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1 History of the Problem
Signed countings on Permutations and Derangements
q-analogue of the signed counting identities



Signed countings on Permutations and Derangements

Definition
Let Sn (resp. S∗

n) denote the set of permutations (resp.
derangements) on [n] := {1, 2, . . . , n}. We may express σ as
σ1σ2 . . . σn if σ(i) = σi for all 1 ≤ i ≤ n.
For any σ ∈ Sn, define the descent, excedance and weak
excedance numbers of σ as follow:

des(σ) := |{i ∈ [n− 1] : σi > σi+1}|
exc(σ) := |{i ∈ [n] : σi > i}|
wex(σ) := |{i ∈ [n] : σi ≥ i}|

Example

Let σ =

(
1 2 3 4 5 6 7 8
7 3 5 4 8 1 2 6

)
∈ S8, we also write σ = 73548126.

Then des(σ) = 3, exc(σ) = 4, wex(σ) = 5.



An elementary result states that des, exc, wex have the same
distribution in Sn:

An(y) =
∑
σ∈Sn

ydes(σ)+1 =
∑
σ∈Sn

yexc(σ)+1 =
∑
σ∈Sn

ywex(σ).

The polynomial An(y) is called the Eulerian polynomials and
An,k = #{σ ∈ Sn|wex(σ) = k} is called the Eulerian number.
We usually called the statistics which have the same distribution
with these three the Eulerian statistics.



Euler numbers

Definition
The Euler numbers En are defined by

tanx+ secx =
∑
n≥0

En
xn

n!

The numbers E2n are called the secant numbers and the numbers
E2n+1 are called the tangent numbers.

The first few values are 1, 1, 1, 2, 5, 16, 61, 272, 1385, . . ..
En counts the number of alternating permutations in Sn.
i.e. Altn := {σ ∈ Sn : σ1 > σ2 < σ3 > . . . σn}.
e.g. Alt3 = {213, 312},
Alt4 = {2143, 3142, 3241, 4132, 4231}.



Signed counting identities

An interesting result occurs when we evaluate the Eulerean
polynomials An(y) at y = −1.

Theorem (Euler, 1755; Foata and Schützenberger, 1970)∑
σ∈Sn

(−1)exc(σ) =

{
0 , if n is even,
(−1)

n−1
2 En , if n is odd.

The other half shows up while we restrict our attention on the
derangements in Sn!

Theorem (Roselle, 1968)∑
σ∈S∗

n

(−1)exc(σ) =

{
(−1)

n
2 En , if n is even,

0 , if n is odd.



q-analogue of the signed counting identities

Definition (Crossing number of a permutation)
A crossing of a permutation σ = σ1σ2 . . . σn is a pair of (i, j)
(1 ≤ i < j ≤ n) such that

i < j ≤ σi < σj or σi < σj < i < j.

We denote by cro(σ) the number of crossings in σ.

Crossings can be visualize via permutation diagram.

Example
Let σ = 4736215, cro(σ) = 3.

1 2 3 4 5 6 7



q-Eulerian numbers and polynomials

Lauren Williams (2005) introduce the notion of crossing along with
this q-analogue of Eulerean numbers

An,k(q) =
∑
σ∈Sn

wex(σ)=k

qcro(σ)

A(y, q) =

n∑
k=1

An,k(q)y
k =

∑
σ∈Sn

ywex(σ)qcro(σ).



q-Euler numbers

Definition (Han, Randrianarivony, Zeng, 1999)
The q-tangent numbers E2n+1(q) and the q-secant numbers
E2n(q) are defined by

∞∑
n=0

E2n+1(q)z
n =

1

1−
[1]q [2]qz

1−
[2]q [3]qz

1−
[3]q [4]qz

. . .

,
∞∑

n=0

E2n(q)z
n =

1

1−
[1]2qz

1−
[2]2qz

1−
[3]2qz

. . .

The first few polynomials are E0(q) = E1(q) = E2(q) = 1,
E3(q) = 1 + q, E4(q) = 2 + 2q + q2, E5(q) = 2 + 5q + 5q2 + 3q3 + q4.



q-Euler numbers

The polynomial En(q) has a combinatorial interpretation
(Chebikin,2008):

En(q) =
∑

σ∈Altn
q31-2(σ)

where Altn is the set of alternating permutations of length n and
31-2(σ) = #{(i, j) : i+ 1 < j, σi+1 < σj < σi}.

Example
Alt4 2143 3142 3241 4132 4231
31-2 0 1 0 2 1∑
σ∈Alt4

q31-2(σ) = 2 + 2q + q2 = E4(q)



q-analogue of the signed counting identities

Josuat-Vergès derived the following q-analogue of the signed
counting identities.

Theorem (Josuat-Vergès, 2010)

For n ≥ 1, we have

1
∑
π∈Sn

(−1)wex(π)qcro(π) =

{
0 if n is even,
(−1)

n+1
2 En(q) if n is odd;

2
∑
π∈S∗

n

(−1

q
)wex(π)qcro(π) =

{ (
−1

q

)n
2
En(q) if n is even,

0 if n is odd.



Note that permutations are the combinatorial model of the
symmetric group Sn, which is merely the finite irreducible
Coxeter group of type A.
For type B and type D, there are combinatorial models similar
to permutations. Fortunately, the notions we have mentioned,
for instance wex, cro, also have type B analogs.
One of our purpose in this work is to extend Josuat-Vergès’
q-analogs of signed counting identities to type B and D.
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Signed permutations

Definition
Let [−n, n] := {−n,−n+ 1, . . . ,−1, 1, 2, . . . , n}.

A signed permutation of [n] is a bijection σ : [−n, n] → [−n, n] s.t.
σ(−i) = −σ(i) for all i ∈ [−n, n]. For convenience, we write −i as
ī. Sometimes we express σ as σ1σ2 . . . σn, where σi = σ(i) for
1 ≤ i ≤ n. This is called the window notation of σ.
An even signed permutation is a signed permutation with even
number of negative entries in its window notation.

Denote Bn and Dn the set of signed permutations and even signed
permutations of [n] resp., and B∗

n (D∗
n resp.) the subset of Bn (Dn

resp.) without fixed points.

For example, B2 = {12, 1̄2, 12̄, 1̄2̄, 21, 21̄, 2̄1, 2̄1̄}, D2 = {12, 1̄2̄, 21, 2̄1̄},
B∗

2 = {1̄2̄, 21, 21̄, 2̄1, 2̄1̄}, D∗
2 = {1̄2̄, 21, 2̄1̄}.



The type B and D analogous of signed countings we mainly consider are

∑
σ∈W

(−1)⌊
fwex(σ)

2 ⌋tneg(σ)qcroB(σ) and
∑

σ∈W∗

(
−1

q

)⌊ fwex(σ)
2 ⌋

tneg(σ)qcroB(σ)

where W = Bn, Dn. So I will briefly introduce what the notations in the
expressions mean and what the type B and D Euler numbers are and
other related results.



The type B analogous of weak excedance we need here is the flag
weak excedance of signed permutations.

Definition
For σ ∈ Bn, we define wex(σ) = #{i ∈ [n] : σi ≥ i} and
neg(σ) = #{σi : i ∈ [n], σi < 0}. Then the flag weak excedance
number is defined as

fwex(σ) = 2wex(σ) + neg(σ).

Example

σ =

(
5̄ 4̄ 3̄ 2̄ 1̄ 1 2 3 4 5
1 3̄ 4 2̄ 5̄ 5 2 4̄ 3 1̄

)
= 524̄31̄ ∈ B5.

Then wex(σ) = 2 and neg(σ) = 2 ⇒ fwex(σ) = 4 + 2 = 6.



Crossing of type B

Definition (Corteel, Josuat-Vergès and Williams, 2011)
For σ = σ1σ2 · · ·σn ∈ Bn, a crossing of σ is a pair (i, j) with i, j ≥ 1
such that

i < j ≤ σi < σj or − i < j ≤ −σi < σj or i > j > σi > σj .

We write croB(σ) as the number of crossings of σ ∈ Bn.

Type B crossings can be visualized by pignose diagram.



Crossing of type B

Example
Let σ = 63̄5̄147̄2̄, the crossings are (7, 1), (3, 1), (2, 1)
(−i < j ≤ −σi < σj) and (4, 2),(4, 3),(7, 2),(7, 3),(7, 6)
(i > j > σi > σj) so croB(σ) = 8.

1−1 2−2 3−3 4−4 5−5 6−6 7−7



Type B analogous of q-Eulerian polynomials

Let Bn(y, t, q) =
∑

σ∈Bn
yfwex(σ)tneg(σ)qcroB(σ). The first few values are

B0(y, t, q) =1, B1(y, t, q) = y2 + yt,

B2(y, t, q) =y4 + (2t+ tq)y3 + (t2q + t2 + 1)y2 + ty.

Theorem (Corteel, Josuat-Vergès, Kim, 2013)
The continued fraction expansion for the generating fucntion of
Bn(y, t, q) is

∑
n≥0

Bn(y, t, q)x
n

=
1

1 − (y2 + yt)[1]qz −
(1 + ytq)(y2 + yt)[1]q

2z2

1 − [(y2 + ytq)[2]q + (1 + ytq)[1]q ]z −
(1 + ytq2)(y2 + ytq)[2]q

2z2

. . .



Gerneralized Euler numbers-Springer numbers

Springer (1971) defined the Springer number K(W ) for any Coxeter
group W . In particular, Sn is the irreducible Coxeter group of type An−1

and K(An−1) = K(Sn) = En.

Definition
Let (W,S) be a Coxeter system, for any w ∈ W the (right) descent set
of w is defined to be

Des(w) = {s ∈ S : ℓ(ws) < ℓ(w)}.

Let J ⊂ S and DJ = {w ∈ W : Des(w) = J}, then the Springer number
of W is defined to be the cardinality of the largest descent classes

K(W ) := max
J⊂S

|DJ |



Gerneralized Euler numbers-Springer numbers

Example

W = S3, S = {s1 = (12), s2 = (23)}
Take J = {s1} or {s2},
DJ = {213, 312} or {132, 231}.
Springer number K(S3) = 2 = E3

w ∈ S3 D(w)

123 = id ∅
132 = s2 s2
213 = s1 s1
231 = s1s2 s2
312 = s2s1 s1
321 = s1s2s1 s1, s2



Gerneralized Euler numbers-Springer numbers

Denote Sn := K(Bn) and SD
n := K(Dn).

n 0 1 2 3 4 5 6 . . .

En 1 1 1 2 5 16 61 . . .

Sn 1 1 3 11 57 361 2763 . . .

SD
n 1 1 1 5 23 151 1141 . . .

Table: Springer number of type A, B and D



Combinatorial models of Springer numbers-Snakes

By describing Springer number geometrically in terms of Weyl
chambers, Arnold (1992) showed Springer numbers of type A, B,
D count various types of snakes.

Definition
Let σ = σ1 . . . σn ∈ Bn, then σ ∈ Bn is a snake if
σ1 > σ2 < σ3 > . . . σn.

1 Let Sn ⊂ Bn be the set of snakes of size n.
2 Let S0

n ⊂ Sn be the subset consisting of the snakes σ with
σ1 > 0.

3 Let S00
n ⊂ S0

n be the subset consisting of the snakes σ with
σ1 > 0 and (−1)nσn < 0.

.



Combinatorial models of Springer numbers-Snakes

For example, as n = 2

S2 = {12̄, 1̄2̄, 21, 21̄}, S0
2 = {12̄, 21, 21̄}, S00

2 = {12̄, 21̄}.

In general |Sn| = 2nEn, |S0
n| = Sn, |S00

n | = 2n−1En.

n 1 2 3 4 5 6 . . .

En 1 1 2 5 16 61 . . .

2nEn 2 4 16 80 512 3904 . . .

Sn 1 3 11 57 361 2763 . . .

2n−1En 1 2 8 40 256 1952 . . .

SD
n 1 1 5 23 151 1141 . . .



Links with derivatives of trigonometric functions

There is a surprising link between snakes and the derivatives of
trigonometric fuctions. Hoffman (1999) and Josuat Vergès (2014)
studied the polynomials Pn, Qn and Rn defined as

dn

dxn
tanx = Pn(tanx)

dn

dxn
secx = Qn(tanx) secx

dn

dxn
sec2 x = Rn(tanx) sec2 x.

For examples,
P1(t) = 1 + t2, P2(t) = 2t(1 + t2) = 2t+ 2t3, P3(t) = 2 + 8t2 + 6t4.
Q1(t) = t, Q2(t) = t2 + (1 + t2) = 1 + 2t2, Q3(t) = 5t+ 6t3.
R1(t) = 2t, R2(t) = 2 + 6t2, R3(t) = 16t+ 24t3.

Observe Pn(1), Qn(1), Rn(1).



Links with derivatives of trigonometric functions

Hoffman showed Pn(1) = 2nEn, Qn(1) = Sn, Pn(1)−Qn(1) = SD
n .

Then Josuat-Vergès gave combinatorial interpretations to Pn(t), Qn(t)
and Rn(t) in terms of number of changes of sign cs.

Theorem (Josuat-Vergès 2014)
For all n ≥ 0, we have

Pn(t) =
∑
σ∈Sn

tcs(σ), Qn(t) =
∑
σ∈S0

n

tcs(σ), Rn(t) =
∑

σ∈S00
n+1

tcs(σ),

where cs(σ) := #{i : σiσi+1 < 0, 0 ≤ i ≤ n} with the following
conventions

σ0 = −(n+ 1) and σn+1 = (−1)n(n+ 1) if σ ∈ Sn;
σ0 = 0 and σn+1 = (−1)n(n+ 1) if σ ∈ S0

n;
σ0 = 0 and σn+1 = 0 if σ ∈ S00

n .



Links with derivatives of trigonometric functions

Example
S2 = {(3̄)12̄(3), (3̄)1̄2̄(3), (3̄)21(3), (3̄)21̄(3)}, then∑

σ∈S2

tcs(σ) = t3 + t+ t+ t3 = 2t+ 2t3 = P2(t)

S0
2 = {(0)12̄(3), (0)21(3), (0)21̄(3)}, then∑

σ∈S0
2

tcs(σ) = t2 + 1 + t2 = 1 + 2t2 = Q2(t).

S00
2 = {(0)12̄(0), (0)21̄(0)}, then∑

σ∈S00
2

tcs(σ) = 2t = R1(t).



(t, q)-analogue of derivative polynomials

Definition (Josuat-Vergès,2014)
Define two polynomials of variable t, q

Qn(t, q) = (D + UDU)n1, Rn(t, q) = (D +DUU)n1,

where linear operator D,U is defined by

D(tn) = [n]qt
n−1, U(tn) = tn+1.

Example
Q0(t, q) = 1
Q1(t, q) = t
Q2(t, q) = 1 + (1 + q)t2

Q3(t, q) =
(2 + 2q + q2)t+ (1 + 2q + 2q2 + q3)t3

Example
R0(t, q) = 1
R1(t, q) = (1 + q)t
R2(t, q) = (1 + q) + (1 + 2q + 2q2 + q3)t2

R3(t, q) = (2 + 5q + 5q2 + 3q3 + q4)t+
(1 + 3q + 5q2 + 6q3 + 5q4 + 3q5 + q6)t3.



(t, q)-analogue of derivative polynomials

Theorem (Josuat-Vergès, 2014)
The generating functions of Qn(t, q) and Rn(t, q) are

∑
n≥0

Qn(t, q)z
n =

1

1− t[1]qz −
(1 + t2q)[1]2qz

2

1− tq([1]q + [2]q)z −
(1 + t2q3)[2]2qz

2

1− tq2([2]q + [3]q)z −
. . .

and

∑
n≥0

Rn(t, q)z
n =

1

1− t(1 + q)[1]qz −
(1 + t2q2)[1]q [2]qz2

1− tq(1 + q)[2]qz −
(1 + t2q4)[2]q [3]qz2

1− tq2(1 + q)[3]qz −
. . .

.
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(t, q)-Signed Countings on Bn

Surprisingly, the signed countings of type B and D turn out to be related
to the derivative polynomials Qn(t, q) and Rn(t, q)!

Theorem (Eu, Fu, Hsu, Liao 2018)
For n ≥ 1, we have

1 ∑
σ∈Bn

(−1)⌊
fwex(σ)

2
⌋tneg(σ)qcroB(σ) =

{
(−1)

n
2 (t+ 1)Rn−1(t, q) , if n is odd;

(−1)
n−1
2 (t− 1)Rn−1(t, q) , if n is even.

2 ∑
σ∈Bn

(−1)⌈
fwex(σ)

2
⌉tneg(σ)qcroB(σ) =

{
(−1)

n
2 (t− 1)Rn−1(t, q) if n is even;

(−1)
n+1
2 (t+ 1)Rn−1(t, q) if n is odd.



(t, q)-Signed Countings on Dn

Corollary (Eu, Fu, Hsu, Liao 2018)

For n ≥ 1, we have∑
σ∈Dn

(−1)⌊
fwex(σ)

2
⌋tneg(σ)qcroB(σ) =

∑
σ∈Dn

(−1)⌈
fwex(σ)

2
⌉tneg(σ)qcroB(σ)

=

{
(−1)

n
2 tRn−1(t, q) if n is even,

(−1)
n+1
2 Rn−1(t, q) if n is odd.



(t, q)-Signed Countings on B∗
n and D∗

n

Theorem (Eu, Fu, Hsu, Liao 2018)

For n ≥ 1, we have

1
∑

σ∈B∗
n

(
−
1

q

)⌊ fwex(σ)
2

⌋
tneg(σ)qcroB(σ) =

(
−
1

q

)⌊n
2
⌋
Qn(t, q).

2
∑

σ∈B∗
n

(
−
1

q

)⌈ fwex(σ)
2

⌉
tneg(σ)qcroB(σ) =

(
−
1

q

)⌈n
2
⌉
Qn(t, q).

Corollary (Eu, Fu, Hsu, Liao 2018)

For n ≥ 1, we have

∑
σ∈D∗

n

(
−
1

q

)⌊ fwex(σ)
2

⌋
tneg(σ)qcroB(σ) =

∑
σ∈D∗

n

(
−
1

q

)⌈ fwex(σ)
2

⌉
tneg(σ)qcroB(σ)

=

{ (
− 1

q

)n
2 Qn(t, q) if n is even,

0 if n is odd.



Type B and D extension of Euler’s result

Setting t = 1 and q = 1.

Corollary (Eu, Fu, Hsu, Liao 2018)

For n ≥ 1, we have

1
∑
σ∈Bn

(−1)⌊
fwex(σ)

2 ⌋ =

{
(−1)

n
2 2nEn if n is even,

0 if n is odd.

2
∑
σ∈Bn

(−1)⌈
fwex(σ)

2 ⌉ =

{
0 if n is even;
(−1)

n+1
2 2nEn if n is odd.

3
∑

σ∈Dn

(−1)⌊
fwex(σ)

2 ⌋ =
∑

σ∈Dn

(−1)⌈
fwex(σ)

2 ⌉ = (−1)⌊
n+1
2 ⌋2n−1En.



Type B and D extension of Roselle’s result

Corollary (Eu, Fu, Hsu, Liao 2018)

For n ≥ 1, we have

1
∑
σ∈B∗

n

(−1)⌊
fwex(σ)

2 ⌋ = (−1)⌊
n
2 ⌋Sn.

2
∑
σ∈B∗

n

(−1)⌈
fwex(σ)

2 ⌉ = (−1)⌈
n
2 ⌉Sn.

3 ∑
σ∈D∗

n

(−1)⌊
fwex(σ)

2 ⌋ =
∑

σ∈D∗
n

(−1)⌈
fwex(σ)

2 ⌉ =

{
(−1)

n
2 Sn if n is even,

0 if n is odd.



Springer numbers of type D

Recall that Pn(1)−Qn(1) = 2nEn − Sn = SD
n , this implies the following

identities of Springer numbers of type D.

Corollary (Eu, Fu, Hsu, Liao 2018)
For n ≥ 1, we have

1
∑

σ∈Bn−B∗
n

(−1)⌊
fwex(σ)

2 ⌋ =

{
(−1)

n
2 SD

n if n is even,
(−1)

n+1
2 Sn if n is odd.

2
∑

σ∈Bn−B∗
n

(−1)⌈
fwex(σ)

2 ⌉ =

{
(−1)

n
2 +1Sn if n is even,

(−1)
n+1
2 SD

n if n is odd.



Signed Countings on type B derangements

The theorem below is one of our main results. I will briefly describe
how we prove the theorem, then I will show all our signed
countings results on type B and D.

Theorem (Eu, Fu, Hsu, Liao 2018)

For n ≥ 1, we have

1
∑
σ∈B∗

n

(
−1

q

)⌊ fwex(σ)
2

⌋
tneg(σ)qcroB(σ) =

(
−1

q

)⌊n
2
⌋
Qn(t, q).

2
∑
σ∈B∗

n

(
−1

q

)⌈ fwex(σ)
2

⌉
tneg(σ)qcroB(σ) =

(
−1

q

)⌈n
2
⌉
Qn(t, q).

where neg(σ) = |{i ∈ [n]| σi < 0}|.



Signed Countings on derangements of type B and D

Example

B∗
2 fwex neg croB

1̄2̄ 2 2 0
21 2 0 0
2̄1 1 1 0
21̄ 3 1 1
2̄1̄ 2 2 1

∑
σ∈B∗

2

(−1)⌊
fwex(σ)

2
⌋tneg(σ)qcroB(σ)

=

(
−
1

q

)
t2 +

(
−
1

q

)
1 + t+

(
−
1

q

)
tq +

(
−
1

q

)
t2q

=

(
−
1

q

)
(t2 + 1− tq + tq + t2q)

=

(
−
1

q

)
(1 + (1 + q)t2)

=

(
−
1

q

)
Q2(t, q).



Weighted Motzkin paths

A Motzkin paths of length n is a lattice path from (0, 0) to (n, 0)
above the x-axis using steps U = (1, 1), L = (1, 0), D = (1,−1).
e.g. length 3: , , , .
Assign each step a weight y = h

ρ(U(h)) = ah

ρ(L(h)) = ch

ρ(D(h)) = bh

.

For a weighted Motzkin path P = w1w2 . . . wn, the weight of P is
denoted by ρ(P) :=

∏n
i=1 ρ(wi).

a0

c1

a1 b2

b1
c0

a0 b1



Flajolet’s Fundamental Lemma

Theorem (Flajolet’s Fundamental Lemma 1980)
Let Mn be the set of weighted Motzkin paths of length n with
weights given as before. Then the generating function of path
weights in Mn for all n has the expansion∑

n≥0

∑
P∈Mn

ρ(P)zn =
1

1− c0z −
a0b1z

2

1− c1z −
a1b2z

2

. . .

1− ckz −
akbk+1z

2

. . .



Bn and set Mn of corresponding paths

We had seen that generating functions of Bn(y, t, q), Qn(t, q), Rn(t, q)
all have continued fraction expansions. For example, consider the GF of
Bn(y, t, q):

ch = (y2 + ytqh)[h+ 1]q + (1 + ytqh)[h]q (h ≥ 0),
ah = (y2 + ytqh)[h]q (h ≥ 0),
bh = (1 + ytqh)[h]q (h ≥ 1).
Set Mn of weighted bicolored Motzkin paths with weight function
ρ defined as

ρ(U(h)) ∈ {y2, y2q, . . . , y2qh} ∪ {ytqh, ytqh+1, . . . , ytq2h},
ρ(L(h)) ∈ {y2, y2q, . . . , y2qh} ∪ {ytqh, ytqh+1, . . . , ytq2h},
ρ(W(h)) ∈ {1, q, . . . , qh−1} ∪ {ytqh, ytqh+1, . . . , ytq2h−1}
for h ≥ 1,
ρ(D(h+1)) ∈ {1, q, . . . , qh} ∪ {ytqh+1, ytqh+2, . . . , ytq2h+1}.



Set of paths with weight Qn(t, q)

Let T ∗
n be the set of weighted bicolored Motzkin paths of length n

containing no wavy level steps on the x-axis, with a weight
function ρ such that for h ≥ 0,

ρ(U(h)) ∈ {1, q, . . . , qh} ∪ {t2q2h+1, t2q2h+2, . . . , t2q3h+1},
ρ(L(h)) ∈ {tqh, tqh+1, . . . , tq2h},
ρ(W(h)) ∈ {tqh, tqh+1, . . . , tq2h−1} for h ≥ 1,
ρ(D(h+1)) ∈ {1, q, . . . , qh}.

Then we have ∑
n≥0

ρ(T ∗
n )x

n =
∑
n≥0

Qn(t, q)x
n.



The case of B∗
n

Let B∗
n(y, t, q) =

∑
σ∈B∗

n
yfwex(σ)tneg(σ)qcroB(σ). Observe that

B∗
n

(√
−1

q
, t, q

)
=

∑
σ∈B∗

n
2|fwex(σ)

(
−1

q

) fwex(σ)
2

tneg(σ)qcroB(σ)

+

√
−1

q

∑
σ∈Bn

2-fwex(σ)

(
−1

q

) fwex(σ)−1
2

tneg(σ)qcroB(σ).

It is easy to see that

∑
σ∈B∗

n

(
−1

q

)⌊ fwex(σ)
2

⌋
tneg(σ)qcroB(σ) = Re

(
B∗

n

(√
−1

q
, t, q

))
+
√
q·Im

(
B∗

n

(√
−1

q
, t, q

))

and

∑
σ∈B∗

n

(
−1

q

)⌈ fwex(σ)
2

⌉
tneg(σ)qcroB(σ) = Re

(
B∗

n

(√
−1

q
, t, q

))
−√

q·Im
(
B∗

n

(√
−1

q
, t, q

))
.



Paths corresponding to B∗
n

Theorem (Corteel, Josuat-Vergès, Kim 2013)
There is a bijection Γ between Bn and Mn such that∑

σ∈Bn

yfwex(σ)tneg(σ)qcroB(σ) = ρ(Mn).

Γ restricts on B∗
n induces a bijection between B∗

n and subset M∗
n ⊂ Mn

whose weight scheme is the following:
ρ(U(h)) ∈ {y2, y2q, . . . , y2qh} ∪ {ytqh, ytqh+1, . . . , ytq2h},
ρ(L(h)) ∈ {y2, y2q, . . . , y2qh} ∪ {ytqh, ytqh+1, . . . , ytq2h} for h ≥ 1
and ρ(L(0)) ∈ {yt} for h = 0.
ρ(W(h)) ∈ {1, q, . . . , qh−1} ∪ {ytqh, ytqh+1, . . . , ytq2h−1} for h ≥ 1,
ρ(D(h+1)) ∈ {1, q, . . . , qh} ∪ {ytqh+1, ytqh+2, . . . , ytq2h+1}.



How do we prove the signed counting identities?

We construct an involution Ψ2 : M∗
n → M∗

n that changes the
weight of a path by the factor y2q, with the following subset of
M∗

n as the fixed points.

Let Gn ⊂ M∗
n be the subset consisting of the paths satisfying the

following conditions. For h ≥ 0,
ρ(U(h),D(h+1)) = (y2qa, qb) or (ytqh+a, ytqh+1+b) for some
a, b ∈ {0, 1, . . . , h}, for any matching pair (U(h),D(h+1)),
ρ(L(h)) ∈ {ytqh, ytqh+1, . . . , ytq2h},
ρ(W(h)) ∈ {ytqh, ytqh+1, . . . , ytq2h−1} for h ≥ 1.

Comparing the weight with those of T ∗
n , we found

ρ(Gn) = ynρ(T ∗
n ) = ynQn(t, q).



Involution Ψ2 : M∗
n −→ M∗

n

Ψ2 : M∗
n −→ M∗

n, ∀P ∈ M∗
n,

1 If no step y2qa (L) or qa−1

(W) then go to (2). Otherwise,

Ψ2(P) := P replace the 1st y2qa ( qa−1

, resp.) by qa−1

( y2qa,
resp.).

2 If no matching pair (y2qa, ytqh+1+b) or (ytqh+a, qb)

((U,D)) then go to (3). Otherwise, Ψ2(P) := P replace the 1st
pair (y2qa, ytqh+1+b) ( (ytqh+a, qb)

, resp.) by (ytqh+a, qb)

( (y2qa, ytqh+1+b) , resp.)

3 P ∈ Gn, Ψ2(P) := P.



. .

Example
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1
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To sum up, we have

B∗
n

(√
−1

q
, t, q

)
= ρ(M∗

n)
∣∣
y=

√
−1
q

= ρ(Gn)
∣∣
y=

√
−1
q

= ynQn(t, q)
∣∣
y=

√
−1
q

=


(

−1
q

)n
2

Qn(t, q) , if n is even;√
−1
q

(
−1
q

)n−1
2

Qn(t, q) , if n is odd.

Hence

∑
σ∈B∗

n

(
−1

q

)⌊ fwex(σ)
2 ⌋

tneg(σ)qcroB(σ) =

(
−1

q

)⌊n
2 ⌋

Qn(t, q),

∑
σ∈B∗

n

(
−1

q

)⌈ fwex(σ)
2 ⌉

tneg(σ)qcroB(σ) =

(
−1

q

)⌈n
2 ⌉

Qn(t, q).



The case of D∗
n

Moreover, observe that
Recall that D∗

n ⊂ B∗
n consists of σ ∈ B∗

n with even neg(σ).
The involution Ψ2 preserve the power of t.
∀ P ∈ Gn, the parity of power of t is the same as that of n.

Therefore, we can easily derive the case of D∗
n.

Corollary (Eu, Fu, Hsu, Liao 2018)

For n ≥ 1, we have

∑
σ∈D∗

n

(
−1

q

)⌊ fwex(σ)
2 ⌋

tneg(σ)qcroB(σ) =
∑

σ∈D∗
n

(
−1

q

)⌈ fwex(σ)
2 ⌉

tneg(σ)qcroB(σ)

=

{ (
− 1

q

)n
2 Qn(t, q) if n is even,

0 if n is odd.



Outline

4 Snakes and (t, q)-analogue of derivative polynomials



σ ∈ S0
n (resp. S00

n ) set σ0 := 0, σn+1 := (−1)n(n+ 1) (resp.
σ0 = σn+1 := 0).
Let S0

n (resp. S00
n ) be a copy of Sn with convention

σ0 := 0, σn+1 := (−1)n(n+ 1) (resp. σ0 = σn+1 := 0).
Denote |σ| := (|σ0|)|σ1| . . . |σn|(|σn+1|) for σ ∈ S0

n, S00
n .

Let X(σ) =Valley set with sign change of |σ|,
Y (σ) =DD and DA set of |σ|, Z(σ) =Peak set of |σ|.

Definition
Let π = π1π2 · · ·πn ∈ S0

n or S00
n . For 1 ≤ i ≤ n, we define

13-2(π, i) = #{j : 0 ≤ j < i− 1 and πj < πi < πj+1},
2-31(π, i) = #{j : i < j ≤ n and πj > πi > πj+1}.

Let also 2-31(π) =
∑n

i=1 2-31(π, i).



The enumerator Qn(t, q) of S0
n

Theorem (Eu, Fu, Hsu, Liao 2018)

Qn(t, q) =
∑
σ∈S0

n

tcs(σ)q2-31(|σ|)+patQ(σ).

where

patQ(σ) =
∑

j∈X(σ)

2
(
13-2(|σ|, j) + 2-31(|σ|, j)

)
− #X(σ)

+
∑

j∈Y (σ)

(
13-2(|σ|, j) + 2-31(|σ|, j)

)
.



Example
σ ∈ S0

3 2(#cs X-blocks) −#X(σ) #Y -blocks 2-31(|σ|) cs
(0)12̄3(4̄) 0 0 0 0 3 t3

(0)13̄2(4̄) 2× 1 −1 0 0 3 t3q
(0)13̄2̄(4̄) 0 0 0 0 1 t
(0)21̄3(4̄) 2× 1 −1 0 0 3 t3q
(0)213(4̄) 0 0 0 0 1 t
(0)23̄1(4̄) 2× 1 −1 1 1 3 t3q3

(0)23̄1̄(4̄) 0 0 1 1 1 tq2

(0)312(4̄) 0 0 1 0 1 tq
(0)31̄2(4̄) 2× 1 −1 1 0 3 t3q2

(0)32̄1(4̄) 2× 1 −1 1 0 3 t3q2

(0)32̄1̄(4̄) 0 0 1 0 1 tq∑
σ∈S0

3

tcs(σ)q2-31(|σ|)+patQ(σ)

=(2 + 2q + q2)t+ (1 + 2q + 2q2 + q3)t3



The enumerator Rn(t, q) of S00
n+1.

Theorem (Eu, Fu, Hsu, Liao 2018)

Rn(t, q) =
∑

σ∈S00
n+1

tcs(σ)q2-31(|σ|)+patR(σ)−n−1.

where

patR(σ) =
∑

j∈X(σ)

2
(
13-2(|σ|, j) + 2-31(|σ|, j)− 1

)
+

∑
j∈Y (σ)

(
13-2(|σ|, j) + 2-31(|σ|, j)

)
+ #Z(σ).



Outline

5 Discussion



Discussion

There are additional signed countings results involving type D
Springer number SD

n without (t, q)-extension.
Any (t, q)-extension?
The set of snakes of type D is defined to be

SD
n = {σ ∈ Dn| σ1 + σ2 < 0 and σ1 > σ2 < σ3 > . . .}.

Any relations between the distribution of signed changing on
SD
n and

∑
Bn−B∗

n
(−1)⌊

fwex(σ)
2

⌋tneg(σ)?



Discussion

Recall that in type A there is a notion in some sense dual to
crossings which is called nestings. The joint distribution of crossing
number and nesting number are symmetric in Sn. A type B
analogous result had been proved in 2011 by Hamdi.
A type B nesting of σ is defined as (i, j) with i, j ≥ 1 satisfying

i < j ≤ σj < σi or − i < j ≤ σj < −σi or j > i > σi > σj .

Denote nestB(σ) the number of nestings in σ.
Consider the (p, q)-derivative Dp,q

(Dp,qf)(t) :=
f(pt)− f(qt)

(p− q)t
,

then Dp,q(t
n) = [n]p,qt

n−1. Similarly, we may define Qn(t, p, q) and
Rn(t, p, q).



Discussion

Conjecture
For n ≥ 1, we have

1
∑

σ∈Bn

(−1)⌊
fwex(σ)

2
⌋tneg(σ)pnestB(σ)qcroB(σ) =


(−1)

n
2 (t+ 1)Rn−1(t, p, q)

, if n is odd;
(−1)

n−1
2 (t− 1)Rn−1(t, p, q)

, if n is even.
2

∑
σ∈Bn

(−1)⌈
fwex(σ)

2
⌉tneg(σ)pnestB(σ)qcroB(σ) =


(−1)

n
2 (t− 1)Rn−1(t, p, q)

if n is even;
(−1)

n+1
2 (t+ 1)Rn−1(t, p, q)

if n is odd.

.

If the conjecture holds, naturally we have the derivation of type D
from the conjecture. However, we haven’t formulate the conjecture
of similar signed counting identities for set B∗

n of type B
derangements.



Discussion

Generalize our signed counting results to colored permutations
Zr ≀Sn. The results without parameter t,q has been prove by
Athanasiadis as a byproduct of studying the γ-nonnegativity
on Eulerian polynomial of Zr ≀Sn.
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