil \frac{n}{2} \rceil} Q_n(t,q).$$
where $\operatorname{neg}(\sigma) = |\{i \in [n] \mid \sigma_i < 0\}|.$

Signed Countings on derangements of type B and D

Example

B_2^*	fwex	neg	cro _B	
$\overline{1}\overline{2}$	2	2	0	
21	2	0	0	
$\overline{2}1$	1	1	0	
$2\overline{1}$	3	1	1	
$\bar{2}\bar{1}$	2	2	1	

$$\begin{split} \sum_{\sigma \in B_2^*} (-1)^{\lfloor \frac{\operatorname{Nee}(\sigma)}{2} \rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_{\mathsf{B}}(\sigma)} \\ &= \left(-\frac{1}{q}\right) t^2 + \left(-\frac{1}{q}\right) 1 + t + \left(-\frac{1}{q}\right) tq + \left(-\frac{1}{q}\right) t^2 q \\ &= \left(-\frac{1}{q}\right) (t^2 + 1 - tq + tq + t^2 q) \\ &= \left(-\frac{1}{q}\right) (1 + (1+q)t^2) \\ &= \left(-\frac{1}{q}\right) Q_2(t,q). \end{split}$$

Weighted Motzkin paths

A Motzkin paths of length n is a lattice path from (0,0) to (n,0) above the x-axis using steps U = (1,1), L = (1,0), D = (1,-1).
e.g. length 3: → → , → → , → → , → → p(U^(h)) = a_h
Assign each step a weight y = h → p(L^(h)) = c_h → p(D^(h)) = b_h

For a weighted Motzkin path $\mathcal{P} = w_1 w_2 \dots w_n$, the weight of \mathcal{P} is denoted by $\rho(\mathcal{P}) := \prod_{i=1}^n \rho(w_i)$.

Theorem (Flajolet' s Fundamental Lemma 1980)

Let M_n be the set of weighted Motzkin paths of length n with weights given as before. Then the generating function of path weights in M_n for all n has the expansion

B_n and set \mathcal{M}_n of corresponding paths

We had seen that generating functions of $B_n(y,t,q)$, $Q_n(t,q)$, $R_n(t,q)$ all have continued fraction expansions. For example, consider the GF of $B_n(y,t,q)$:

•
$$c_h = (y^2 + ytq^h)[h+1]_q + (1 + ytq^h)[h]_q \ (h \ge 0),$$

 $a_h = (y^2 + ytq^h)[h]_q \ (h \ge 0),$
 $b_h = (1 + ytq^h)[h]_q \ (h \ge 1).$

 \blacksquare Set \mathcal{M}_n of weighted bicolored Motzkin paths with weight function ρ defined as

$$\begin{array}{l} \bullet \ \rho(\mathsf{U}^{(h)}) \in \{y^2, y^2q, \dots, y^2q^h\} \cup \{ytq^h, ytq^{h+1}, \dots, ytq^{2h}\}, \\ \bullet \ \rho(\mathsf{L}^{(h)}) \in \{y^2, y^2q, \dots, y^2q^h\} \cup \{ytq^h, ytq^{h+1}, \dots, ytq^{2h}\}, \\ \bullet \ \rho(\mathsf{W}^{(h)}) \in \{1, q, \dots, q^{h-1}\} \cup \{ytq^h, ytq^{h+1}, \dots, ytq^{2h-1}\} \\ \text{for } h \ge 1, \\ \bullet \ \rho(\mathsf{D}^{(h+1)}) \in \{1, q, \dots, q^h\} \cup \{ytq^{h+1}, ytq^{h+2}, \dots, ytq^{2h+1}\}. \end{array}$$

Let \mathcal{T}_n^* be the set of weighted bicolored Motzkin paths of length n containing no wavy level steps on the x-axis, with a weight function ρ such that for $h \ge 0$,

$$\begin{split} & \rho(\mathsf{U}^{(h)}) \in \{1, q, \dots, q^h\} \cup \{t^2 q^{2h+1}, t^2 q^{2h+2}, \dots, t^2 q^{3h+1}\}, \\ & \rho(\mathsf{L}^{(h)}) \in \{tq^h, tq^{h+1}, \dots, tq^{2h}\}, \\ & \rho(\mathsf{W}^{(h)}) \in \{tq^h, tq^{h+1}, \dots, tq^{2h-1}\} \text{ for } h \ge 1, \\ & \rho(\mathsf{D}^{(h+1)}) \in \{1, q, \dots, q^h\}. \end{split}$$

Then we have

$$\sum_{n\geq 0} \rho(\mathcal{T}_n^*) x^n = \sum_{n\geq 0} Q_n(t,q) x^n.$$

The case of B_n^*

Let
$$B_n^*(y,t,q) = \sum_{\sigma \in B_n^*} y^{\text{fivex}(\sigma)} t^{\text{neg}(\sigma)} q^{\text{crob}(\sigma)}$$
. Observe that

$$\begin{split} B_n^*\left(\sqrt{\frac{-1}{q}},t,q\right) &= \sum_{\substack{\sigma \in B_n^*\\ 2 \mid \text{fixex}(\sigma)}} \left(\frac{-1}{q}\right)^{\frac{\text{fixex}(\sigma)}{2}} t^{\text{neg}(\sigma)} q^{\text{cro}_B(\sigma)} \\ &+ \sqrt{\frac{-1}{q}} \sum_{\substack{\sigma \in B_n \\ 2 \mid \text{fixex}(\sigma)}} \left(\frac{-1}{q}\right)^{\frac{\text{fixex}(\sigma)-1}{2}} t^{\text{neg}(\sigma)} q^{\text{cro}_B(\sigma)}. \end{split}$$

It is easy to see that

$$\sum_{\sigma \in B_n^*} \left(\frac{-1}{q}\right)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_{\mathsf{B}}(\sigma)} = \operatorname{Re}\left(B_n^*\left(\sqrt{\frac{-1}{q}}, t, q\right)\right) + \sqrt{q} \cdot \operatorname{Im}\left(B_n^*\left(\sqrt{\frac{-1}{q}}, t, q\right)\right)$$

and

$$\sum_{\sigma \in B_n^*} \left(\frac{-1}{q}\right)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_{\mathsf{B}}(\sigma)} = \operatorname{Re}\left(B_n^*\left(\sqrt{\frac{-1}{q}}, t, q\right)\right) - \sqrt{q} \cdot \operatorname{Im}\left(B_n^*\left(\sqrt{\frac{-1}{q}}, t, q\right)\right)$$

Theorem (Corteel, Josuat-Vergès, Kim 2013)

There is a bijection Γ between B_n and \mathcal{M}_n such that

$$\sum_{\sigma \in B_n} y^{\mathsf{fwex}(\sigma)} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_B(\sigma)} = \rho(\mathcal{M}_n).$$

 Γ restricts on B_n^* induces a bijection between B_n^* and subset $\mathcal{M}_n^* \subset \mathcal{M}_n$ whose weight scheme is the following:

•
$$\rho(\mathsf{U}^{(h)}) \in \{y^2, y^2q, \dots, y^2q^h\} \cup \{ytq^h, ytq^{h+1}, \dots, ytq^{2h}\}$$

■ $\rho(\mathsf{L}^{(h)}) \in \{y^2, y^2q, \dots, y^2q^h\} \cup \{ytq^h, ytq^{h+1}, \dots, ytq^{2h}\}$ for $h \ge 1$ and $\rho(\mathsf{L}^{(0)}) \in \{yt\}$ for h = 0.

•
$$\rho(\mathsf{W}^{(h)}) \in \{1, q, \dots, q^{h-1}\} \cup \{ytq^h, ytq^{h+1}, \dots, ytq^{2h-1}\}$$
 for $h \ge 1$,

• $\rho(\mathsf{D}^{(h+1)}) \in \{1, q, \dots, q^h\} \cup \{ytq^{h+1}, ytq^{h+2}, \dots, ytq^{2h+1}\}.$

How do we prove the signed counting identities?

We construct an involution $\Psi_2 : \mathcal{M}_n^* \to \mathcal{M}_n^*$ that changes the weight of a path by the factor y^2q , with the following subset of \mathcal{M}_n^* as the *fixed points*.

Let $\mathcal{G}_n \subset \mathcal{M}_n^*$ be the subset consisting of the paths satisfying the following conditions. For $h \ge 0$,

■
$$\rho(U^{(h)}, D^{(h+1)}) = (y^2q^a, q^b)$$
 or (ytq^{h+a}, ytq^{h+1+b}) for some $a, b \in \{0, 1, ..., h\}$, for any matching pair $(U^{(h)}, D^{(h+1)})$,
■ $\rho(L^{(h)}) \in \{ytq^h, ytq^{h+1}, ..., ytq^{2h}\}$,
■ $\rho(W^{(h)}) \in \{ytq^h, ytq^{h+1}, ..., ytq^{2h-1}\}$ for $h \ge 1$.
Comparing the weight with those of \mathcal{T}_n^* , we found

$$\rho(\mathcal{G}_n) = y^n \rho(\mathcal{T}_n^*) = y^n Q_n(t,q).$$

Involution $\Psi_2: \mathcal{M}_n^* \longrightarrow \mathcal{M}_n^*$

$$\Psi_2:\mathcal{M}_n^*\longrightarrow\mathcal{M}_n^*$$
, $orall\mathcal{P}\in\mathcal{M}_n^*$,

- I If no step $\overset{y^2q^a}{\bullet}(L)$ or $\overset{q^{a^{-1}}}{\bullet}(W)$ then go to (2). Otherwise, $\Psi_2(\mathcal{P}) := \mathcal{P}$ replace the 1st $\overset{y^2q^a}{\bullet}(\overset{q^{a^{-1}}}{\bullet}(W)^{a^{-1}}, \text{resp.})$ by $\overset{q^{a^{-1}}}{\bullet}(\overset{y^2q^a}{\bullet}, \text{resp.})$.
- 2 If no matching pair √y²q^a, ytq^{h+1+b}) or √(ytq^{h+a}, q^b)
 ((U, D)) then go to (3). Otherwise, Ψ₂(P) := P replace the 1st pair √y²q^a, ytq^{h+1+b}) (√(ytq^{h+a}, q^b))
 , resp.) by √(ytq^{h+a}, q^b)
 (√y²q^a, ytq^{h+1+b}), resp.)
 3 P ∈ G_n, Ψ₂(P) := P.

Example

Example

Example

9 0

To sum up, we have

$$\begin{split} B_n^*\left(\sqrt{\frac{-1}{q}},t,q\right) &= \rho(\mathcal{M}_n^*)\big|_{y=\sqrt{\frac{-1}{q}}} = \rho(\mathcal{G}_n)\big|_{y=\sqrt{\frac{-1}{q}}} \\ &= y^n Q_n(t,q)\big|_{y=\sqrt{\frac{-1}{q}}} \\ &= \begin{cases} \left(\frac{-1}{q}\right)^{\frac{n}{2}} Q_n(t,q) & \text{, if } n \text{ is even;} \\ \sqrt{\frac{-1}{q}} \left(\frac{-1}{q}\right)^{\frac{n-1}{2}} Q_n(t,q) & \text{, if } n \text{ is odd.} \end{cases} \end{split}$$

Hence

$$\begin{split} &\sum_{\sigma\in B_n^*} \left(-\frac{1}{q}\right)^{\lfloor\frac{\operatorname{free}(\sigma)}{2}\rfloor} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_B(\sigma)} = \left(-\frac{1}{q}\right)^{\lfloor\frac{n}{2}\rfloor} Q_n(t,q), \\ &\sum_{\sigma\in B_n^*} \left(-\frac{1}{q}\right)^{\lceil\frac{\operatorname{free}(\sigma)}{2}\rceil} t^{\operatorname{neg}(\sigma)} q^{\operatorname{cro}_B(\sigma)} = \left(-\frac{1}{q}\right)^{\lceil\frac{n}{2}\rceil} Q_n(t,q). \end{split}$$

The case of D_n^*

Moreover, observe that

- Recall that $D_n^* \subset B_n^*$ consists of $\sigma \in B_n^*$ with even $neg(\sigma)$.
- The involution Ψ_2 preserve the power of t.
- $\forall \mathcal{P} \in \mathcal{G}_n$, the parity of power of t is the same as that of n.

Therefore, we can easily derive the case of D_n^* .

Corollary (Eu, Fu, Hsu, Liao 2018)

For $n \ge 1$, we have

$$\begin{split} &\sum_{\sigma\in D_n^*} \left(-\frac{1}{q}\right)^{\lfloor\frac{\mathsf{fwex}(\sigma)}{2}\rfloor} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_B(\sigma)} = \sum_{\sigma\in D_n^*} \left(-\frac{1}{q}\right)^{\lceil\frac{\mathsf{fwex}(\sigma)}{2}\rceil} t^{\mathsf{neg}(\sigma)} q^{\mathsf{cro}_B(\sigma)} \\ &= \begin{cases} \left(-\frac{1}{q}\right)^{\frac{n}{2}} Q_n(t,q) & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd.} \end{cases} \end{split}$$

Outline

4 Snakes and (t,q)-analogue of derivative polynomials

•
$$\sigma \in S_n^0$$
 (resp. S_n^{00}) set $\sigma_0 := 0$, $\sigma_{n+1} := (-1)^n (n+1)$ (resp. $\sigma_0 = \sigma_{n+1} := 0$).

• Let
$$\mathfrak{S}_n^0$$
 (resp. \mathfrak{S}_n^{00}) be a copy of \mathfrak{S}_n with convention $\sigma_0 := 0, \ \sigma_{n+1} := (-1)^n (n+1)$ (resp. $\sigma_0 = \sigma_{n+1} := 0$).

• Denote $|\sigma| := (|\sigma_0|)|\sigma_1| \dots |\sigma_n|(|\sigma_{n+1}|)$ for $\sigma \in \mathcal{S}_n^0$, \mathcal{S}_n^{00} .

Let $X(\sigma) =$ Valley set with sign change of $|\sigma|$, $Y(\sigma) =$ DD and DA set of $|\sigma|$, $Z(\sigma) =$ Peak set of $|\sigma|$.

Definition

Let $\pi = \pi_1 \pi_2 \cdots \pi_n \in \mathfrak{S}_n^0$ or \mathfrak{S}_n^{00} . For $1 \leq i \leq n$, we define

$$13-2(\pi, i) = \#\{j : 0 \le j < i-1 \text{ and } \pi_j < \pi_i < \pi_{j+1}\},\$$

$$2-31(\pi, i) = \#\{j : i < j \le n \text{ and } \pi_j > \pi_i > \pi_{j+1}\}.$$

Let also $2-31(\pi) = \sum_{i=1}^{n} 2-31(\pi, i)$.

Theorem (Eu, Fu, Hsu, Liao 2018)

$$Q_n(t,q) = \sum_{\sigma \in \mathcal{S}_n^0} t^{\operatorname{cs}(\sigma)} q^{2\operatorname{-}31(|\sigma|) + \operatorname{pat}_Q(\sigma)}.$$

where

$$\begin{split} \mathsf{pat}_Q(\sigma) &= \sum_{j \in X(\sigma)} 2\bigl(\mathsf{13-2}(|\sigma|,j) + \mathsf{2-31}(|\sigma|,j) \bigr) - \# X(\sigma) \\ &+ \sum_{j \in Y(\sigma)} \bigl(\mathsf{13-2}(|\sigma|,j) + \mathsf{2-31}(|\sigma|,j) \bigr). \end{split}$$

Example

$\sigma \in \mathcal{S}_3^0$	2(# cs X - blocks)	$-\#X(\sigma)$	#Y-blocks	$2-31(\sigma)$	cs	
$(0)1\bar{2}3(\bar{4})$	0	0	0	0	3	t^3
$(0)1\bar{3}2(\bar{4})$	2 imes 1	-1	0	0	3	t^3q
$(0)1\bar{3}\bar{2}(\bar{4})$	0	0	0	0	1	t
$(0)2\bar{1}3(\bar{4})$	2×1	-1	0	0	3	t^3q
$(0)213(\bar{4})$	0	0	0	0	1	t
$(0)2\bar{3}1(\bar{4})$	2×1	-1	1	1	3	t^3q^3
$(0)2\bar{3}\bar{1}(\bar{4})$	0	0	1	1	1	tq^2
$(0)312(\bar{4})$	0	0	1	0	1	tq
$(0)3\bar{1}2(\bar{4})$	2×1	-1	1	0	3	t^3q^2
$(0)3\bar{2}1(\bar{4})$	2×1	-1	1	0	3	$t^{3}q^{2}$
$(0)3\bar{2}\bar{1}(\bar{4})$	0	0	1	0	1	tq

$$\begin{split} &\sum_{\sigma\in\mathcal{S}_3^0} t^{\mathrm{cs}(\sigma)} q^{2\text{-}31(|\sigma|)+\mathrm{pat}_Q(\sigma)} \\ = & (2+2q+q^2)t + (1+2q+2q^2+q^3)t^3 \end{split}$$

The enumerator $R_n(t,q)$ of \mathcal{S}_{n+1}^{00} .

Theorem (Eu, Fu, Hsu, Liao 2018)

$$R_n(t,q) = \sum_{\sigma \in \mathcal{S}_{n+1}^{00}} t^{\operatorname{cs}(\sigma)} q^{2\operatorname{-}31(|\sigma|) + \operatorname{pat}_R(\sigma) - n - 1}.$$

where

$$\begin{split} \mathsf{pat}_R(\sigma) &= \sum_{j \in X(\sigma)} 2 \big(\mathsf{13-2}(|\sigma|, j) + \mathsf{2-31}(|\sigma|, j) - 1 \big) \\ &+ \sum_{j \in Y(\sigma)} \big(\mathsf{13-2}(|\sigma|, j) + \mathsf{2-31}(|\sigma|, j) \big) + \# Z(\sigma). \end{split}$$

Outline

There are additional signed countings results involving type D Springer number S_n^D without (t, q)-extension.
 Any (t, q)-extension?
 The set of snakes of type D is defined to be

$$\mathcal{S}_n^D = \{ \sigma \in D_n | \ \sigma_1 + \sigma_2 < 0 \ \text{and} \ \sigma_1 > \sigma_2 < \sigma_3 > \ldots \}.$$

Any relations between the distribution of signed changing on S_n^D and $\sum_{B_n - B_n^*} (-1)^{\lfloor \frac{\operatorname{fwex}(\sigma)}{2} \rfloor} t^{\operatorname{neg}(\sigma)}$?

Discussion

Recall that in type A there is a notion in some sense dual to crossings which is called *nestings*. The joint distribution of crossing number and nesting number are symmetric in S_n. A type B analogous result had been proved in 2011 by Hamdi.

A type B nesting of σ is defined as (i,j) with $i,j\geq 1$ satisfying

$$i < j \le \sigma_j < \sigma_i \text{ or } -i < j \le \sigma_j < -\sigma_i \text{ or } j > i > \sigma_i > \sigma_j.$$

Denote $\text{nest}_{B}(\sigma)$ the number of nestings in σ . Consider the (p,q)-derivative $D_{p,q}$

$$(D_{p,q}f)(t) := \frac{f(pt) - f(qt)}{(p-q)t}$$

then $D_{p,q}(t^n) = [n]_{p,q} t^{n-1}.$ Similarly, we may define $Q_n(t,p,q)$ and $R_n(t,p,q).$

Discussion

2

Conjecture

For $n \ge 1$, we have

$$\mathbf{1} \quad \sum_{\sigma \in B_n} (-1)^{\lfloor \frac{\mathsf{fwex}(\sigma)}{2} \rfloor} t^{\mathsf{neg}(\sigma)} p^{\mathsf{nest}_B(\sigma)} q^{\mathsf{cro}_B(\sigma)} = \begin{cases} (-1)^{\frac{n}{2}} (t+1) R_{n-1}(t,p,q) \\ \text{, if } n \text{ is odd;} \\ (-1)^{\frac{n-1}{2}} (t-1) R_{n-1}(t,p,q) \\ \text{, if } n \text{ is even.} \end{cases}$$

$$\sum_{\sigma \in B_n} (-1)^{\lceil \frac{\mathsf{fwex}(\sigma)}{2} \rceil} t^{\mathsf{neg}(\sigma)} p^{\mathsf{nest}_B(\sigma)} q^{\mathsf{cro}_B(\sigma)} = \begin{cases} (-1)^{\frac{n}{2}} (t-1) R_{n-1}(t,p,q) \\ \text{if n is even;} \\ (-1)^{\frac{n+1}{2}} (t+1) R_{n-1}(t,p,q) \\ \text{if n is odd.} \end{cases}$$

If the conjecture holds, naturally we have the derivation of type D from the conjecture. However, we haven't formulate the conjecture of similar signed counting identities for set B_n^* of type B derangements.

• Generalize our signed counting results to colored permutations $\mathbb{Z}_r \wr \mathfrak{S}_n$. The results without parameter t,q has been prove by Athanasiadis as a byproduct of studying the γ -nonnegativity on Eulerian polynomial of $\mathbb{Z}_r \wr \mathfrak{S}_n$.

References

- S. Corteel, M. Josuat-Vergès, J.S. Kim, Crossings of signed permutations and *q*-Eulerian numbers of type B, J. Combin. 4(2) (2013) 191–228.
- S.-P. Eu, T.-S. Fu, H. -C. Hsu, H.-C. Liao, Signed countings of types B and D permutations and t, q-Euler numbers, Adv. Appl. Math. 97 (2018) 1-26.
- M. Josuat-Vergès, A q-enumeration of alternating permutations, European J. Combin. 31 (2010) 1892–1906.
- M. Josuat-Vergès, Enumeration of snakes and cycle-alternating permutations, Australas. J. Combin. 60(3) (2014) 279–305.

Thanks for your attention.