Derived Matroids

Suijie Wang
Institute of Mathematics, Hunan University
(joint works with James Oxley, Houshan Fu)

Tenth Cross-strait conference on Graph Theory and Combinatorics
Taiwan 2019. 8. 18-23

Outline

(1) Motivations and Backgrounds
(2) Derived Matroids δM
(3) Classification of Derived Sequences $\delta^{k} M$
(4) Characterize $\delta M \cong M^{*}$

Motivation

Dependencies of Holes

In algebraic topology, the homology groups examine the independent holes of the topological spaces. What can we say about the dependence relations among these holes? E.g., For 1-dimensional simplicial complexes (or graphs), it is about the dependencies among all cycles of graphs.

Rota's Questions

Dependencies of Circuits

At the Bowdoin College Summer 1971 NSF Conference on Combinatorics, Gian-Carlo Rota posed the following question: The minimal dependent sets of vectors in a space V may be regarded as vectors in the derived space δV over the same field by using the vectors of V as a basis for δV. Can this same sort of process be applied to the dependent sets of a matroid M to investigate the "dependencies among dependencies"? If so, what properties does δM, the derived matroid, posses?"

Longyear's Questions

Longyear answered Rota's first question in the case of binary matroids, and proposed the following questions:

- Question 1. (a) What effect does δ have on the flats of a matroid? (b) On the dual?
- Question 2. How many different (nonisomorphic) binary matroids M are there for which δM has rank r ?
- Question 3. (a) When does $\delta M=M$? (b) When is there a matroid N for which $\delta N=M$? (c) If $\delta^{k+1} M=\delta\left(\delta^{k} M\right)$, when can $\delta^{k} M=\delta^{j} M$?
- Question 4. If M is $U_{1,3}$, then δM is $U_{2,3}, \delta^{2} M$ is $U_{1,1}$ and $\delta^{3} M$ is $U_{0,0}$. Characterize those M for which $\delta^{k} M$ can eventually be $U_{0,0}$.

Matroids

Circuit axioms

A matroid $M=(E, \mathscr{C})$ is an ordered pair of a finite set E and a collection \mathscr{C} (called circuits) of subsets of E such that
(C1) $\emptyset \notin \mathscr{C}$.
(C2) If $I_{1} \neq I_{2} \in \mathscr{C}$, then $I_{1} \nsubseteq I_{2}$.
(C3) If $I_{1}, I_{2} \in \mathscr{C}$ are distinct circuits and $e \in I_{1} \cap I_{2}$, then there exists a circuit $I_{3} \in \mathscr{C}$ such that $I_{3} \subseteq\left(I_{1} \cup I_{2}\right)-e$.

Representable Matroids

- The matroid $M=(E, \mathscr{C})$ is representable over the field \mathbb{F} if there is a vector space $V=\mathbb{F}^{n}$ and a representation $\varphi: E \rightarrow V$ satisfying that

$$
I \in \mathscr{C} \Leftrightarrow\{\varphi(e) \mid e \in I\} \text { is a minimal dependent set of } V \text {. }
$$

- The pair (M, φ) denotes an \mathbb{F}-represented matroid.

Circuit Vectors

- $(M, \varphi): \mathbb{F}$-represented matroid;
- $E=\left\{e_{1}, \ldots, e_{m}\right\}$: the ground set of M;
- $\mathscr{C}=\mathscr{C}(M)$: the set of circuits of M.

Circuit Vectors

For each circuit $I \in \mathscr{C}(M)$, there exists a unique vector $\mathbf{c}_{I}=\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{F}^{m}$ (up to a constant) such that

$$
\sum_{i=1}^{m} c_{i} \varphi\left(e_{i}\right)=0, \quad \text { where } \begin{cases}c_{i} \neq 0 & \text { for } e_{i} \in I \\ c_{i}=0 & \text { for } e_{i} \notin I\end{cases}
$$

We call \mathbf{c}_{I} a circuit vector of (M, φ)

Derived Matroids

- Associated with the \mathbb{F}-represented matroid (M, φ), there is an \mathbb{F}-represented matroid $(\delta M, \delta \varphi)$ with ground set $\mathscr{C}(M)$, the set of circuits of M, such that

$$
(\delta \varphi)(I)=\mathbf{c}_{I} \quad \text { for } I \in \mathscr{C}(M)
$$

Derived Matroid (Oxley-Wang, 2019+)
We call the \mathbb{F}-represented matroid $(\delta M, \delta \varphi)$ the derived matroid of (M, φ).

- $\delta U_{1, n} \cong M\left(K_{n}\right)$,
- $\delta U_{n-2, n} \cong U_{2, n}$. In particular, $\delta U_{2,4} \cong U_{2,4}$.

Derived Matroids

Derived Sequence (Oxley-Wang, 2019+)
Let $\left(\delta^{0} M, \delta^{0} \varphi\right)=(M, \varphi)$. Inductively, for any positive integer k, the k th derived matroid ($\delta^{k} M, \delta^{k} \varphi$) of M is the derived matroid of ($\delta^{k-1} M, \delta^{k-1} \varphi$). The derived sequence of (M, φ) is the sequence

$$
\left(\delta^{0} M, \delta^{0} \varphi\right),\left(\delta^{1} M, \delta^{1} \varphi\right),\left(\delta^{2} M, \delta^{2} \varphi\right), \ldots
$$

- $\delta^{k} U_{2,4} \cong U_{2,4}$ for all $k \geq 0$.
- The following matrix A represents $M\left(K_{4}\right)$ over both $G F(2)$ and $G F(3)$:

$$
\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & -1
\end{array}\right)
$$

Write A_{2} and A_{3} for the interpretations of A over $G F(2)$ and $G F(3)$, respectively. Hence we can view $M\left[A_{2}\right]$ and $M\left[A_{3}\right]$ as $G F(2)$ - and $G F(3)$-represented matroids.

- It is not difficult to check that

$$
\delta M\left[A_{2}\right] \cong F_{7} \quad \text { and } \quad \delta M\left[A_{3}\right] \cong F_{7}^{-}
$$

So $\delta M\left[A_{3}\right] \not \approx \delta M\left[A_{2}\right]$.

In contrast to the above, where we considered representations of a matroid over two different fields, if we fix the field \mathbb{F}, then the derived matroid of a binary or ternary matroid does not depend on the representation.

Theorem (Oxley-Wang, 2019+)
Let \mathbb{F} be a field. Then, for all \mathbb{F}-represented matroids (M, φ) the derived matroid δM does not depend on the \mathbb{F}-representation φ if and only if \mathbb{F} is $G F(2)$ or $G F(3)$.

Connected Matroids

- Given two matoids M and N on the ground sets E and F respectively. The direct sum $M \oplus N$ is the matroid $(E \sqcup F, \mathscr{C}(M) \sqcup \mathscr{C}(N))$. A matroid is connected if it is not isomorphic to a direct sum of two proper submatroids.

Structure Decomposition (Oxley-Wang, 2019+)
Let (M, φ) be an \mathbb{F}-represented matroid such that M has no coloops. If $M=M_{1} \oplus M_{2}$, then $\delta M=\delta M_{1} \oplus \delta M_{2}$. Conversely, if $\delta M=N_{1} \oplus N_{2}$, then there are matroids M_{1} and M_{2} such that $M=M_{1} \oplus M_{2}$ and $N_{i}=\delta M_{i}$ for each $i=1,2$.

Main Lemma

Lemma (Oxley-Wang, 2019+)
Let M be a nonempty connected matroid and $r^{*}(M)=r\left(M^{*}\right)$ the corank of M. Then

$$
|\delta M| \geq\binom{ r^{*}(M)+1}{2} \quad \text { and } \quad r^{*}(\delta M) \geq\binom{ r^{*}(M)}{2}
$$

Corollary (Oxley-Wang, 2019+)
For a connected representable matroid M and $k \geq 0$, the matroid $\delta^{k} M$ is connected and

$$
r^{*}\left(\delta^{k} M\right) \geq 2^{k}\left(r^{*}(M)-3\right)+3
$$

Cyclic Type

Answers of Longyear's Questions 3(a) and 3(c) for represented matroids over arbitrary fields.

Cyclic Type (Oxley-Wang, 2019+)
Let (M, φ) be a nonempty \mathbb{F}-represented matroid. If $\delta^{k} M \cong M$ for some $k \geq 1$, then M is a direct sum of matroids each of which is isomorphic to $U_{2,4}$.

Finite Type

Answers of Longyear's Questions 4 for represented matroids over arbitrary fields.
Finite Type (Oxley-Wang, 2019+)
Let M be a represented matroid such that $\delta^{k} M \cong U_{0,0}$ for some $k \geq 0$. Then
$\delta^{3} M \cong U_{0,0}$ and each component of M is isomorphic to one of the following matroids
(1) $U_{1,1}$,
(2) a circuit,
(3) the cycle matroid of a theta graph.

Divergent Type

Theorem (Oxley-Wang, 2019+)

Let M be a connected represented matroid that is not isomorphic to $U_{0,0}, U_{1,1}$, a circuit, the cycle matroid of a theta graph, or a matroid whose cosimplification is $U_{2,4}$. Then, for all $k \geq 1$,

$$
r^{*}\left(\delta^{k+1} M\right)>r^{*}\left(\delta^{k} M\right)
$$

Moreover, unless $M \cong U_{1,4}$, we have

$$
r^{*}\left(\delta^{k} M\right) \geq 2^{k-1}+3
$$

In the exceptional case, $r^{*}(M)=3=r^{*}(\delta M), r^{*}\left(\delta^{2} M\right)=4$, and

$$
r^{*}\left(\delta^{k} M\right) \geq 2^{k-2}+3 \quad \text { for } \quad k \geq 2
$$

Characterize $\delta M \cong M^{*}$

- A basis B of M is a maximal subset of E containing no circuits of M.
- The dual matroid M^{*} is a matroid with the ground set E such that

$$
B \text { is a basis of } M \Leftrightarrow E-B \text { is a basis of } M^{*} \text {. }
$$

Case: $r^{*}(M) \leq 2$ (Fu-Wang, 2019+)
Let M be a connected representable matroid. If $r^{*}(M) \leq 2$, then

$$
\delta M \cong M^{*} \quad \Longleftrightarrow \quad M^{*} \cong U_{2, n}, \text { or } U_{1,1}, \text { or } \emptyset
$$

Characterize $\delta M \cong M^{*}$

Case: $r^{*}(M) \geq 3$ (Fu-Wang, 2019+)
Let M be a connected \mathbb{F}-representable matroid. If $r^{*}(M)=m-r \geq 3$, then $\delta M \cong M^{*}$ if and only if there is a finite field \mathbb{F}_{q} such that

$$
M^{*} \cong P G\left(m-r, \mathbb{F}_{q}\right),
$$

where $P G\left(m-r, \mathbb{F}_{q}\right)$ denotes the projective geometry of \mathbb{F}_{q}^{m-r}, a matroid consisting of all 1-dimensional subspaces in \mathbb{F}_{q}^{m-r}.

Working Problems

Known Results

$$
\begin{array}{cl}
\delta M \cong M^{*} & \Leftrightarrow M^{*} \cong P G\left(m-r, \mathbb{F}_{q}\right), \text { or } U_{2, n}, \text { or } U_{1,1}, \text { or } \emptyset \\
L(M) \cong L^{*}(M) & \Leftrightarrow M \cong P G\left(m-r, \mathbb{F}_{q}\right), \text { or } U_{2, n}, \text { or } U_{1,1}, \text { or } \emptyset
\end{array}
$$

Observation

$$
\begin{aligned}
& L(\delta M) \cong L\left(M^{*}\right) \quad \Leftrightarrow \quad L\left(M^{*}\right) \cong L^{*}\left(M^{*}\right) \\
& L(\delta M) \cong L\left(M^{*}\right) \quad \Rightarrow \quad L(\delta M) \cong L^{*}\left(M^{*}\right)
\end{aligned}
$$

Problem: $L(\delta M) \cong L^{*}\left(M^{*}\right) \quad \Rightarrow \quad L(\delta M) \cong L\left(M^{*}\right)$?

Thank You

