Subgraphs in edge－colored graphs

Guanghui Wang

Shandong University，山东大学
joint work with Cheng，Yang et al．
Taiwan，2019． 8

Contents

(1) Terminology and notation
(2) Motivation
(3) Rainbow subgraphs
(4) Properly colored subgraphs
(5) Partition of edge-colored graphs
(6) Related Problems

- Edge-colored graph: a graph G with an edge coloring c of G
- Properly (edge) colored subgraph (or simply PC subgraph): no two adjacent edges have the same color
- Rainbow subgraph: no two edges have the same color
- Monochromatic subgraph: all edges have the same color

Contents

(1) Terminology and notation
(2) Motivation
(3) Rainbow subgraphs

4 Properly colored subgraphs
(5) Partition of edge-colored graphs
(6) Related Problems

Under certain conditions, G has property \mathcal{P} ("Hamiltonian"). Determine the robustness of G with respect to \mathcal{P}.

- Dirac graph has many Hamiltonian cycles.
- Maker can win a (Maker-Breaker) Hamiltonian game.
- Resilience.
- Compatible Hamiltonian cycle.

圊 B. Sudakov, Robustness of graph properties, in: Surveys in Combinatorics 2017, Cambridge University Press, 2017, 372-408.

Theorem (Krivelevich, Lee, Sudakov, 2017)

There exists a constant $\mu=10^{-16}>0$ such that the following holds for large enough n. For every n-vertex locally μn-bounded edge colored Dirac graph G there exists a properly colored Hamiltonian cycle.

庫
M. Krivelevich, C. Lee and B. Sudakov, Compatible Hamilton cycles in Dirac graphs, Combinatorica 37(2017), 697-732.

Theorem (Cousin, Perarnau, 2018+)

There exists a constant $\mu>0$ such that the following holds for large enough n. If G is a Dirac graph on n vertices, then any μn-bounded coloring of $E(G)$ contains a rainbow Hamiltonian cycle.

目 M. Cousin and G. Perarnau, A Rainbow Dirac's theorem, https://arxiv.org/pdf/1809.06392.pdf

Contents

(1) Terminology and notation

(2) Motivation
(3) Rainbow subgraphs

4 Properly colored subgraphs
(5) Partition of edge-colored graphs
(6) Related Problems

Rainbow matchings

Conjecture (Ryser, 1967, Brualdi-Stein, 1975)

Every latin square of order n has a partial latin transversal of size at least $n-1$. Moreover, every latin square of odd order has a Latin transversal.
latin transversal \Longleftrightarrow rainbow perfect matching.

1	2	3
2	3	1
3	1	2

Conjecture (Aharoni and Berger, 2009)

In every proper edge-colouring of a bipartite multigraph by n colors with at least $n+1$ edges of each color, there is a rainbow matching using every color.

Theorem (Pokrovskiy, 2018)

If there are at least $n+o(n)$ edges of each color in a proper n-edge-coloring of a bipartite multigraph, then there is a rainbow matching using every color.
R. R. Aharoni, E. Berger, Rainbow matchings in r-partite r-graphs, Electron. J. Combin. 16, 2009.

目 A. Pokrovskiy, An approximate version of a conjecture of Aharoni and Berger, Advances in Mathematics, 333: 1197-1241, 2018.

Conjecture (Barát, Gyárfás, Sárközy, 2017)

Any $2 n$ matchings of size n on the same vertex set have a rainbow matching of size n.

Theorem (Aharoni, Berger, Chudnovsky, Howard, Seymour, 2019)

Any $3 n-2$ matchings of size n on the same vertex set have a rainbow matching of size n.

> 囦 J. Barát, A. Gyárfás, G. N. Sárközy, Rainbow matchings in bipartite multigraphs, Period. Math. Hungar. 74 (1): 108-111, 2017.

> 囦 R. Aharoni, F. Berger, M. Chudnovsky, D. Howard, P.
> Seymour. Large rainbow matchings in general graphs, Euro. J. Combin., 79: 222-227, 2019.

Theorem (Aharoni, De la Maza, Montejano, Šámal, 2018)

Let G_{1}, G_{2}, G_{3} be graphs on a common vertex set of size n. If $\left|E\left(G_{i}\right)\right|>\frac{1+\tau^{2}}{4} n^{2}$ for $1 \leq i \leq 3$ where $\tau=\frac{4-\sqrt{7}}{9}$, then there exists a rainbow triangle.

They also showed that τ^{2} cannot be replaced by any $\varepsilon>0$ with $\varepsilon<\tau^{2}$, this asymptotically answered a question of Mubayi [1] about a three-colored version of Mantel's theorem.
R. Aharoni, S. G. H. de la Maza, A. Montejano, R. Šámal, A rainbow version of Mantel's Theorem, arXiv:1812.11872.
目 A. Diwan, D. Mubayi, Turáns theorem with colors. http://www.math.cmu.edu/ mubayi/papers/webturan.pdf, 2006.

Question (Mubayi, 2006)

For every positive integer r, what is the smallest δ_{r} such that whenever $G_{1}, \ldots, G_{\binom{r}{2}}$ are graphs on a common set of n vertices with $\left|E\left(G_{i}\right)\right| \geq \delta_{r} n^{2}$ for every $1 \leq i \leq\binom{ r}{2}$ there exists a rainbow K_{r}.

國 A. Diwan, D. Mubayi, Turáns theorem with colors. http://www.math.cmu.edu/ mubayi/papers/webturan.pdf, 2006.

Rainbow Hamiltonian cycles

Hamiltonian cycle (Dirac's Theorem)

Every graph G on $n \geq 3$ vertices with minimum degree $\delta(G) \geq \frac{n}{2}$ contains a Hamiltonian cycle.

囯 G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2(3): 69-81, 1952.

Rainbow Hamiltonian cycles

Theorem (Dirac)

Every graph G on $n \geq 3$ vertices with minimum degree $\delta(G) \geq \frac{n}{2}$ contains a Hamiltonian cycle.

Conjecture (Aharoni et al., 2018)

Given graphs G_{1}, \cdots, G_{n} on the same vertex set of size n, each having degrees at least $n / 2$, there exists a rainbow Hamiltonian cycle: a cycle with edge-set $\left\{e_{1}, \cdots, e_{n}\right\}$ such that $e_{i} \in E\left(G_{i}\right)$ for $i=1, \cdots, n$.
R. R. Aharoni, S. G. H. de la Maza, A. Montejano, R. Šámal, A rainbow version of Mantel's Theorem, arXiv:1812.11872.

Our contribution

Theorem (Cheng, W, Zhao, 2019+)

For every $\varepsilon>0$, there exists an integer $N>0$, such that when $n>N$ for any graphs G_{1}, \ldots, G_{n} on the same vertex set of size n, each graph having minimum degree at least $\left(\frac{1}{2}+\varepsilon\right) n$, there exists a rainbow Hamiltonian cycle.

We will use the "absorbing technique" introduced by Rödl, Ruciński, and Szemerédi.
R. Rődl, A. Ruciński, and E. Szemerédi, An approximate Dirac-type theorem for k-uniform hypergraphs, Combinatorica, 28 (2008), pp. 229-260.
(A. Lo, An edge-colored version of Dirac's theorem, SIAM J. Discrete Math., 28(1): 18-36, 2014.

Lemma1

Given graphs G_{1}, \cdots, G_{n} on the same vertex set of size n, each having degrees at least $n / 2$, there exists a rainbow Hamiltonian path: a path with edge-set $\left\{e_{1}, \cdots, e_{n}\right\}$ such that $e_{i} \in E\left(G_{i}\right)$ for $i=1, \cdots, n$.

For each pair of vertices x_{1}, x_{2} and four colors $\{s, i, j, k\}$, we define the absorbing paths set $A_{s, i, j, k}\left(x_{1}, x_{2}\right)$ to be a family of rainbow 3 -paths satisfying:

- $P=v_{1} v_{2} v_{3} v_{4}$ where $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\} \cap\left\{x_{1}, x_{2}\right\}=\emptyset$;
- $v_{1} v_{2}, v_{2} v_{3}, v_{3} v_{4}$ are colored by i, j, k;
- $c\left(x_{1} v_{2}\right)=s$ and $c\left(x_{2} v_{3}\right)=j$.

Lemma 2

For each pair of vertices $\left(x_{1}, x_{2}\right)$ and four distinct colors s, i, j, k, we have $\left|A_{s, i, j, k}\left(x_{1}, x_{2}\right)\right| \geq \frac{\varepsilon n^{4}}{8}$ when n is sufficiently large.

Lemma 3

We can find a "absorbing set" (absorbing paths, probabilistic method), which is :

- "not big".
- containing many absorbing paths.
- randomly and uniformly select rainbow paths
- "cleaning"

Lemma 4

Let $X=t_{1}+\ldots+t_{n}$ where t_{i} are independent boolean random variables. Then for any $\varepsilon>0$,

$$
P(|X-E(X)| \geq \varepsilon E(X)) \leq 2 e^{-\min \left(\frac{\varepsilon^{2}}{4}, \frac{\varepsilon}{2}\right) E(X)}
$$

Especially, when $\varepsilon=\frac{1}{2}$, we conclude that

$$
P\left(\frac{1}{2} E(X)<X<\frac{3}{2} E(X)\right) \geq 1-2 e^{-\frac{E(X)}{16}} .
$$

Lemma 5 (connecting lemma)

\exists a rainbow cycle C (Absorbing cycle) $\left(|C| \leq \frac{\varepsilon n}{10^{5}}\right)$ such that $\forall P \subseteq V(G)-V(C)(|P| \geq 4$, Color(P) \cap Color (C) $=\emptyset$) and a color s not used in C and P, \exists a rainbow cycle C^{\prime} such that

- $V\left(C^{\prime}\right)=V(C) \cup V(P)$;
- Color $\{(P \cup C) \cup\{s\}\}=\operatorname{Color}\left(C^{\prime}\right)$.

Guanghui Wang, Shandong University

- path cover lemma
- absorbing

Contents

(1) Terminology and notation

(2) Motivation
(3) Rainbow subgraphs

4 Properly colored subgraphs
(5) Partition of edge-colored graphs
(6) Related Problems

Properly colored cycles

Hamiltonian cycle (Dirac's Theorem)

Every graph G on $n \geq 3$ vertices with minimum degree $\delta(G) \geq \frac{n}{2}$ contains a Hamiltonian cycle.

El-Zahár's Conjecture

Let t be a positive integer, and let G be a graph of order $n=\sum_{i=1}^{t} n_{i}$, where $n_{i} \geq 3$ for $1 \leq i \leq t$. If $\delta(G) \geq \sum_{i=1}^{t}\left\lceil n_{i} / 2\right\rceil$, then G contains t cycles (2-factor) of lengths $n_{1}, n_{2}, \ldots, n_{t}$, respectively.

囯 G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc., 2(3): 69-81, 1952.

雷 M. H. El-Zahár, On circuits in graphs, Discrete Math., 50: 227-230, 1984.

- $d^{c}(v)$: the number of distinct colors of edges incident to v, called the color degree
- $\delta^{c}(G)$: the minimum $d^{c}(v)$ over all vertices v in G, called the minimum color degree of an edge-colored graph G

$$
\begin{aligned}
& d^{c}\left(v_{1}\right)=d^{c}\left(v_{3}\right)=2 \\
& d^{c}\left(v_{2}\right)=d^{c}\left(v_{4}\right)=3
\end{aligned}
$$

A natural generalization of Dirac's theorem is to determine the minimum color degree threshold for the existence of a properly colored Hamiltonian cycle or properly colored 2-factors.

PC Hamiltonian cycles (Edge colored version of Dirac's Theorem?)

Every graph G on $n \geq 3$ vertices with minimum color degree $\delta^{c}(G) \geq \frac{n}{2}$? contains a properly colored Hamiltonian cycle.

Theorems (Lo, 2014)

- For any $\varepsilon>0$, there exists an integer n_{0} such that every edge-colored graph G with $\delta^{c}(G) \geq(2 / 3+\varepsilon)|G|$ and $|G| \geq n_{0}$ contains a properly colored Hamiltonian cycle.
(A. Lo, An edge-colored version of Dirac's theorem, SIAM J. Discrete Math., 28(1): 18-36, 2014.

Example

$$
|G|=n, X \cap Y=\emptyset, \delta<2 n / 3
$$

Our Contribution

Theorem (Cheng, Hu, W, 2019+)

For any $\varepsilon>0$ and positive integer $t \geq 1$, there exists an integer $N(\varepsilon, t)$ such that every edge-colored graph G with $\delta^{c}(G) \geq(2 / 3+\varepsilon)|G|$ and $|G|>N$ contains every properly colored 2-factor with exactly t components.

bipartite case

Moon and Moser's Theorem

Every balanced bipartite graph G on $2 n$ vertices with minimum degree $\delta(G)>n / 2$ is Hamiltonian.

囦 J. Moon, L. Moser, On hamiltonian bipartite graphs, Israel J. Math., 1: 163-165, 1963.

Our contribution

Theorem (Cheng, Hu, W, 2019+)

Every edge-colored balanced bipartite graph $G=(X, Y)$ of order $2 n$ with $\delta^{c}(G) \geq 2 n / 3+1$ contains a PC 2 -factor.

Theorem (Cheng, Hu, W, 2019+)

For any $\varepsilon>0$ and positive integer $t \geq 1$, there exists an integer $N(\varepsilon, t)$ such that every edge-colored balanced bipartite graph G of order $2 n$ with $\delta^{c}(G) \geq(2 / 3+\varepsilon) n$ and $2 n>N$ contains every PC even 2 -factor with exactly t components.

Theorem (Cheng, Hu, W, 2019+)

For any $\varepsilon>0$ and positive integer $t \geq 1$, there exists an integer $N(\varepsilon, t)$ such that every edge-colored balanced bipartite graph G of order $2 n$ with $\delta^{c}(G) \geq(2 / 3+\varepsilon) n$ and $2 n>N$ contains every PC even 2-factor with exactly t components.

Corollary

For any $\varepsilon>0$, there exists an integer $N(\varepsilon)$ such that every edge-colored balanced bipartite graph G of order $2 n$ with $\delta^{c}(G) \geq(2 / 3+\varepsilon) n$ and $n>N$ contains a PC Hamiltonian cycle.

1-factors in digraphs

Theorem (Nash-Williams)

Every digraph D with $\delta^{0}(D) \geq|D| / 2$ has a directed Hamiltonian cycle.

Theorem (Cheng, W, 2018+)

For any $\varepsilon>0$ and positive integer $t \geq 1$, there exists an integer $N(\varepsilon, t)$ such that every digraph D with $\delta^{0}(D) \geq(1 / 2+\varepsilon)|D|$ and $|D|>N$ contains every 1-factor with exactly t components.

- pc triangle factors
- arbitrary pc 2-factors
- Ramsey-Turan type (independence number sublinear)
- directed triangle factors in digraphs
- arbitrary 1-factors in digraphs

Contents

(1) Terminology and notation

(2) Motivation
(3) Rainbow subgraphs

4 Properly colored subgraphs
(5) Partition of edge-colored graphs
(6) Related Problems

minimum degree

Theorem (Stiebitz, 1996)

Every G with minimum degree $\delta(G) \geq s+t+1$ has a partition (A, B) such that $\delta(G[A]) \geq s$ and $\delta(G[B]) \geq t$.
tight for K_{s+t+1}. In fact, he got a more general result.

Theorem (Stiebitz, 1996)

If $d_{G}(x) \geq s(x)+t(x)+1$ for $\forall x \in V(G)$, where s, t are two functions from $V(G)$ to \mathbb{N}, then G has a partition (A, B) such that $d_{A}(X) \geq s(x)$ for $\forall x \in A$ and $d_{B}(x) \geq t(x)$ for $\forall x \in B$.

睩 L. Lovasz, On decomposition of graphs, Studia Sci. Math. Hungar. 11966 237-238.
(M. Stiebitz, Decomposing graphs under degree constraints, J. Graph Theory 23 (1996), no. 3, 321-324.

Problem

For integers s, t, does there exist a smallest value $f(s, t)$ such that each digraph D with $\delta^{+}(D) \geq f(s, t)$ admits a vertex partition $\left(D_{1}, D_{2}\right)$ satisfying $\delta^{+}\left(D_{1}\right) \geq s$ and $\delta^{+}\left(D_{2}\right) \geq t$?

- Proposed at the Prague Midsummer Combinatorial Workshop in 1995.
- $f(1,1)=3$ by Thomassen.
- ? $\exists C\left(C=10^{5}\right)$, s.t. $f(1,2) \leq C$ (Alon).
- Stiebitz proposed it again. (2016)
R. Alon, Splitting digraphs, Combinatorics, Probability and Computing 15 (2006), 933-937.

tournaments

Given a digraph D and a bipartition (A, B) of $V(D)$. For a vertex $v \in V(D)$, denote by $d_{A}^{+}(v)$ the number of out-neighbors of v in A,

Theorem (Bai, W, Wu, Yang, EuJC, 2018)

For every $0<\epsilon<\frac{1}{4}$, there exists an integer δ_{0} such that every tournament T with $\delta^{+}(T) \geq \delta_{0}$ admits a bisection (A, B) with $\min \left\{d_{A}^{+}(v), d_{B}^{+}(v)\right\} \geq\left(\frac{1}{4}-\epsilon\right) d^{+}(v)$ for every $v \in V(T)$.

Corollary

Every tournament T with $\delta^{+}(T) \geq(4+o(1)) k$ admits a bisection (A, B) with $\min \left\{d_{A}^{+}(v), d_{B}^{+}(v)\right\} \geq k$ for every $v \in V(T)$.

- Recently, Alon, Bang-Jensen and Bessy (JGT, 2019) gave a better bound: $2 k+c \sqrt{k}$. It is tight up to the value of c.

Theorem (Bai, W, Wu, Yang, EuJC, 2018)

For any positive integers $s \leq t$. If D is a bipartite tournament with $\delta^{+}(D) \geq t+\frac{(s+1)^{4}}{4 s}-s$, then D has a bipartition (A, B) with $\delta^{+}(D[A]) \geq s$ and $\delta^{+}(D[B]) \geq t$.

Theorem (Bai, W, Wu, Yang, EuJC, 2018)

Every k-partite tournament D with $\delta^{+}(D) \geq t+k s(k-1)(s+1)^{2}$ has a bipartition (A, B) with $\delta^{+}(D[A]) \geq s$ and $\delta^{+}(D[B]) \geq t$.

Theorem (Bai, W, Wu, Yang, EuJC, 2018)

For every $0<\epsilon<\frac{1}{4}$, there exists an integer δ_{0} such that every digraph D with $\Delta^{-}(D) \leq \frac{e^{2 \epsilon \delta^{+}(D)}}{16 \delta^{+}(D)}$ admits a bisection (A, B) with $\min \left\{d_{A}^{+}(v), d_{B}^{+}(v)\right\} \geq\left(\frac{1}{4}-\epsilon\right) d_{D}^{+}(v)$ for every $v \in V(D)$.

- Weighted Local Lemma.
- Regular digraphs.

Problem (Fujita, Li, W, CPC, 2019)

Let s, t be integers with $s \geq t \geq 2$, and G be an edge-colored graph. Find $g(s, t)$ s.t. if $\delta^{c}(G) \geq g(s, t)$, then $V(G)=A \cup B$, $\delta^{c}(G[A]) \geq s$ and $\delta^{c}(G[B]) \geq t$.

Problem (Fujita, Li, W, CPC, 2019)

$(g(s, t)=s+t+1$?) .

- Tight : Properly edge colored K_{s+t+1}.
- If it is true, then it implies Stiebitz's result.

Theorem (Fujita, Li, W, CPC, 2019)
 $g(2,2)=5$.

Proposition (Fujita, Li, W, CPC, 2019)
 $f(1,2) \leq g(2,3)$.

$\mathrm{g}(\mathrm{s}, 2)$

Problem

For any natural number k, find a (smallest) number $f(k)$ such that every digraph D with $\delta^{+}(D) \geq f(k)$ contains k vertex-disjoint directed cycles.

Conjecture (Bermond, Thomassen, 1981) $f(k)=2 k-1$.

- Thomassen proved that such a function $f(k)$ exists.
- $f(k) \leq 64 k$ (Alon).
- $f(k) \leq 18 k$. (Bucic)
- True for $k \leq 3(f(1)=1, f(2)=3, f(3)=5)$.

Proposition

If $g(s, 2) \leq s+3$, then $f(k) \leq 3 k-1$.

Contents

(1) Terminology and notation

(2) Motivation
(3) Rainbow subgraphs

4 Properly colored subgraphs
(5) Partition of edge-colored graphs
(6) Related Problems

Rainbow Hamiltonian cycles

Theorem (Alon, Pokrovskiy, Sudakov, 2017)

Every properly edge-colored complete graph K_{n} contains a rainbow cycle of length at least $n-o(n)$ when n is sufficient large.

Theorem (Balogh and Molla, 2019)

Every properly edge-colored complete graph K_{n} contains a rainbow cycle of length at least $n-C \log n \sqrt{n}$. when n is sufficient large.

Theorem (Cheng, Sun, Tan, W, 2019)

Let G be a strongly edge-colored graph with minimum degree δ and order n, if $\delta>\frac{2 n-1}{3}$, then G has a rainbow Hamiltonian cycle.

Strong edge coloring: every color class is an induced matching

Conjecture (Cheng, Sun, Tan, W, 2019)

Every strongly edge-colored graph G with minimum degree $\frac{n+1}{2}$ contains a rainbow Hamiltonian cycle.

G_{1}

G_{2}

G_{3}

Thank you for your attention!

