Merging the A- and Q-spectral theories for digraphs

Ligong Wang¹ Joint work with Weige Xi¹ and Wasin So² Emails:lgwang@nwpu.edu.cn, xiyanxwg@163.com, wasin.so@sjsu.edu

¹ Northwestern Polytechnical University

² San Jose State University

Supported by NNSF of China (No. 11871398)

August 20, 2019

Outline

1 Basic notation and Terminology

Background and known results

 A_α Spectral radius of graphs
 Adjacency spectral of digraphs
 Signless Laplacian spectral of digraphs

3 Our Main Results in this paper

Merging the A- and Q-spectral theories for digraphs

Notation and Terminology

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

(ロ) (四) (三) (三)

• Simple digraph: if it has no loops and multiple arcs.

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

イロト イヨト イヨト イヨト

- Simple digraph: if it has no loops and multiple arcs.
- Strongly connected digraph: if for every pair of vertices v_i, v_j ∈ V(G), there exists a directed path from v_i to v_j.

- Simple digraph: if it has no loops and multiple arcs.
- Strongly connected digraph: if for every pair of vertices v_i, v_j ∈ V(G), there exists a directed path from v_i to v_j.
- $G_1 \vee G_2$: it is the digraph such that $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup \{(u, v), (v, u) : u \in V(G_1), v \in V(G_2)\}.$

- Simple digraph: if it has no loops and multiple arcs.
- Strongly connected digraph: if for every pair of vertices v_i, v_j ∈ V(G), there exists a directed path from v_i to v_j.
- $G_1 \vee G_2$: it is the digraph such that $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup \{(u, v), (v, u) : u \in V(G_1), v \in V(G_2)\}.$
- $G_1 \cup G_2$: it is the digraph with vertex set $V(G_1) \cup V(G_2)$ and arc set $E(G_1) \cup E(G_2)$.

Notation and Terminology

- Simple digraph: if it has no loops and multiple arcs.
- Strongly connected digraph: if for every pair of vertices v_i, v_j ∈ V(G), there exists a directed path from v_i to v_j.
- $G_1 \vee G_2$: it is the digraph such that $V(G_1 \vee G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \vee G_2) = E(G_1) \cup E(G_2) \cup \{(u, v), (v, u) : u \in V(G_1), v \in V(G_2)\}.$
- $G_1 \cup G_2$: it is the digraph with vertex set $V(G_1) \cup V(G_2)$ and arc set $E(G_1) \cup E(G_2)$.
- Complete digraph K_n : for two arbitrary distinct vertices $v_i, v_j \in V(K_n)$, there are arcs (v_i, v_j) and $(v_j, v_i) \in E(K_n)$.

Notation and Terminology

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

(ロ) (四) (三) (三)

Notation and Terminology

• Let *H* be a subdigraph of *G*. If *G*[*V*(*H*)] is a complete subdigraph of *G*, then *H* is called a clique of *G*.

- Let *H* be a subdigraph of *G*. If *G*[*V*(*H*)] is a complete subdigraph of *G*, then *H* is called a clique of *G*.
- Clique number: the maximum value of the numbers of the vertices of the cliques in a digraph *G*.

- Let *H* be a subdigraph of *G*. If *G*[*V*(*H*)] is a complete subdigraph of *G*, then *H* is called a clique of *G*.
- Clique number: the maximum value of the numbers of the vertices of the cliques in a digraph *G*.
- Girth: the length of the shortest directed cycle of a digraph G.

- Let *H* be a subdigraph of *G*. If *G*[*V*(*H*)] is a complete subdigraph of *G*, then *H* is called a clique of *G*.
- Clique number: the maximum value of the numbers of the vertices of the cliques in a digraph *G*.
- Girth: the length of the shortest directed cycle of a digraph G.
- Vertex connectivity: the minimum numbers of vertices whose deletion yields the resulting digraph non-strongly connected.

- Let *H* be a subdigraph of *G*. If *G*[*V*(*H*)] is a complete subdigraph of *G*, then *H* is called a clique of *G*.
- Clique number: the maximum value of the numbers of the vertices of the cliques in a digraph *G*.
- Girth: the length of the shortest directed cycle of a digraph G.
- Vertex connectivity: the minimum numbers of vertices whose deletion yields the resulting digraph non-strongly connected.
- Arc connectivity: the minimum number of arcs whose deletion yields the resulting digraph not-strongly connected.

Notation and Terminology

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

(ロ) (四) (三) (三)

Notation and Terminology

• The out-neighbors of v_i : $N_i^+ = \{v_j : (v_i, v_j) \in E(G)\}$

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

イロト イヨト イヨト イヨト

Notation and Terminology

- The out-neighbors of v_i : $N_i^+ = \{v_j : (v_i, v_j) \in E(G)\}$
- The in-neighbors of v_i : $N_i^- = \{v_j \in V(G) \mid (v_j, v_i) \in E(G)\}.$

Merging the A- and Q-spectral theories for digraphs

Notation and Terminology

- The out-neighbors of v_i : $N_i^+ = \{v_j : (v_i, v_j) \in E(G)\}$
- The in-neighbors of v_i : $N_i^- = \{v_j \in V(G) \mid (v_j, v_i) \in E(G)\}.$
- Outdegree of v_i : $d_i^+ = d_{v_i}^+ = |N_i^+|$.

A (1) > A (2) > A (2)

- The out-neighbors of v_i : $N_i^+ = \{v_j : (v_i, v_j) \in E(G)\}$
- The in-neighbors of v_i : $N_i^- = \{v_j \in V(G) \mid (v_j, v_i) \in E(G)\}.$
- Outdegree of v_i : $d_i^+ = d_{v_i}^+ = |N_i^+|$.
- Indegree of v_i : $d_i^- = d_{v_i}^- = |N_i^-|$.

- The out-neighbors of v_i : $N_i^+ = \{v_j : (v_i, v_j) \in E(G)\}$
- The in-neighbors of v_i : $N_i^- = \{v_j \in V(G) \mid (v_j, v_i) \in E(G)\}.$
- Outdegree of v_i : $d_i^+ = d_{v_i}^+ = |N_i^+|$.
- Indegree of v_i : $d_i^- = d_{v_i}^- = |N_i^-|$.
- *r*-regular digraph: if all vertices have outdegree *r* and indegree *r*.

- The out-neighbors of v_i : $N_i^+ = \{v_j : (v_i, v_j) \in E(G)\}$
- The in-neighbors of v_i : $N_i^- = \{v_j \in V(G) \mid (v_j, v_i) \in E(G)\}.$
- Outdegree of v_i : $d_i^+ = d_{v_i}^+ = |N_i^+|$.
- Indegree of v_i : $d_i^- = d_{v_i}^- = |N_i^-|$.
- *r*-regular digraph: if all vertices have outdegree *r* and indegree *r*.
- Adjacency matrix: $A(G) = (a_{ij})_{n \times n}$, where

$$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E(G), \\ 0, & \text{otherwise.} \end{cases}$$

Notation and Terminology

- The out-neighbors of v_i : $N_i^+ = \{v_j : (v_i, v_j) \in E(G)\}$
- The in-neighbors of v_i : $N_i^- = \{v_j \in V(G) \mid (v_j, v_i) \in E(G)\}.$
- Outdegree of v_i : $d_i^+ = d_{v_i}^+ = |N_i^+|$.
- Indegree of v_i : $d_i^- = d_{v_i}^- = |N_i^-|$.
- *r*-regular digraph: if all vertices have outdegree *r* and indegree *r*.
- Adjacency matrix: $A(G) = (a_{ij})_{n \times n}$, where

$$a_{ij} = \begin{cases} 1, & (v_i, v_j) \in E(G), \\ 0, & \text{otherwise.} \end{cases}$$

• Out-degree diagonal matrix: $D(G) = \operatorname{diag}(d_1^+, d_2^+, \dots, d_n^+)$.

Notation and Terminology

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

(ロ) (四) (三) (三)

Notation and Terminology

• Signless Laplacian matrix: Q(G) = D(G) + A(G).

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

(ロ) (四) (三) (三)

Notation and Terminology

- Signless Laplacian matrix: Q(G) = D(G) + A(G).
- $A_{\alpha}(G)$ matrix: $A_{\alpha}(G) = \alpha D(G) + (1 \alpha)A(G), \quad 0 \le \alpha \le 1.$

- Signless Laplacian matrix: Q(G) = D(G) + A(G).
- $A_{\alpha}(G)$ matrix: $A_{\alpha}(G) = \alpha D(G) + (1 \alpha)A(G), \quad 0 \le \alpha \le 1.$
- Note that $A(G) = A_0(G)$, $D(G) = A_1(G)$ and $Q(G) = 2A_{\frac{1}{2}}(G)$. Since $A_{\frac{1}{2}}(G)$ is essentially equivalent to Q(G), in this paper we take $A_{\frac{1}{2}}(G)$ as an exact substitute for Q(G). With this caveat, one sees that $A_{\alpha}(G)$ seamlessly joins A(G) with Q(G), and we may study the adjacency spectral properties and signless Laplacian spectral properties of a digraph in a unified way.

- Signless Laplacian matrix: Q(G) = D(G) + A(G).
- $A_{\alpha}(G)$ matrix: $A_{\alpha}(G) = \alpha D(G) + (1 \alpha)A(G), \quad 0 \le \alpha \le 1.$
- Note that $A(G) = A_0(G)$, $D(G) = A_1(G)$ and $Q(G) = 2A_{\frac{1}{2}}(G)$. Since $A_{\frac{1}{2}}(G)$ is essentially equivalent to Q(G), in this paper we take $A_{\frac{1}{2}}(G)$ as an exact substitute for Q(G). With this caveat, one sees that $A_{\alpha}(G)$ seamlessly joins A(G) with Q(G), and we may study the adjacency spectral properties and signless Laplacian spectral properties of a digraph in a unified way.
- A_{α} spectral radius: The largest modulus of the eigenvalues of $A_{\alpha}(G)$, denoted by $\lambda_{\alpha}(G)$.

Notation and Terminology

- Signless Laplacian matrix: Q(G) = D(G) + A(G).
- $A_{\alpha}(G)$ matrix: $A_{\alpha}(G) = \alpha D(G) + (1 \alpha)A(G), \quad 0 \le \alpha \le 1.$
- Note that $A(G) = A_0(G)$, $D(G) = A_1(G)$ and $Q(G) = 2A_{\frac{1}{2}}(G)$. Since $A_{\frac{1}{2}}(G)$ is essentially equivalent to Q(G), in this paper we take $A_{\frac{1}{2}}(G)$ as an exact substitute for Q(G). With this caveat, one sees that $A_{\alpha}(G)$ seamlessly joins A(G) with Q(G), and we may study the adjacency spectral properties and signless Laplacian spectral properties of a digraph in a unified way.
- A_{α} spectral radius: The largest modulus of the eigenvalues of $A_{\alpha}(G)$, denoted by $\lambda_{\alpha}(G)$.
- The Perron vector of A_α(G): the positive unit eigenvector corresponding to λ_α(G) (when G is strongly connected.)

Outline

Basic notation and Terminology

2 Background and known results A_α Spectral radius of graphs Adjacency spectral of digraphs Signless Laplacian spectral of digraph

3 Our Main Results in this paper

Merging the A- and Q-spectral theories for digraphs

Problem

One of the central issues in extremal spectral graph theory is: for a graph matrix, determine the maximum or minimum spectral radius over various families of graphs. A_{α} Spectral radius of graphs

A_{α} spectral radius of graphs

• In 2017, Nikiforov [1] proposed to study the convex combinations $A_{\alpha}(H) = \alpha D(H) + (1 - \alpha)A(H)$ of an undirected graph H.

A_{α} spectral radius of graphs

- In 2017, Nikiforov [1] proposed to study the convex combinations $A_{\alpha}(H) = \alpha D(H) + (1 \alpha)A(H)$ of an undirected graph H.
- In 2017, Nikiforov et al. [2] determined the unique graph with maximum A_α spectral radius among all trees of order n, they also determined the unique graph with minimum A_α spectral radius among all connected graphs of order n.
 1) ρ_α(T) ≤ ρ_α(K_{1,n-1}) with equality if and only if G ≅ K_{1,n-1}.
 2) ρ_α(G) ≥ ρ_α(P_n) with equality if and only if G ≅ P_n.

A_{α} spectral radius of graphs

- In 2017, Nikiforov [1] proposed to study the convex combinations $A_{\alpha}(H) = \alpha D(H) + (1 \alpha)A(H)$ of an undirected graph H.
- In 2017, Nikiforov et al. [2] determined the unique graph with maximum A_α spectral radius among all trees of order n, they also determined the unique graph with minimum A_α spectral radius among all connected graphs of order n.
 1) ρ_α(T) ≤ ρ_α(K_{1,n-1}) with equality if and only if G ≅ K_{1,n-1}.
 2) ρ_α(G) ≥ ρ_α(P_n) with equality if and only if G ≅ P_n.

V. Nikiforov, Merging the A- and Q-spectral theories, Applicable Analysis and Discrete Math., 11 (2017), 81-107.

A_{α} spectral radius of graphs

- In 2017, Nikiforov [1] proposed to study the convex combinations $A_{\alpha}(H) = \alpha D(H) + (1 \alpha)A(H)$ of an undirected graph H.
- In 2017, Nikiforov et al. [2] determined the unique graph with maximum A_α spectral radius among all trees of order n, they also determined the unique graph with minimum A_α spectral radius among all connected graphs of order n.
 1) ρ_α(T) ≤ ρ_α(K_{1,n-1}) with equality if and only if G ≅ K_{1,n-1}.
 2) ρ_α(G) ≥ ρ_α(P_n) with equality if and only if G ≅ P_n.
- V. Nikiforov, Merging the A- and Q-spectral theories, Applicable Analysis and Discrete Math., 11 (2017), 81-107.
- V. Nikiforov, G. Pastén, O. Rojo, R.L. Soto, On the A_{α} -spectra of trees, Linear Algebra Appl., 520 (2017), 286-305.

イロト イヨト イヨト

 A_{α} Spectral radius of graphs

A_{α} Spectral radius of graphs

In 2018, Nikiforov and Rojo [1] determined the unique graph with maximum A_{α} spectral radius among all connected graphs of order n and diameter at least k.

• $\rho_{\alpha}(G) \leq \rho_{\alpha}(B_{n-k+2,\lfloor k/2 \rfloor,\lceil k/2 \rceil})$ with equality if and only if $G \cong B_{n-k+2,\lfloor k/2 \rfloor,\lceil k/2 \rceil}$,

where $B_{p,q,r}$ denotes the graph obtained from a complete graph K_p by deleting an edge and attaching paths P_a and P_r to its ends.

> < 至 > < 至 >

 A_{α} Spectral radius of graphs

A_{α} Spectral radius of graphs

In 2018, Nikiforov and Rojo [1] determined the unique graph with maximum A_{α} spectral radius among all connected graphs of order n and diameter at least k.

• $\rho_{\alpha}(G) \leq \rho_{\alpha}(B_{n-k+2,\lfloor k/2 \rfloor,\lceil k/2 \rceil})$ with equality if and only if $G \cong B_{n-k+2,\lfloor k/2 \rfloor,\lceil k/2 \rceil}$,

where $B_{p,q,r}$ denotes the graph obtained from a complete graph K_p by deleting an edge and attaching paths P_a and P_r to its ends.

V. Nikiforov, O. Rojo, On the α -index of graphs with pendent paths, Linear Algebra Appl., 550 (2018), 87-104.

・ロト ・同ト ・ヨト ・ヨト
A_{α} Spectral radius of graphs

In 2018, Xue et al. [4] determined the unique graph with maximum A_{α} spectral radius among all connected graphs with diameter d and determined the unique graph with minimum A_{α} spectral radius among all connected graphs with given clique number r.

• If G is a connected graph with diameter $d \ge 2$, then $\rho_{\alpha}(G) \le \rho_{\alpha}(K_{n-d}(\lfloor d/2 \rfloor, \lceil d/2 \rceil))$ with equality if and only if $G \cong K_{n-d}(\lfloor d/2 \rfloor, \lceil d/2 \rceil))$,

where $K_{n-d}(k, l)$ denotes a graph obtained from a complete graph K_{n-d} by connecting all vertices of K_{n-d} to an end vertex of P_k and connecting all vertices to an end vertex of P_l , where k + l = d.

> < 물 > < 물 >

A_{α} Spectral radius of graphs

In 2018, Xue et al. [4] determined the unique graph with maximum A_{α} spectral radius among all connected graphs with diameter d and determined the unique graph with minimum A_{α} spectral radius among all connected graphs with given clique number r.

• If G is a connected graph with diameter $d \ge 2$, then $\rho_{\alpha}(G) \le \rho_{\alpha}(K_{n-d}(\lfloor d/2 \rfloor, \lceil d/2 \rceil))$ with equality if and only if $G \cong K_{n-d}(\lfloor d/2 \rfloor, \lceil d/2 \rceil))$,

where $K_{n-d}(k, l)$ denotes a graph obtained from a complete graph K_{n-d} by connecting all vertices of K_{n-d} to an end vertex of P_k and connecting all vertices to an end vertex of P_l , where k + l = d.

• If $G \in C_n^r$, then $\rho_{\alpha}(G) \ge \rho_{\alpha}(K(n-r))$ with equality if and only if $G \cong K(n-r)$,

where C_n^r denotes the set of the connected graphs with order n and clique number r and K(n-r) denotes the graph obtained from $K_r \cup P_{n-r}$ by adding an edge between a vertex of K_r and an end-vertex of P_{n-r} .

イロト イヨト イヨト イヨト

A_{α} Spectral radius of graphs

In 2018, Xue et al. [4] determined the unique graph with maximum A_{α} spectral radius among all connected graphs with diameter d and determined the unique graph with minimum A_{α} spectral radius among all connected graphs with given clique number r.

• If G is a connected graph with diameter $d \ge 2$, then $\rho_{\alpha}(G) \le \rho_{\alpha}(K_{n-d}(\lfloor d/2 \rfloor, \lceil d/2 \rceil))$ with equality if and only if $G \cong K_{n-d}(\lfloor d/2 \rfloor, \lceil d/2 \rceil))$,

where $K_{n-d}(k, l)$ denotes a graph obtained from a complete graph K_{n-d} by connecting all vertices of K_{n-d} to an end vertex of P_k and connecting all vertices to an end vertex of P_l , where k + l = d.

• If $G \in C_n^r$, then $\rho_{\alpha}(G) \ge \rho_{\alpha}(K(n-r))$ with equality if and only if $G \cong K(n-r)$,

where C_n^r denotes the set of the connected graphs with order n and clique number r and K(n-r) denotes the graph obtained from $K_r \cup P_{n-r}$ by adding an edge between a vertex of K_r and an end-vertex of P_{n-r} .

J. Xue, H.Q. Lin, S.T. Liu, J.L. Shu, On the A_a -spectral radius of a graph, Linear Algebra Appl., 550 (2018), 105-120.

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

Background and known results

 A_{α} Spectral radius of graphs

A_{α} Spectral radius of graphs

V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.

イロト イヨト イヨト イヨト

A_{α} Spectral radius of graphs

- V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.
- X.G. Liu, S.Y. Liu, On the A_{α} -characteristic polynomial of a graph, Linear Algebra Appl., 546 (2018), 274-288.

A_{α} Spectral radius of graphs

- V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.
- X.G. Liu, S.Y. Liu, On the A_a -characteristic polynomial of a graph, Linear Algebra Appl., 546 (2018), 274-288.
- H.Q. Lin, X. Huang, J. Xue, A note on the A_{α} -spectral radius of graphs, Linear Algebra Appl., 557 (2018), 430-437.

A B K A B K

A_{α} Spectral radius of graphs

- V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.
- X.G. Liu, S.Y. Liu, On the A_α-characteristic polynomial of a graph, Linear Algebra Appl., 546 (2018), 274-288.
- H.Q. Lin, X. Huang, J. Xue, A note on the A_a-spectral radius of graphs, Linear Algebra Appl., 557 (2018), 430-437.
- J. Xue, H.Q. Lin, S.T. Liu, J.L.Shu, On the A_a -spectral radius of a graph. Linear Algebra Appl. 550 (2018), 105 – 120.

A_{α} Spectral radius of graphs

- V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.
- X.G. Liu, S.Y. Liu, On the A_α-characteristic polynomial of a graph, Linear Algebra Appl., 546 (2018), 274-288.
- H.Q. Lin, X. Huang, J. Xue, A note on the A_{α} -spectral radius of graphs, Linear Algebra Appl., 557 (2018), 430-437.
- J. Xue, H.Q. Lin, S.T. Liu, J.L.Shu, On the A_{α} -spectral radius of a graph. Linear Algebra Appl. 550 (2018), 105 120.

H.Q. Lin, X.G. Liu, J. Xue, Graphs determined by their A_{α} -spectra, Discrete Math., 342, (2019), 441-450.

.

A_{α} Spectral radius of graphs

- V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.
- X.G. Liu, S.Y. Liu, On the A_α-characteristic polynomial of a graph, Linear Algebra Appl., 546 (2018), 274-288.
- H.Q. Lin, X. Huang, J. Xue, A note on the A_α-spectral radius of graphs, Linear Algebra Appl., 557 (2018), 430-437.
- J. Xue, H.Q. Lin, S.T. Liu, J.L.Shu, On the A_{α} -spectral radius of a graph. Linear Algebra Appl. 550 (2018), 105 120.
- - H.Q. Lin, X.G. Liu, J. Xue, Graphs determined by their A_{α} -spectra, Discrete Math., 342, (2019), 441-450.
- Y.Y. Chen, D. Li, Z.W. Wang, J.X. Meng, A_{α} -spectral radius of the second power of a graph. Appl. Math. Comput. 359 (2019) 418-425.

- 4 回 ト 4 三 ト

A_{α} Spectral radius of graphs

- V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.
- X.G. Liu, S.Y. Liu, On the A_α-characteristic polynomial of a graph, Linear Algebra Appl., 546 (2018), 274-288.
- H.Q. Lin, X. Huang, J. Xue, A note on the A_α-spectral radius of graphs, Linear Algebra Appl., 557 (2018), 430-437.
- J. Xue, H.Q. Lin, S.T. Liu, J.L.Shu, On the A_{α} -spectral radius of a graph. Linear Algebra Appl. 550 (2018), 105 120.

- H.Q. Lin, X.G. Liu, J. Xue, Graphs determined by their A_{α} -spectra, Discrete Math., 342, (2019), 441-450.
- Y.Y. Chen, D. Li, Z.W. Wang, J.X. Meng, A_{α} -spectral radius of the second power of a graph. Appl. Math. Comput. 359 (2019) 418-425.
- D. Li, Y.Y. Chen, J.X. Meng, The A_a-spectral radius of trees and unicyclic graphs with given degree sequence, Appl. Math. Comput. 363 (2019) Article 124622,1-9.

A_{α} Spectral radius of graphs

- V. Nikiforov, O. Rojo, A note on the positive semidefiniteness of $A_{\alpha}(G)$, Linear Algebra Appl., 519 (2017), 156-163.
- X.G. Liu, S.Y. Liu, On the A_α-characteristic polynomial of a graph, Linear Algebra Appl., 546 (2018), 274-288.
- H.Q. Lin, X. Huang, J. Xue, A note on the A_a-spectral radius of graphs, Linear Algebra Appl., 557 (2018), 430-437.
- J. Xue, H.Q. Lin, S.T. Liu, J.L.Shu, On the A_{α} -spectral radius of a graph. Linear Algebra Appl. 550 (2018), 105 – 120.

- H.Q. Lin, X.G. Liu, J. Xue, Graphs determined by their A_{α} -spectra, Discrete Math., 342, (2019), 441-450.
- Y.Y. Chen, D. Li, Z.W. Wang, J.X. Meng, A_{α} -spectral radius of the second power of a graph. Appl. Math. Comput. 359 (2019) 418-425.
- D. Li, Y.Y. Chen, J.X. Meng, The A_a-spectral radius of trees and unicyclic graphs with given degree sequence, Appl. Math. Comput. 363 (2019) Article 124622,1-9.

Adjacency spectral radius of digraphs

Theorem 1 (B. Mohar, LAA, 2010)

Let $\varrho(G)$ be the spectral radius of a simple digraph G, $\chi(G)$ be the dichromatic number of G. Then $\varrho(G) \ge \chi(D) - 1$. If G is strongly connected, then the equality holds if and only if G is one of the digraphs listed in following: (a) $\chi(G) = 2$ and G is a directed cycle of length $n \ge 2$. (b) $\chi(G) = 3$ and G is a bidirected cycle of odd length $n \ge 3$. (c) G is a bidirected complete graph of order $\chi(G)$.

Adjacency spectral radius of digraphs

Theorem 1 (B. Mohar, LAA, 2010)

Let $\varrho(G)$ be the spectral radius of a simple digraph G, $\chi(G)$ be the dichromatic number of G. Then $\varrho(G) \ge \chi(D) - 1$. If G is strongly connected, then the equality holds if and only if G is one of the digraphs listed in following: (a) $\chi(G) = 2$ and G is a directed cycle of length $n \ge 2$. (b) $\chi(G) = 3$ and G is a bidirected cycle of odd length $n \ge 3$. (c) G is a bidirected complete graph of order $\chi(G)$.

B. Mohar, Eigenvalues and colorings of digraphs, Linear Algebra Appl., 432 (2010,) 2273-2277.

Adjacency spectral radius of digraphs

Theorem 2 (E. Gudiño, J. Rada, LAA, 2010)

Let G be a simple digraph with n vertices and c_2 closed walks of length 2. Then $\varrho(G) \geq \frac{c_2}{n}$.

Equality holds if and only if $G = D + \{possibly some arcs that do not belong to cycle\}$, where D is a $\frac{c_2}{n}$ -regular graph.

Adjacency spectral radius of digraphs

Theorem 2 (E. Gudiño, J. Rada, LAA, 2010)

Let G be a simple digraph with n vertices and c_2 closed walks of length 2. Then $\varrho(G) \geq \frac{c_2}{n}$.

Equality holds if and only if $G = D + \{possibly some arcs that do not belong to cycle\}$, where D is a $\frac{c_2}{n}$ -regular graph.

E. Gudiño, J. Rada, A lower bound for the spectral radius of a digraph, Linear Algebra Appl., 433 (2010), 233 - 240.

Adjacency spectral radius of digraphs

Theorem 3 (H.Q. Lin, J.L. Shu, et al., DM, 2012)

The digraph $B_{n,d}$ is the unique digraph which has the minimum spectral radius among all strongly connected digraphs with the clique number $d \ge 2$, where $B_{n,d}$ is a digraph obtained by adding a directed path $\overrightarrow{P}_{n-d+2} = v_1v_2 \dots v_{n-d+2}$ to a clique $\overleftarrow{K_d}$ such that $V(\overrightarrow{K_d}) \cap V(\overrightarrow{P}_{n-d+2}) = \{v_{n-d+2}, v_1\}, V(B_{n,d}) = \{v_1, v_2, \dots, v_n\}.$

Adjacency spectral radius of digraphs

Theorem 3 (H.Q. Lin, J.L. Shu, et al., DM, 2012)

The digraph $B_{n,d}$ is the unique digraph which has the minimum spectral radius among all strongly connected digraphs with the clique number $d \ge 2$, where $B_{n,d}$ is a digraph obtained by adding a directed path $\overrightarrow{P}_{n-d+2} = v_1v_2 \dots v_{n-d+2}$ to a clique $\overleftarrow{K_d}$ such that $V(\overrightarrow{K_d}) \cap V(\overrightarrow{P}_{n-d+2}) = \{v_{n-d+2}, v_1\}, V(B_{n,d}) = \{v_1, v_2, \dots, v_n\}.$

H.Q. Lin, J.L. Shu, Y.R. Wu, G.L. Yu, Spectral radius of strongly connected digraphs, Discrete Math., 312 (2012), 3663-3669.

く 同 ト く ヨ ト く ヨ ト

Adjacency spectral radius of digraphs

Theorem 4 (H.Q. Lin, J.L. Shu, et al., DM, 2012)

The digraph $C_{n,g}$ is the unique digraph which has the minimum spectral radius among all strongly connected digraphs with the girth $g \ge 2$, where $C_{n,g}$ is a digraph obtained by adding a directed path $\overrightarrow{P}_{n-g+2} = v_g v_{g+1} \dots v_n v_1$ on the directed cycle $\overrightarrow{C}_g = v_1 v_2 \dots v_g v_1$ such that $V(\overrightarrow{C}_g) \cap V(\overrightarrow{P}_{n-g+2}) = \{v_g, v_1\}, V(C_{n,g}) = \{v_1, v_2, \dots, v_n\}.$

Adjacency spectral radius of digraphs

Theorem 4 (H.Q. Lin, J.L. Shu, et al., DM, 2012)

The digraph $C_{n,g}$ is the unique digraph which has the minimum spectral radius among all strongly connected digraphs with the girth $g \ge 2$, where $C_{n,g}$ is a digraph obtained by adding a directed path $\overrightarrow{P}_{n-g+2} = v_g v_{g+1} \dots v_n v_1$ on the directed cycle $\overrightarrow{C}_g = v_1 v_2 \dots v_g v_1$ such that $V(\overrightarrow{C}_g) \cap V(\overrightarrow{P}_{n-g+2}) = \{v_g, v_1\}, V(C_{n,g}) = \{v_1, v_2, \dots, v_n\}.$

H.Q. Lin, J.L. Shu, Y.R. Wu, G.L. Yu, Spectral radius of strongly connected digraphs, Discrete Math., 312 (2012), 3663-3669.

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

Adjacency spectral radius of digraphs

Theorem 5 (H.Q. Lin, S.W. Drury, DM, 2013)

The digraphs K(n, k, n - k - 1) and K(n, k, 1) are digraphs which have the maximum spectral radius among all strongly connected digraphs with arc connectivity $1 \le k \le n - 2$, where K(n, k, m)denote the digraph $\overleftarrow{K_k} \lor (\overleftarrow{K_n}_{-k-m} \cup \overleftarrow{K_m}) + E$, where $E = \{(u, v) | u \in V(\overrightarrow{K_m}), v \in V(\overrightarrow{K_n}_{-k-m})\}.$

Adjacency spectral radius of digraphs

Theorem 5 (H.Q. Lin, S.W. Drury, DM, 2013)

The digraphs K(n, k, n - k - 1) and K(n, k, 1) are digraphs which have the maximum spectral radius among all strongly connected digraphs with arc connectivity $1 \le k \le n - 2$, where K(n, k, m)denote the digraph $\overleftarrow{K_k} \lor (\overleftarrow{K_n}_{-k-m} \cup \overleftarrow{K_m}) + E$, where $E = \{(u, v) | u \in V(\overrightarrow{K_m}), v \in V(\overleftarrow{K_n}_{-k-m})\}.$

H.Q. Lin, S.W. Drury, The maximum perron roots of digraphs with some given parameters, Discrete Math., 313 (2013), 2607-2613.

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

Background and known results

Adjacency spectral of digraphs

Adjacency spectral radius of digraphs

H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl., 434 (2011), 2462-2467.

イロト イヨト イヨト イヨト

Adjacency spectral radius of digraphs

- H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl., 434 (2011), 2462-2467.
- G.H. Xu, K.F. Fang, J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Applied Mathematics and Computation, 219 (2012), 3721-3728.

Adjacency spectral radius of digraphs

- H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl., 434 (2011), 2462-2467.
- G.H. Xu, K.F. Fang, J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Applied Mathematics and Computation, 219 (2012), 3721-3728.
- B.K. Butler, P.H. Siegel, Sharp bounds on the spectral radius of nonnegative matrices and digraphs, Linear Algebra Appl., 439 (2013), 1468-1478.

(4月) トイヨト イヨト

Adjacency spectral radius of digraphs

H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl., 434 (2011), 2462-2467.

- G.H. Xu, K.F. Fang, J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Applied Mathematics and Computation, 219 (2012), 3721-3728.
- B.K. Butler, P.H. Siegel, Sharp bounds on the spectral radius of nonnegative matrices and digraphs, Linear Algebra Appl., 439 (2013), 1468-1478.

S.W. Drury, H.Q. Lin, Extremal digraphs with given clique number, Linear Algebra Appl., 439 (2013), 328-345.

- A 同 ト A 三 ト A 三 ト

Adjacency spectral radius of digraphs

H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl., 434 (2011), 2462-2467.

G.H. Xu, K.F. Fang, J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Applied Mathematics and Computation, 219 (2012), 3721-3728.

B.K. Butler, P.H. Siegel, Sharp bounds on the spectral radius of nonnegative matrices and digraphs, Linear Algebra Appl., 439 (2013), 1468-1478.

- S.W. Drury, H.Q. Lin, Extremal digraphs with given clique number, Linear Algebra Appl., 439 (2013), 328-345.
- Y.L Jin, X.D. Zhang, On the spectral radius of simple digraphs with prescribed number of arcs, Discrete Math., 338(2015) 1555-1564.

Adjacency spectral radius of digraphs

H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl., 434 (2011), 2462-2467.

G.H. Xu, K.F. Fang, J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Applied Mathematics and Computation, 219 (2012), 3721-3728.

B.K. Butler, P.H. Siegel, Sharp bounds on the spectral radius of nonnegative matrices and digraphs, Linear Algebra Appl., 439 (2013), 1468-1478.

S.W. Drury, H.Q. Lin, Extremal digraphs with given clique number, Linear Algebra Appl., 439 (2013), 328-345.

- Y.L Jin, X.D. Zhang, On the spectral radius of simple digraphs with prescribed number of arcs, Discrete Math., 338(2015) 1555-1564.
- J. Li, B. Zhou, On the spectral radius of strongly connected digraphs, Bull Iranian Math. Soc., 41 (2015), 381-387.

Adjacency spectral radius of digraphs

H.Q. Lin, J.L. Shu, Spectral radius of digraphs with given dichromatic number, Linear Algebra Appl., 434 (2011), 2462-2467.

G.H. Xu, K.F. Fang, J. Shen, Bounds on the spectral radii of digraphs in terms of walks, Applied Mathematics and Computation, 219 (2012), 3721-3728.

B.K. Butler, P.H. Siegel, Sharp bounds on the spectral radius of nonnegative matrices and digraphs, Linear Algebra Appl., 439 (2013), 1468-1478.

S.W. Drury, H.Q. Lin, Extremal digraphs with given clique number, Linear Algebra Appl., 439 (2013), 328-345.

Y.L Jin, X.D. Zhang, On the spectral radius of simple digraphs with prescribed number of arcs, Discrete Math., 338(2015) 1555-1564.

- J. Li, B. Zhou, On the spectral radius of strongly connected digraphs, Bull Iranian Math. Soc., 41 (2015), 381-387.
- S. Drury, H.Q. Lin, Colorings and spectral radius of digraphs, Discrete Math., 339 (2016), 327-332.

Signless Laplacian spectral radius of digraphs

Theorem 6 (Ş.B. Bozkurt, D. Bozkurt, Ars Combinatoria, 2013)

Let G = (V, E) be a strongly connected digraph on *n* vertices, q(G) be the signless Laplacian spectral radius of *G*. Then

 $\min\{d_i^+ + m_i^+ : v_i \in V\} \le q(G) \le \max\{d_i^+ + m_i^+ : v_i \in V\}.$

$$\min\{d_i^+ + d_j^+ : (v_i, v_j) \in E\} \le q(G) \le \max\{d_i^+ + d_j^+ : (v_i, v_j) \in E\}.$$

$$q(G) \le \max\{\frac{d_i^+ + d_j^+ + \sqrt{(d_i^+ - d_j^+)^2 + 4m_i^+m_j^+}}{2} : (v_i, v_j) \in E\}$$

> < 至 > < 至 >

Signless Laplacian spectral radius of digraphs

Theorem 6 (Ş.B. Bozkurt, D. Bozkurt, Ars Combinatoria, 2013)

Let G = (V, E) be a strongly connected digraph on *n* vertices, q(G) be the signless Laplacian spectral radius of *G*. Then

 $\min\{d_i^+ + m_i^+ : v_i \in V\} \le q(G) \le \max\{d_i^+ + m_i^+ : v_i \in V\}.$

$$\min\{d_i^+ + d_j^+ : (v_i, v_j) \in E\} \le q(G) \le \max\{d_i^+ + d_j^+ : (v_i, v_j) \in E\}.$$

$$q(G) \le \max\{\frac{d_i^+ + d_j^+ + \sqrt{(d_i^+ - d_j^+)^2 + 4m_i^+m_j^+}}{2} : (v_i, v_j) \in E\}.$$

Ş.B. Bozkurt, D.Bozkurt, On the signless Laplacian spectral radius of digraphs, Ars Combinatoria, 108 (2013), 193-200.

イロト イポト イヨト イヨト

Signless Laplacian spectral radius of digraphs

Theorem 7 (W.W. Lang, L.G. Wang, AMC, 2014)

Let G be a digraph with vertex set $V = \{v_1, v_2, ..., v_n\}$ and arc set E. Then

$$q(G) \le \max\{\frac{d_i^+ + \sqrt{d_i^{+2} + 4m_i^+(d_j^+ + m_j^+)}}{2} : (v_i, v_j) \in E\}.$$

Moreover, if G is a strongly connected digraph, the equality holds if and only if G is average 2-outdegree regular.

.

Signless Laplacian spectral radius of digraphs

Theorem 7 (W.W. Lang, L.G. Wang, AMC, 2014)

Let G be a digraph with vertex set $V = \{v_1, v_2, ..., v_n\}$ and arc set E. Then

$$q(G) \le \max\{\frac{d_i^+ + \sqrt{d_i^{+2} + 4m_i^+(d_j^+ + m_j^+)}}{2} : (v_i, v_j) \in E\}.$$

Moreover, if G is a strongly connected digraph, the equality holds if and only if G is average 2-outdegree regular.

W.W. Lang, L.G. Wang, Sharp bounds for the signless Laplacian spectral radius of digraphs, Appl. Math. Comput., 238 (2014), 43-49.

・ロト ・同ト ・ヨト ・ヨト

Signless Laplacian spectral radius of digraphs

Theorem 8 (W.W. Lang, L.G. Wang, AMC, 2014)

Let G be a strongly connected digraph with vertex set $V = \{v_1, v_2, ..., v_n\}$ and $d_1^+ \ge d_2^+ \ge \cdots \ge d_n^+$. Then

$$q(G) \leq \min_{1 \leq i \leq n} \{ \frac{d_1^+ + 2d_i^+ - 1 + \sqrt{(2d_i^+ - d_1^+ + 1)^2 + 8(i - 1)(d_1^+ - d_i^+)}}{2} \}$$

Moreover, if i = 1, the equality holds if and only if G is a regular digraph. If $2 \le i \le n$, the equality holds if and only if G is a regular digraph or a bidegreed digraph in which $d_1^+ = d_2^+ = \ldots = d_{i-1}^+ = n-1$ and $d_i^+ = d_2^+ = \ldots = d_n^+ = \delta^+$.

イロト イヨト イヨト イヨト

Signless Laplacian spectral radius of digraphs

Theorem 8 (W.W. Lang, L.G. Wang, AMC, 2014)

Let G be a strongly connected digraph with vertex set $V = \{v_1, v_2, ..., v_n\}$ and $d_1^+ \ge d_2^+ \ge \cdots \ge d_n^+$. Then

$$q(G) \leq \min_{1 \leq i \leq n} \{ \frac{d_1^+ + 2d_i^+ - 1 + \sqrt{(2d_i^+ - d_1^+ + 1)^2 + 8(i - 1)(d_1^+ - d_i^+)}}{2} \}$$

Moreover, if i = 1, the equality holds if and only if G is a regular digraph. If $2 \le i \le n$, the equality holds if and only if G is a regular digraph or a bidegreed digraph in which $d_1^+ = d_2^+ = \ldots = d_{i-1}^+ = n-1$ and $d_i^+ = d_2^+ = \ldots = d_n^+ = \delta^+$.

W.W. Lang, L.G. Wang, Sharp bounds for the signless Laplacian spectral radius of digraphs, Appl. Math. Comput., 238 (2014), 43-49.

Signless Laplacian spectral radius of digraphs

Theorem 9 (W.X. Hong, L.H. You, LAA, 2014.)

Let G be a simple digraph on $n \ge 2$ with vertex set $V = \{v_1, v_2, \ldots, v_n\}$, where outdegree sequence $d_1^+ \ge d_2^+ \ge \cdots \ge d_n^+$. Let $\phi_1 = 2d_1^+$, and for $2 \le l \le n$,

$$\phi_l = \frac{d_1^+ + 2d_l^+ - 1 + \sqrt{(2d_l^+ - d_1^+ + 1)^2 + 8\sum_{i=1}^{l-1} (d_i^+ - d_l^+)}}{2},$$

and $\phi_s = \min_{1 \le l \le n} {\{\phi_l\}}$ for some $s \in {\{1, 2, ..., n\}}$, Then $q(G) \le \phi_s$ Moreover, if G is a strongly connected digraph, then $q(G) = \Phi_s$ if and only if G is regular or there exists an integer t with $2 \le t \le s$ such that $d_1^+ = ... = d_{t-1}^+ > d_t^+ = ... = d_n^+$ and the indegrees $d_1^- = ... = d_{t-1}^- = n - 1$.

(日)

Signless Laplacian spectral radius of digraphs

Theorem 9 (W.X. Hong, L.H. You, LAA, 2014.)

Let G be a simple digraph on $n \ge 2$ with vertex set $V = \{v_1, v_2, ..., v_n\}$, where outdegree sequence $d_1^+ \ge d_2^+ \ge \cdots \ge d_n^+$. Let $\phi_1 = 2d_1^+$, and for $2 \le l \le n$,

$$\phi_l = \frac{d_1^+ + 2d_l^+ - 1 + \sqrt{(2d_l^+ - d_1^+ + 1)^2 + 8\sum_{i=1}^{l-1} (d_i^+ - d_l^+)}}{2},$$

and $\phi_s = \min_{1 \le l \le n} {\{\phi_l\}}$ for some $s \in {\{1, 2, ..., n\}}$, Then $q(G) \le \phi_s$ Moreover, if G is a strongly connected digraph, then $q(G) = \Phi_s$ if and only if G is regular or there exists an integer t with $2 \le t \le s$ such that $d_1^+ = ... = d_{t-1}^+ > d_t^+ = ... = d_n^+$ and the indegrees $d_1^- = ... = d_{t-1}^- = n - 1$.

W.X. Hong, L.H. You, Spectral radius and signlessLaplacian spectral radius of strongly connected digraphs, Linear Algebra Appl., 457 (2014), 93-113.

イロト イヨト イヨト イヨト
Signless Laplacian spectral radius of digraphs

Theorem 10 (W.G. Xi, L.G. Wang, DMGT, 2016)

Let m_i^+ denote the average 2-outdegree of v_i . Then

Merging the A- and Q-spectral theories for digraphs

Ligong Wang (NWPU)

Signless Laplacian spectral radius of digraphs

Theorem 10 (W.G. Xi, L.G. Wang, DMGT, 2016)

Let m_i^+ denote the average 2-outdegree of v_i . Then

• $q(G) = d_1^+ + d_2^+$, $(d_1^+ \neq d_2^+)$ if and only if G is a star digraph $K_{1,n-1}$, where d_1^+, d_2^+ are the maximum and the second maximum outdegree, respectively, $\overleftrightarrow{K}_{1,n-1}$ is the digraph on n vertices obtained from a star graph $K_{1,n-1}$ by replacing each edge with the pair of oppositely directed arcs.

Signless Laplacian spectral radius of digraphs

Theorem 10 (W.G. Xi, L.G. Wang, DMGT, 2016)

Let m_i^+ denote the average 2-outdegree of v_i . Then

- $q(G) = d_1^+ + d_2^+$, $(d_1^+ \neq d_2^+)$ if and only if G is a star digraph $K_{1,n-1}$, where d_1^+, d_2^+ are the maximum and the second maximum outdegree, respectively, $\overleftrightarrow{K}_{1,n-1}$ is the digraph on n vertices obtained from a star graph $K_{1,n-1}$ by replacing each edge with the pair of oppositely directed arcs.
- $q(G) \le \max\left\{\frac{1}{2}\left(d_i^+ + \sqrt{d_i^{+2} + 8d_i^+m_i^+}\right) : v_i \in V(G)\right\}$ with equality if and only if G is a regular digraph.

Signless Laplacian spectral radius of digraphs

Theorem 10 (W.G. Xi, L.G. Wang, DMGT, 2016)

Let m_i^+ denote the average 2-outdegree of v_i . Then

- $q(G) = d_1^+ + d_2^+$, $(d_1^+ \neq d_2^+)$ if and only if G is a star digraph $K_{1,n-1}$, where d_1^+, d_2^+ are the maximum and the second maximum outdegree, respectively, $\overleftrightarrow{K}_{1,n-1}$ is the digraph on n vertices obtained from a star graph $K_{1,n-1}$ by replacing each edge with the pair of oppositely directed arcs.
- $q(G) \le \max\left\{\frac{1}{2}\left(d_i^+ + \sqrt{d_i^{+2} + 8d_i^+m_i^+}\right) : v_i \in V(G)\right\}$ with equality if and only if G is a regular digraph.

W.G. Xi, L.G. Wang, Sharp upper bounds on the signless laplacian spectral radius of strongly connected digraphs, Discuss. Math. Graph Theory, 36 (2016), 977-988.

Signless Laplacian spectral radius of digraphs

Theorem 11 (W.X. Hong, L.H. You, LAA, 2014.)

The digraph $B_{n,d}$ is the unique digraph which has the minimum signless Laplacian spectral radius among all strongly connected digraphs with the clique number $d \ge 2$.

Signless Laplacian spectral radius of digraphs

Theorem 11 (W.X. Hong, L.H. You, LAA, 2014.)

The digraph $B_{n,d}$ is the unique digraph which has the minimum signless Laplacian spectral radius among all strongly connected digraphs with the clique number $d \ge 2$.

Theorem 12 (W.X. Hong, L.H. You, LAA, 2014.)

The digraph $C_{n,g}$ is the unique digraph which has the minimum signless Laplacian spectral radius among all strongly connected digraphs with the girth $g \ge 2$.

Signless Laplacian spectral radius of digraphs

Theorem 11 (W.X. Hong, L.H. You, LAA, 2014.)

The digraph $B_{n,d}$ is the unique digraph which has the minimum signless Laplacian spectral radius among all strongly connected digraphs with the clique number $d \ge 2$.

Theorem 12 (W.X. Hong, L.H. You, LAA, 2014.)

The digraph $C_{n,g}$ is the unique digraph which has the minimum signless Laplacian spectral radius among all strongly connected digraphs with the girth $g \ge 2$.

W.X. Hong, L.H. You, Spectral radius and signless Laplacian spectral radius of strongly connected digraphs, Linear Algebra Appl., 457 (2014), 93-113.

Signless Laplacian spectral radius of digraphs

Theorem 13 (W.X. Hong, L.H. You, LAA, 2014.)

The digraphs K(n, k, n - k - 1) is the unique digraph which has the maximum signless Laplacian spectral radius among all strongly connected digraphs with vertex connectivity $1 \le k \le n - 2$.

Signless Laplacian spectral radius of digraphs

Theorem 13 (W.X. Hong, L.H. You, LAA, 2014.)

The digraphs K(n, k, n - k - 1) is the unique digraph which has the maximum signless Laplacian spectral radius among all strongly connected digraphs with vertex connectivity $1 \le k \le n - 2$.

Theorem 14 (W.G. Xi, L.G. Wang, DAM, 2017)

The digraph \mathcal{T}_{n}^{*k} is the unique digraph which has the maximal signless Laplacian spectral radius among all digraphs with given dichromatic number $k \geq 2$.

Signless Laplacian spectral radius of digraphs

Theorem 13 (W.X. Hong, L.H. You, LAA, 2014.)

The digraphs K(n, k, n - k - 1) is the unique digraph which has the maximum signless Laplacian spectral radius among all strongly connected digraphs with vertex connectivity $1 \le k \le n - 2$.

Theorem 14 (W.G. Xi, L.G. Wang, DAM, 2017)

The digraph \mathcal{T}_{n}^{*k} is the unique digraph which has the maximal signless Laplacian spectral radius among all digraphs with given dichromatic number $k \geq 2$.

- W.X. Hong, L.H. You, Spectral radius and signless Laplacian spectral radius of strongly connected digraphs, Linear Algebra Appl., 457 (2014), 93-113.

Signless Laplacian spectral radius of digraphs

Theorem 13 (W.X. Hong, L.H. You, LAA, 2014.)

The digraphs K(n, k, n - k - 1) is the unique digraph which has the maximum signless Laplacian spectral radius among all strongly connected digraphs with vertex connectivity $1 \le k \le n - 2$.

Theorem 14 (W.G. Xi, L.G. Wang, DAM, 2017)

The digraph \mathcal{T}_{n}^{*k} is the unique digraph which has the maximal signless Laplacian spectral radius among all digraphs with given dichromatic number $k \geq 2$.

- - W.X. Hong, L.H. You, Spectral radius and signless Laplacian spectral radius of strongly connected digraphs, Linear Algebra Appl., 457 (2014), 93-113.
 - W.G. Xi, L.G. Wang, The signless Laplacian and distance signless Laplacian spectral radius of digraphs with some given parameters, Discrete Appl. Math., 227 (2017), 136-141.

イロン イヨン イヨン イヨン

Signless Laplacian spectral radius of digraphs

W.G. Xi, L.G. Wang, The signless Laplacian spectral characterization of strongly connected bicyclic digraphs, J. Math. Res. Appl., 36 (2016), 1-8.

イロト イポト イヨト イヨト

- W.G. Xi, L.G. Wang, The signless Laplacian spectral characterization of strongly connected bicyclic digraphs, J. Math. Res. Appl., 36 (2016), 1-8.
- X.H. Li, L.G. Wang, S.Y Zhang, The signless Laplacian spectral radius of some strongly connected digraphs, Indian J. Pure Appl. Math., 49 (2018), 113-127.

Signless Laplacian spectral radius of digraphs

- W.G. Xi, L.G. Wang, The signless Laplacian spectral characterization of strongly connected bicyclic digraphs, J. Math. Res. Appl., 36 (2016), 1-8.
- X.H. Li, L.G. Wang, S.Y Zhang, The signless Laplacian spectral radius of some strongly connected digraphs, Indian J. Pure Appl. Math., 49 (2018), 113-127.
- J.P. Liu, X.Z. Wu, J.S. Chen, B.L. Liu, The A_α spectral radius characterization of some digraphs, Linear Algebra Appl., 563 (2019), 63-74.

Signless Laplacian spectral radius of digraphs

- W.G. Xi, L.G. Wang, The signless Laplacian spectral characterization of strongly connected bicyclic digraphs, J. Math. Res. Appl., 36 (2016), 1-8.
- X.H. Li, L.G. Wang, S.Y Zhang, The signless Laplacian spectral radius of some strongly connected digraphs, Indian J. Pure Appl. Math., 49 (2018), 113-127.

J.P. Liu, X.Z. Wu, J.S. Chen, B.L. Liu, The A_{α} spectral radius characterization of some digraphs, Linear Algebra Appl., 563 (2019), 63-74.

....

A_{α} spectral radius of digraphs

To understand to what extent each of the summands A(G) and D(G) determines the properties of Q(G), Liu et al. [1] defined the matrix $A_{\alpha}(G)$ as

 $A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G), \quad 0 \le \alpha \le 1.$

Many facts suggest that the study of the family $A_{\alpha}(G)$ is long due.

Theorem 15 (J.P. Liu, X.Z. Wu, et al., LAA, 2019)

Among all digraphs in with given dichromatic number $k \ge 2$, the digraph \mathcal{T}_n^{*k} is the unique digraph which has the maximal A_α spectral radius.

Let $[V_1, V_2]$ denote the arcs between V_1 and V_2 . Let \mathcal{T}_n^k denote the set of digraphs with $V(\mathcal{T}_n^k) = V^1 \cup V^2 \cup \cdots V^k$, where V^i $(i = 1, 2, \dots, k)$ is a transitive tournament and $[V^i, V^j] = \{(v_s^i, v_t^j), (v_t^j, v_s^i) : v_s^i \in V^i, v_t^j \in V^j\}$, and \mathcal{T}_n^{*k} denotes the digraph in \mathcal{T}_n^k with $||V^i| - |V^j| \le 1$ $(i, j \in \{1, 2, \dots, k\})$.

A_{α} spectral radius of digraphs

To understand to what extent each of the summands A(G) and D(G) determines the properties of Q(G), Liu et al. [1] defined the matrix $A_{\alpha}(G)$ as

 $A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G), \quad 0 \le \alpha \le 1.$

Many facts suggest that the study of the family $A_{\alpha}(G)$ is long due.

Theorem 15 (J.P. Liu, X.Z. Wu, et al., LAA, 2019)

Among all digraphs in with given dichromatic number $k \ge 2$, the digraph \mathcal{T}_n^{*k} is the unique digraph which has the maximal A_α spectral radius.

Let $[V_1, V_2]$ denote the arcs between V_1 and V_2 . Let \mathcal{T}_n^k denote the set of digraphs with $V(\mathcal{T}_n^k) = V^1 \cup V^2 \cup \cdots V^k$, where V^i $(i = 1, 2, \dots, k)$ is a transitive tournament and $[V^i, V^j] = \{(v_s^i, v_t^j), (v_t^j, v_s^i) : v_s^i \in V^i, v_t^j \in V^j\}$, and \mathcal{T}_n^{*k} denotes the digraph in \mathcal{T}_n^k with $||V^i| - |V^j|| \le 1$ $(i, j \in \{1, 2, \dots, k\})$.

Outline

Basic notation and Terminology

Background and known results
A_α Spectral radius of graphs
Adjacency spectral of digraphs
Signless Laplacian spectral of digraphs

3 Our Main Results in this paper

Merging the A- and Q-spectral theories for digraphs

Our Main Results in this paper

• In this paper, we characterize the extremal digraph which achieves the the minimum A_{α} spectral radius among all strongly connected digraphs with given girth.

Our Main Results in this paper

- In this paper, we characterize the extremal digraph which achieves the the minimum A_{α} spectral radius among all strongly connected digraphs with given girth.
- We also determine the extremal digraph which attains the minimum A_{α} spectral radius among all strongly connected digraphs with given clique number.

Our Main Results in this paper

- In this paper, we characterize the extremal digraph which achieves the the minimum A_{α} spectral radius among all strongly connected digraphs with given girth.
- We also determine the extremal digraph which attains the minimum A_α spectral radius among all strongly connected digraphs with given clique number.
- Finally, we characterize the extremal digraphs which achieve the maximum A_{α} spectral radius among all strongly connected digraphs with given vertex connectivity or arc connectivity.

Our Main Results in this paper

- In this paper, we characterize the extremal digraph which achieves the the minimum A_{α} spectral radius among all strongly connected digraphs with given girth.
- We also determine the extremal digraph which attains the minimum A_α spectral radius among all strongly connected digraphs with given clique number.
- Finally, we characterize the extremal digraphs which achieve the maximum A_{α} spectral radius among all strongly connected digraphs with given vertex connectivity or arc connectivity.

W.G. Xi, W. So, L.G. Wang, Merging the *A*- and *Q*-spectral theories for digraphs, arXiv:1810.11669.

Some lemmas

Lemma 16 (R.A. Horn, C.R. Johnson, Matrix Analysis, 1985)

Let $M = (m_{ij})$ be an $n \times n$ nonnegative matrix, $R_i(M)$ be the *i*-th row sum of M. Then

 $\min\{R_i(M) : 1 \le i \le n\} \le \rho(M) \le \max\{R_i(M) : 1 \le i \le n\}.$

Moreover, if M is irreducible, then either one equality holds if and only if $R_1(M) = R_2(M) = \ldots = R_n(M)$.

Some lemmas

Lemma 16 (R.A. Horn, C.R. Johnson, Matrix Analysis, 1985)

Let $M = (m_{ij})$ be an $n \times n$ nonnegative matrix, $R_i(M)$ be the *i*-th row sum of M. Then

 $\min\{R_i(M) : 1 \le i \le n\} \le \rho(M) \le \max\{R_i(M) : 1 \le i \le n\}.$

Moreover, if *M* is irreducible, then either one equality holds if and only if $R_1(M) = R_2(M) = \ldots = R_n(M)$.

Lemma 17 (R.A. Horn, C.R. Johnson, Matrix Analysis, 1985)

Let A and B be a nonnegative matrix. If $0 \le A \le B$, then $\rho(A) \le \rho(B)$. Furthermore, if B is irreducible and $0 \le A < B$, then $\rho(A) < \rho(B)$.

By Lemma 17, we have the following results in terms of A_{α} spectral radius of digraphs.

Corollary 18

Let G be a digraph and H be a spanning subdigraph of G. Then (i) $\lambda_{\alpha}(G) \geq \lambda_{\alpha}(H)$. (ii) If G is strongly connected, and H is a proper subdigraph of G, then $\lambda_{\alpha}(G) > \lambda_{\alpha}(H)$.

From Lemma 16 and Corollary 18, we can easily get the following corollary.

By Lemma 17, we have the following results in terms of A_{α} spectral radius of digraphs.

Corollary 18

Let G be a digraph and H be a spanning subdigraph of G. Then (i) $\lambda_{\alpha}(G) \geq \lambda_{\alpha}(H)$. (ii) If G is strongly connected, and H is a proper subdigraph of G, then $\lambda_{\alpha}(G) > \lambda_{\alpha}(H)$.

From Lemma 16 and Corollary 18, we can easily get the following corollary.

Corollary 19

Let G be a strongly connected digraph. Then $1 \le \lambda_{\alpha}(G) \le n - 1$, $\lambda_{\alpha}(G) = n - 1$ if and only if $G \cong \overset{\leftrightarrow}{K_n}$, and $\lambda_{\alpha}(G) = 1$ if and only if $G \cong \overset{\rightarrow}{C_n}$.

イロト イヨト イヨト イヨト

Lemma 20 (R.A. Horn, C.R. Johnson, Matrix Analysis, 1985)

Let *B* be a nonnegative matrix and $X = (x_1, x_2, ..., x_n)^T$ be any nonzero nonnegative vector. If $\beta \ge 0$ such that $BX \ge \beta X$, then $\rho(B) \ge \beta$. Furthermore, if *B* is irreducible and $BX > \beta X$, then $\rho(B) > \beta$.

By Lemma 20, we have the following results in terms of A_{α} spectral radius of digraphs.

Lemma 20 (R.A. Horn, C.R. Johnson, Matrix Analysis, 1985)

Let *B* be a nonnegative matrix and $X = (x_1, x_2, ..., x_n)^T$ be any nonzero nonnegative vector. If $\beta \ge 0$ such that $BX \ge \beta X$, then $\rho(B) \ge \beta$. Furthermore, if *B* is irreducible and $BX > \beta X$, then $\rho(B) > \beta$.

By Lemma 20, we have the following results in terms of A_{α} spectral radius of digraphs.

Corollary 21

Let G be a strongly connected digraph. Then $\lambda_{\alpha}(G) > \alpha \Delta^+$.

Furthermore, we can prove the following result on A_{α} spectral radius of digraphs

Lemma 22 (W.G. Xi, W. So, L.G. Wang, 2018)

Let G = (V(G), E(G)) be a strongly connected digraph on nvertices, v_p, v_q be two distinct vertices of V(G). Let $X = (x_1, x_2, ..., x_n)^T$ be the Perron vector of $A_\alpha(G)$. Suppose that $v_1, v_2, ..., v_t \in N_{v_p}^- \setminus \{N_{v_q}^- \cup \{v_q\}\}$, where $1 \le t \le d_p^-$. Let $H = G - \{(v_i, v_p) : i = 1, 2..., t\} + \{(v_i, v_q) : i = 1, 2..., t\}$. If $x_{v_q} \ge x_{v_p}$, then $\lambda_\alpha(H) \ge \lambda_\alpha(G)$. Furthermore, if H is strongly connected and $x_{v_q} > x_{v_p}$, then $\lambda_\alpha(H) > \lambda_\alpha(G)$.

Lemma 23 (W.G. Xi,W. So, L.G. Wang, 2018)

Let $G \ (\neq C_n)$ be a strongly connected digraph with $V(G) = \{v_1, v_2, \dots, v_n\}, (v_i, v_j) \in E(G) \text{ and } w \notin V(G),$ $G^w = (V(G^w), E(G^w)) \text{ with } V(G^w) = V(G) \cup \{w\},$ $E(G^w) = E(G) - \{(v_i, v_j)\} + \{(v_i, w), (w, v_j)\}.$ Then $\lambda_{\alpha}(G) \ge \lambda_{\alpha}(G^w).$

.

Lemma 23 (W.G. Xi,W. So, L.G. Wang, 2018)

Let $G \ (\neq C_n)$ be a strongly connected digraph with $V(G) = \{v_1, v_2, \dots, v_n\}, (v_i, v_j) \in E(G) \text{ and } w \notin V(G),$ $G^w = (V(G^w), E(G^w)) \text{ with } V(G^w) = V(G) \cup \{w\},$ $E(G^w) = E(G) - \{(v_i, v_j)\} + \{(v_i, w), (w, v_j)\}.$ Then $\lambda_{\alpha}(G) \ge \lambda_{\alpha}(G^w).$

Lemma 24 (W.G. Xi,W. So, L.G. Wang, 2018)

Let *G* be a strongly connected digraph with order *n* and arc connectivity $k \ge 1$, and *S* be an arc cut set of *G* of size *k* such that G - S has exactly two strongly connected components, say G_1 and G_2 with $|V(G_1)| = n_1$ and $|V(G_2)| = n_2$, where $n_1 + n_2 = n$. If $d_v^+ > k$ and $d_v^- > k$ for each vertex $v \in V(G)$, then $n_1 \ge k + 2$, $n_2 \ge k + 2$.

イロト イヨト イヨト イヨト

Lemma 25 (Bondy, Murty, Graph Theory with Applications)

Let G be a strongly connected digraph with $\kappa(G) = d$. Suppose that S is a d-vertex cut of G and G_1, G_2, \ldots, G_t are the strongly connected components of G - S. Then there exists an ordering of G_1, G_2, \ldots, G_t such that for $1 \le i \le t$ and any $v \in V(G_i)$, every tail of v is in $\bigcup_{j=1}^i G_j$.

• $\mathcal{G}_{n,g}$: the set of strongly connected digraphs on n vertices with girth $g \ge 2$. If g = n, then $\mathcal{G}_{n,g} = \{\overrightarrow{C_n}\}$ and $\lambda_{\alpha}(\overrightarrow{C_n}) = 1$. Thus we only need to consider the cases $2 \le g \le n - 1$.

- $\mathcal{G}_{n,g}$: the set of strongly connected digraphs on n vertices with girth $g \ge 2$. If g = n, then $\mathcal{G}_{n,g} = \{\overrightarrow{C_n}\}$ and $\lambda_{\alpha}(\overrightarrow{C_n}) = 1$. Thus we only need to consider the cases $2 \le g \le n 1$.
- $C_{n,d}$: the set of strongly connected digraphs on n vertices with clique number d. If d = n, then $C_{n,d} = \{\overrightarrow{K_n}\}$ and $\overrightarrow{\lambda_{\alpha}(K_n)} = n 1$. If d = 1, then $\overrightarrow{C_n} \in C_{n,d}$ and $\overrightarrow{\lambda_{\alpha}(C_n)} = 1$. By Corollary 19, for any $G \in C_{n,d}$, $\overrightarrow{\lambda_{\alpha}(G)} \ge 1 = \overrightarrow{\lambda_{\alpha}(C_n)}$ with equality if and only if $G \cong \overrightarrow{C_n}$. Thus we only need to consider the cases $2 \le d \le n 1$.

D_{n,k}: the set of strongly connected digraphs with order n and vertex connectivity κ(G) = k ≥ 1. If k = n − 1, then
D_{n,k} = {K_n}. So we only consider the cases 1 ≤ k ≤ n − 2.

- $\mathcal{D}_{n,k}$: the set of strongly connected digraphs with order n and vertex connectivity $\kappa(G) = k \ge 1$. If k = n 1, then $\mathcal{D}_{n,k} = \{K_n\}$. So we only consider the cases $1 \le k \le n 2$.
- For $1 \le m \le n k 1$, K(n, k, m): the digraph $\overleftrightarrow{K_k} \lor (\widecheck{K_n}_{-k-m} \cup \widecheck{K_m}) + E$, where $E = \{(u, v) | u \in V(\widecheck{K_m}), v \in V(\widecheck{K_{n-k-m}})\}$.
Background and known results

- $\mathcal{D}_{n,k}$: the set of strongly connected digraphs with order n and vertex connectivity $\kappa(G) = k \ge 1$. If k = n 1, then $\mathcal{D}_{n,k} = \{\overrightarrow{K_n}\}$. So we only consider the cases $1 \le k \le n 2$.
- For $1 \le m \le n k 1$, K(n, k, m): the digraph $\overleftrightarrow{K_k} \lor (\widecheck{K_n}_{-k-m} \cup \widecheck{K_m}) + E$, where $E = \{(u, v) | u \in V(\widecheck{K_m}), v \in V(\widecheck{K_n}_{-k-m})\}$.
- $\mathcal{L}_{n,k}$ the set of strongly connected digraphs with order n and arc connectivity $\kappa'(G) = k \ge 1$. If $\kappa'(G) = k = n 1$, then $\mathcal{L}_{n,k} = \{\overrightarrow{K_n}\}$. So we only consider the cases $1 \le k \le n 2$.

Our Main Results in this paper

Theorem 26 (W.G. Xi, W. So, L.G. Wang, 2018)

Let $2 \le g \le n-1$ and $G \in \mathcal{G}_{n,g}$. Then $\lambda_{\alpha}(G) \ge \lambda_{\alpha}(C_{n,g}) > 1$, with equality if and only if $G \cong C_{n,g}$.

Our Main Results in this paper

Theorem 26 (W.G. Xi, W. So, L.G. Wang, 2018)

Let $2 \le g \le n-1$ and $G \in \mathcal{G}_{n,g}$. Then $\lambda_{\alpha}(G) \ge \lambda_{\alpha}(C_{n,g}) > 1$, with equality if and only if $G \cong C_{n,g}$.

Theorem 27 (W.G. Xi, W. So, L.G. Wang, 2018)

Let $2 \le d \le n-1$ and $G \in C_{n,d}$. Then $\lambda_{\alpha}(G) \ge \lambda_{\alpha}(B_{n,d})$, with equality if and only if $G \cong B_{n,d}$.

Merging the A- and Q-spectral theories for digraphs

Theorem 28 (W.G. Xi, W. So, L.G. Wang, 2018)

Let n, k, m be positive integers such that $1 \le k \le n-2$ and $1 \le m \le n-k-1$. Then

$$\lambda_{\alpha}(K(n,k,m)) = \frac{n-2-\alpha m+\alpha n+\sqrt{(1-\alpha)^2n^2+(6\alpha-2\alpha^2-4)mn+(2-\alpha)^2m^2+4(1-\alpha)km}}{2}$$

Theorem 28 (W.G. Xi, W. So, L.G. Wang, 2018)

Let n, k, m be positive integers such that $1 \le k \le n-2$ and $1 \le m \le n-k-1$. Then

$$\lambda_{\alpha}(K(n,k,m)) = \frac{n-2-\alpha m + \alpha n + \sqrt{(1-\alpha)^2 n^2 + (6\alpha - 2\alpha^2 - 4)mn + (2-\alpha)^2 m^2 + 4(1-\alpha)km}}{2}$$

Theorem 29 (W.G. Xi, W. So, L.G. Wang, 2018)

Let G be a strongly connected digraph. If $G \not\cong K_n$, and $G \not\cong K(n, n-2, 1)$. Then

$$\lambda_{\alpha}(G) > \frac{n+\alpha n-2-\alpha+\sqrt{(1-\alpha)^2n^2+2\alpha(1-\alpha)n+\alpha^2+4\alpha-4}}{2}.$$

・ 同 ト ・ 三 ト ・ 三 ト

Theorem 30 (W.G. Xi, W. So, L.G. Wang, 2018)

Let n, k be positive integers such that $1 \le k \le n-2$, $G \in \mathcal{D}_{n,k}$. Then (i) For $\alpha = 0$, $\lambda_{\alpha}(G) \le \frac{n-2+\sqrt{n^2-4n+4k+4}}{2}$, with equality if and only if $G \cong K(n, k, n-k-1)$ or $G \cong K(n, k, 1)$. (ii) For $0 < \alpha < 1$, $\lambda_{\alpha}(G) \le \frac{n-2+\alpha+\alpha k + \sqrt{n^2+(2\alpha-4-2\alpha k)n+\alpha^2+\alpha^2k^2-4\alpha+2\alpha^2k-4\alpha k+4k+4}}{2}$, with equality if and only if $G \cong K(n, k, n-k-1)$.

Theorem 31 (W.G. Xi, W. So, L.G. Wang, 2018)

Let $G \in \mathcal{L}_{n,k}$. Then (i) For $\alpha = 0$, $\lambda_{\alpha}(G) \leq \lambda_{\alpha}(K(n,k,1)) = \lambda_{\alpha}(K(n,k,n-k-1))$, with equality if and only if $G \cong K(n,k,n-k-1)$ or $G \cong K(n,k,1)$. (ii) For $0 < \alpha < 1$, $\lambda_{\alpha}(G) \leq \lambda_{\alpha}(K(n,k,n-k-1))$, with equality if and only if $G \cong K(n,k,n-k-1)$.

Figure 3.3: The digraph K(n, k, m)

Thank You!!!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで