Multipartite entangled states and irredundant orthogonal arrays

Zihong Tian

College of Mathematics and Information Science
Hebei Normal University

$$
2019.8 .21
$$

Content

(1) Background and Notations
(2) Two types of t-uniform states

- 2-uniform states of $k=5,6, q, q+1$ qudits
- 3-uniform states of $k \geq 8$ qubits
(3) Further problems
(1) Background and Notations

(2) Two types of t-uniform states

(3) Further problems

Background

- Quantum information is an interdisciplinary subject of quantum mechanics and information science, which is closely related to many disciplines such as computer science and mathematics.

Background

- Quantum information is an interdisciplinary subject of quantum mechanics and information science, which is closely related to many disciplines such as computer science and mathematics.
- The phenomenon of entanglement is considered to be one of the most striking features of quantum mechanics. Quantum entanglement has been widely applied in quantum information theory, such as quantum key distribution, quantum secure communication, superdense coding and teleportation.
- An important issue concerns the construction of genuinely multipartite entangled states. The methods are mainly from the field of quantum information.
${ }^{a}$ Goyeneche D, \dot{Z} yczkowski K. Genuinely multi-partite entangled states and orthogonal arrays. Phys. Rev. A., 2014, 90: 022316.
- An important issue concerns the construction of genuinely multipartite entangled states. The methods are mainly from the field of quantum information.
- In 2014, Goyeneche and \dot{Z} yczkowski established a link between the combinatorial notion of orthogonal arrays and t-uniform states. They pointed out that a special orthogonal array, called irredundant orthogonal array, is corresponding to a t-uniform state. ${ }^{a}$
${ }^{a}$ Goyeneche D, \dot{Z} yczkowski K. Genuinely multi-partite entangled states and orthogonal arrays. Phys. Rev. A., 2014, 90: 022316.

Some Notations

- $\mathbb{C}^{v}: v$-dimensional complex vector space.

Some Notations

- $\mathbb{C}^{v}: v$-dimensional complex vector space.
- ket $|\alpha\rangle$: a v-dimensional column vector in \mathbb{C}^{v}.

Some Notations

- $\mathbb{C}^{v}: v$-dimensional complex vector space.
- ket $|\alpha\rangle$: a v-dimensional column vector in \mathbb{C}^{v}.
- Given two v-dimensional vectors

$$
|\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{v}
\end{array}\right) \text { and }|\beta\rangle=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{v}
\end{array}\right) .
$$

Tensor product:

$$
|\alpha\rangle \otimes|\beta\rangle=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{v}
\end{array}\right) \otimes|\beta\rangle=\left(\begin{array}{c}
a_{1}|\beta\rangle \\
\vdots \\
a_{v}|\beta\rangle
\end{array}\right) .
$$

Some Notations

- $\mathbb{C}^{v}: v$-dimensional complex vector space.
- ket $|\alpha\rangle$: a v-dimensional column vector in \mathbb{C}^{v}.
- Given two v-dimensional vectors

$$
|\alpha\rangle=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{v}
\end{array}\right) \text { and }|\beta\rangle=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{v}
\end{array}\right)
$$

Tensor product:

$$
|\alpha\rangle \otimes|\beta\rangle=\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{v}
\end{array}\right) \otimes|\beta\rangle=\left(\begin{array}{c}
a_{1}|\beta\rangle \\
\vdots \\
a_{v}|\beta\rangle
\end{array}\right)
$$

- $\{|0\rangle,|1\rangle, \cdots,|v-1\rangle\}$ is a standard orthogonal basis for \mathbb{C}^{v}.

Some Notations

- classical bits: 0 and 1.

Some Notations

- classical bits: 0 and 1.
- quantum bits: $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$

Some Notations

- classical bits: 0 and 1.
- quantum bits: $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
- single qubit: $|\varphi\rangle=a|0\rangle+b|1\rangle \in \mathbb{C}^{2}$, where $a, b \in \mathbb{C}$ and $|a|^{2}+|b|^{2}=1$.

Some Notations

- classical bits: 0 and 1.
- quantum bits: $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
- single qubit: $|\varphi\rangle=a|0\rangle+b|1\rangle \in \mathbb{C}^{2}$, where $a, b \in \mathbb{C}$ and $|a|^{2}+|b|^{2}=1$.
- Multiple qubits

Two: $|00\rangle=|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \in\left(\mathbb{C}^{2}\right)^{\otimes 2}$. Three: $\quad|000\rangle=(|0\rangle \otimes|0\rangle) \otimes|0\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes 3}$.

Some Notations

- classical bits: 0 and 1.
- quantum bits: $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$
- single qubit: $|\varphi\rangle=a|0\rangle+b|1\rangle \in \mathbb{C}^{2}$, where $a, b \in \mathbb{C}$ and $|a|^{2}+|b|^{2}=1$.
- Multiple qubits

Two: $|00\rangle=|0\rangle \otimes|0\rangle=\binom{1}{0} \otimes\binom{1}{0}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right) \in\left(\mathbb{C}^{2}\right)^{\otimes 2}$.
Three: $\quad|000\rangle=(|0\rangle \otimes|0\rangle) \otimes|0\rangle \in\left(\mathbb{C}^{2}\right)^{\otimes 3}$.

- $\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ is a standard orthogonal basis of $\left(\mathbb{C}^{2}\right)^{\otimes 2}$.

Some Notations

- qudit: a v-dimensional quantum system can be represented as a v-dimensional column vector $|\varphi\rangle \in \mathbb{C}^{v}$,

$$
|\varphi\rangle=a_{0}|0\rangle+a_{1}|1\rangle+\cdots+a_{v-1}|v-1\rangle
$$

where $a_{i} \in \mathbb{C}$ and $\Sigma_{i=0}^{v-1}\left|a_{i}\right|^{2}=1$. $\{|0\rangle,|1\rangle, \cdots,|v-1\rangle\}$ is a standard orthogonal basis for \mathbb{C}^{v}.

Some Notations

- qudit: a v-dimensional quantum system can be represented as a v-dimensional column vector $|\varphi\rangle \in \mathbb{C}^{v}$,

$$
|\varphi\rangle=a_{0}|0\rangle+a_{1}|1\rangle+\cdots+a_{v-1}|v-1\rangle
$$

where $a_{i} \in \mathbb{C}$ and $\Sigma_{i=0}^{v-1}\left|a_{i}\right|^{2}=1$. $\{|0\rangle,|1\rangle, \cdots,|v-1\rangle\}$ is a standard orthogonal basis for \mathbb{C}^{v}.

- single qudit:

Some Notations

- qudit: a v-dimensional quantum system can be represented as a v-dimensional column vector $|\varphi\rangle \in \mathbb{C}^{v}$,

$$
|\varphi\rangle=a_{0}|0\rangle+a_{1}|1\rangle+\cdots+a_{v-1}|v-1\rangle
$$

where $a_{i} \in \mathbb{C}$ and $\Sigma_{i=0}^{v-1}\left|a_{i}\right|^{2}=1$. $\{|0\rangle,|1\rangle, \cdots,|v-1\rangle\}$ is a standard orthogonal basis for \mathbb{C}^{v}.

- single qudit:
- Multiple qudits: $\left|i_{1} i_{2} \cdots i_{k}\right\rangle$, where $i_{1}, i_{2}, \cdots, i_{k} \in \mathbb{Z}_{v}$.

Some Notations

- qudit: a v-dimensional quantum system can be represented as a v-dimensional column vector $|\varphi\rangle \in \mathbb{C}^{v}$,

$$
|\varphi\rangle=a_{0}|0\rangle+a_{1}|1\rangle+\cdots+a_{v-1}|v-1\rangle
$$

where $a_{i} \in \mathbb{C}$ and $\Sigma_{i=0}^{v-1}\left|a_{i}\right|^{2}=1$. $\{|0\rangle,|1\rangle, \cdots,|v-1\rangle\}$ is a standard orthogonal basis for \mathbb{C}^{v}.

- single qudit:
- Multiple qudits: $\left|i_{1} i_{2} \cdots i_{k}\right\rangle$, where $i_{1}, i_{2}, \cdots, i_{k} \in \mathbb{Z}_{v}$.
- $\left\{\left|i_{1} i_{2} \cdots i_{k}\right\rangle=\left|i_{1}\right\rangle \otimes\left|i_{2}\right\rangle \otimes \cdots \otimes\left|i_{k}\right\rangle:\left(i_{1} i_{2} \cdots i_{k}\right) \in \mathbb{Z}_{v}^{k}\right\}$ is a standard orthogonal basis of $\left(\mathbb{C}^{v}\right)^{\otimes k}$.

Some Notations

In a quantum system composed of k subsystems,

Quantum state

A Quantum state $|\psi\rangle$ of a system consisting of k qudits with v-dimensional can be defined as:

$$
|\psi\rangle=\sum_{i_{1}, i_{2}, \cdots, i_{k}} a_{i_{1} i_{2} \cdots i_{k}}\left|i_{1} i_{2} \cdots i_{k}\right\rangle,
$$

where $a_{i_{1} i_{2} \cdots i_{k}} \in \mathbb{C}, i_{1}, i_{2}, \cdots, i_{k} \in \mathbb{Z}_{v}$, and $\sum_{i_{1}, i_{2}, \cdots, i_{k}}\left|a_{i_{1} i_{2} \cdots i_{k}}\right|^{2}=1$.

Some Notations

In a quantum system composed of k subsystems,

Quantum state

A Quantum state $|\psi\rangle$ of a system consisting of k qudits with v-dimensional can be defined as:

$$
|\psi\rangle=\sum_{i_{1}, i_{2}, \cdots, i_{k}} a_{i_{1} i_{2} \cdots i_{k}}\left|i_{1} i_{2} \cdots i_{k}\right\rangle,
$$

where $a_{i_{1} i_{2} \cdots i_{k}} \in \mathbb{C}, i_{1}, i_{2}, \cdots, i_{k} \in \mathbb{Z}_{v}$, and $\sum_{i_{1}, i_{2}, \cdots, i_{k}}\left|a_{i_{1} i_{2} \cdots i_{k}}\right|^{2}=1$.

- $|\psi\rangle \in \mathbb{C}^{v} \otimes \mathbb{C}^{v} \otimes \cdots \otimes \mathbb{C}^{v}=\left(\mathbb{C}^{v}\right)^{\otimes k} \cong \mathbb{C}^{v^{k}}$.

Some Notations

- Separable state:

Example:

$$
\begin{aligned}
|v\rangle & =\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
\end{aligned}
$$

Some Notations

- Separable state:

Example:

$$
\begin{aligned}
|v\rangle & =\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
\end{aligned}
$$

- Entangled state:

Example- Bell state

$$
|v\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) .
$$

Some Notations

- Separable state:

Example:

$$
\begin{aligned}
|v\rangle & =\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
\end{aligned}
$$

- Entangled state:

Example- Bell state

$$
|v\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) .
$$

- Maximally entangled state

Some Notations

- Separable state:

Example:

$$
\begin{aligned}
|v\rangle & =\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle-|11\rangle) \\
& =\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle) .
\end{aligned}
$$

- Entangled state:

Example- Bell state

$$
|v\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle) .
$$

- Maximally entangled state
- Absolutely maximally entangled state (AME)

Definitions

t-uniform state

Definitions

t-uniform state

A quantum state of k subsystems with local dimension v is called a t-uniform state, if all its reductions to t qudits are maximally mixed, where $t \leq\lfloor k / 2\rfloor$.

Definitions

t-uniform state

A quantum state of k subsystems with local dimension v is called a t-uniform state, if all its reductions to t qudits are maximally mixed, where $t \leq\lfloor k / 2\rfloor$.

- A t-uniform state is also a s-uniform state, where $s \leq t$.

Definitions

t-uniform state

A quantum state of k subsystems with local dimension v is called a t-uniform state, if all its reductions to t qudits are maximally mixed, where $t \leq\lfloor k / 2\rfloor$.

- A t-uniform state is also a s-uniform state, where $s \leq t$.
- The absolutely maximally entangled state $(\operatorname{AME}(k, v))$, is the extremal case of t-uniform state, $t=\lfloor k / 2\rfloor$.

Definitions

t-uniform state

A quantum state of k subsystems with local dimension v is called a t-uniform state, if all its reductions to t qudits are maximally mixed, where $t \leq\lfloor k / 2\rfloor$.

- A t-uniform state is also a s-uniform state, where $s \leq t$.
- The absolutely maximally entangled state $(\operatorname{AME}(k, v))$, is the extremal case of t-uniform state, $t=\lfloor k / 2\rfloor$.

Example

Example : 2-uniform state of 5 qudits with local dimension 4.

Example

Example: 2-uniform state of 5 qudits with local dimension 4.

$$
\begin{aligned}
\left|\psi_{5}\right\rangle= & \frac{1}{4}(|00000\rangle+|01111\rangle+|02222\rangle+|03333\rangle \\
& +|10123\rangle+|11032\rangle+|12301\rangle+|13210\rangle \\
& +|20231\rangle+|21320\rangle+|22013\rangle+|23102\rangle \\
& +|30312\rangle+|31203\rangle+|32130\rangle+|33021\rangle) .
\end{aligned}
$$

Known results on t-uniform states

when $t=\lfloor k / 2\rfloor$

- Scott, Facchi and Helwig constructed three kinds of $\operatorname{AME}(k, 2)$ states for $k=2,3,5$ and 6 by quantum additive codes, group acting and graph states, respectively. When $k=4$ or $k \geq 7$, there doesn't exist $\operatorname{AME}(k, 2)$ states. ${ }^{a b c d}$
${ }^{a}$ Scott A J. Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A., 2004, 69: 052330.
${ }^{b}$ Facchi P. Multipartite entanglement in qubit systems. Rend. Lincei Mat. Appl., 2009, 20: 25-67.
${ }^{c}$ Helwig W. Absolutely maximally entangled qudit graph states. arXiv: quant-ph/1306.2879.
${ }^{d}$ Huber F, Gühne O, Siewert J. Absolutely maximally entangled states of seven qubits do not exist. Phys. Rev. Lett., 2017,118: 200502.
- Goyeneche et al. constructed a kind of $\operatorname{AME}(k, p)$ states with $k=3,4$ for prime $p>2$ by multiunitary matrix. ${ }^{a}$

[^0]
when $t=\lfloor k / 2\rfloor$

- Goyeneche et al. constructed a kind of $\operatorname{AME}(k, p)$ states with $k=3,4$ for prime $p>2$ by multiunitary matrix. ${ }^{a}$
- Feng et al. constructed a kind of $\operatorname{AME}(k, p)$ state with any given even k for sufficiently large prime p by symmetric matrix. ${ }^{b}$

[^1]
when $t=\lfloor k / 2\rfloor$

- Goyeneche et al. constructed a kind of $\operatorname{AME}(k, p)$ states with $k=3,4$ for prime $p>2$ by multiunitary matrix. ${ }^{a}$
- Feng et al. constructed a kind of $\operatorname{AME}(k, p)$ state with any given even k for sufficiently large prime p by symmetric matrix. ${ }^{b}$
- Raissi et al. constructed a kind of $\operatorname{AME}(k, q)$ states with prime power q for any $q \geq k-1$ by liner MDS codes. ${ }^{c}$

[^2]
when $t=2$

- Goyeneche et al. constructed a kind of 2-uniform states of $k>5$ qubits by Hadamard matrix. ${ }^{a}$

[^3]
when $t=2$

- Goyeneche et al. constructed a kind of 2 -uniform states of $k>5$ qubits by Hadamard matrix. ${ }^{a}$
- Pang and Li et al. constructed a kind of 2-uniform states of and $k \geq 6$ qudits with local dimension of $d>2$ by irredundant orthogonal array. ${ }^{b c}$
${ }^{a}$ Goyeneche D, Życzkowski K. Genuinely multi-partite entangled states and orthogonal arrays. Phys. Rev. A., 2014, 90: 022316.
${ }^{b}$ Pang S Q, Zhang X, Lin X, Zhang Q J. Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Inf., 2019, https://doi.org/10.1038/s41534-019-0165-8.
${ }^{c}$ Li M S, Wang Y L. k-uniform quantum states arising from orthogonal arrays. Phy. Rev. A., 2019, 99: 042332.

when $t=3$

- Zang et al. constructed a kind of 3-uniform states of $k \geq 8$ qubits by Hadamard matrix and adding minus signs. ${ }^{a}$
${ }^{a}$ Zang Y J, Zuo H J, Tian Z H. 3-Uniform states and orthogonal arrays of strength 3. Int. J. Quantum Inf., 2019,17: 195003.
${ }^{b}$ Feng K Q, Jin L F, Xing C P, Yuan C. Multipartite entangled states, symmetric matrices and error-correcting codes. IEEE Trans. Inform. Theory., 2017, 63: 5618-5627.
${ }^{c}$ Pang S Q, Zhang X, Lin X, Zhang Q J. Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Inf., 2019, https://doi.org/10.1038/s41534-019-0165-8.

when $t=3$

- Zang et al. constructed a kind of 3-uniform states of $k \geq 8$ qubits by Hadamard matrix and adding minus signs. ${ }^{a}$
- Feng et al. constructed a kind of 3 -uniform states of $k \geq 8$ qudits with local dimension of prime p by symmetric matrix. ${ }^{b}$
${ }^{a}$ Zang Y J, Zuo H J, Tian Z H. 3-Uniform states and orthogonal arrays of strength 3. Int. J. Quantum Inf., 2019,17: 195003.
${ }^{b}$ Feng K Q, Jin L F, Xing C P, Yuan C. Multipartite entangled states, symmetric matrices and error-correcting codes. IEEE Trans. Inform. Theory., 2017, 63: 5618-5627.
${ }^{c}$ Pang S Q, Zhang X, Lin X, Zhang Q J. Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Inf., 2019, https://doi.org/10.1038/s41534-019-0165-8.

when $t=3$

- Zang et al. constructed a kind of 3-uniform states of $k \geq 8$ qubits by Hadamard matrix and adding minus signs. ${ }^{a}$
- Feng et al. constructed a kind of 3 -uniform states of $k \geq 8$ qudits with local dimension of prime p by symmetric matrix. ${ }^{b}$
- Pang et al. constructed a kind of 3 -uniform states of $k=8$ and $k \geq 12$ qudits with local dimension of non-prime power $d \geq 6$ by irredundant orthogonal array. ${ }^{c}$
${ }^{a}$ Zang Y J, Zuo H J, Tian Z H. 3-Uniform states and orthogonal arrays of strength 3. Int. J. Quantum Inf., 2019,17: 195003.
${ }^{b}$ Feng K Q, Jin L F, Xing C P, Yuan C. Multipartite entangled states, symmetric matrices and error-correcting codes. IEEE Trans. Inform. Theory., 2017, 63: 5618-5627.
${ }^{c}$ Pang S Q, Zhang X, Lin X, Zhang Q J. Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Inf., 2019, https://doi.org/10.1038/s41534-019-0165-8.
- Orthogonal array (OA) is a combinatorial structure introduced by the statistician C. R. Rao in 1947 when he studied experimental designs. ${ }^{a}$
${ }^{a}$ Rao C R. Factorial experiments derivable from combinatorial arrangements of arrays. J. Roy. Statist. Soc. Suppl., 1947, 9: 128-139.
- Orthogonal array (OA) is a combinatorial structure introduced by the statistician C. R. Rao in 1947 when he studied experimental designs. ${ }^{a}$
- Orthogonal array is also an important object in combinatorial designs and statistics. It has been studied by many researchers and obtained abundant achievements.

[^4]- Orthogonal array (OA) is a combinatorial structure introduced by the statistician C. R. Rao in 1947 when he studied experimental designs. ${ }^{a}$
- Orthogonal array is also an important object in combinatorial designs and statistics. It has been studied by many researchers and obtained abundant achievements.
- Orthogonal arrays have been widely applied in experimental design, computer science, coding cryptography, network communication theory, software engineering and so on.

[^5]
Definitions

OA

Definitions

OA

An orthogonal array (OA) of size N, factor k, level v, strength t and index λ, denoted by $O A(N ; t, k, v)$ or $O A_{\lambda}(t, k, v)$, is an $N \times k$ array with entries from a set V of v symbols, such that in every $N \times t$ sub-array, each t-tuple on V occurs exactly λ time.

Definitions

OA

An orthogonal array (OA) of size N, factor k, level v, strength t and index λ, denoted by $O A(N ; t, k, v)$ or $O A_{\lambda}(t, k, v)$, is an $N \times k$ array with entries from a set V of v symbols, such that in every $N \times t$ sub-array, each t-tuple on V occurs exactly λ time.

- $N=\lambda v^{t}$.

Definitions

OA

An orthogonal array (OA) of size N, factor k, level v, strength t and index λ, denoted by $O A(N ; t, k, v)$ or $O A_{\lambda}(t, k, v)$, is an $N \times k$ array with entries from a set V of v symbols, such that in every $N \times t$ sub-array, each t-tuple on V occurs exactly λ time.

- $N=\lambda v^{t}$.
- When $\lambda=1, O A_{\lambda}(t, k, v)$ is denoted as $O A(t, k, v)$.

Definition

Irredundant orthogonal array (IrOA)

Definition

Irredundant orthogonal array (IrOA)

An orthogonal array $O A_{\lambda}(t, k, v)$ is called irredundant, written Ir $O A$, if when removing from the array any t columns all remaining rows, containing $k-t$ symbols each, are different.

Definition

Irredundant orthogonal array (IrOA)

An orthogonal array $O A_{\lambda}(t, k, v)$ is called irredundant, written $\operatorname{Ir} O A$, if when removing from the array any t columns all remaining rows, containing $k-t$ symbols each, are different.

- An $O A(t, k, v)(k \geq 2 t)$ is actually an $\operatorname{Ir} O A(t, k, v)$.

Definition

Irredundant orthogonal array (IrOA)

An orthogonal array $O A_{\lambda}(t, k, v)$ is called irredundant, written Ir $O A$, if when removing from the array any t columns all remaining rows, containing $k-t$ symbols each, are different.

- An $O A(t, k, v)(k \geq 2 t)$ is actually an $\operatorname{Ir} O A(t, k, v)$.
- An $\operatorname{IrO} A_{\lambda}(t, k, v)$ exists only if $\lambda \leq v^{k-2 t}$.

Example

Example: $O A(8 ; 2,6,2)$

Example

Example: $O A(8 ; 2,6,2)$

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Example

Example: $O A(8 ; 2,6,2)$

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

It is also an $\operatorname{Ir} O A(8 ; 2,6,2)$.

Relationship between OAs and t-uniform states

Example : The corresponding quantum state with $\operatorname{Ir} O A(8 ; 2,6,2)$:

Relationship between OAs and t-uniform states

Example : The corresponding quantum state with $\operatorname{IrOA}(8 ; 2,6,2)$:

$$
\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right)
$$

Relationship between OAs and t-uniform states

Example : The corresponding quantum state with $\operatorname{IrOA}(8 ; 2,6,2)$:

$$
\left(\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \Longrightarrow \begin{gathered}
\\
|\psi\rangle=\begin{array}{l}
\\
2 \sqrt{2} \\
\\
+|001100\rangle+|011001\rangle \\
\\
+|110000\rangle+|100101\rangle \\
\\
+|000011\rangle+|010110\rangle)
\end{array} \\
\end{gathered}
$$

Relationship between OAs and t-uniform states

Parameters correspondence

	Orthogonal array	Multipartite quantum state $\|\psi\rangle$
N	Runs	Number of linear terms in the state
k	Factors	Number of qudits
v	Levels	Dimension of the subsystem ($v=2$ for qubits)
t	Strength	Class of entanglement (t-uniform)

Known results on OA

$$
t=2, k=5,6
$$

$$
t=3, k=5,6
$$

${ }^{a}$ Ji L. and Yin J. Construction of new orthogonal arrays and covering arrays of strength three. J. Combin. Theory Ser.A, 2010, 117: 236-247.

Known results on OA

$$
t=2, k=5,6
$$

- If $v \notin\{2,3,6,10\}$, then an $O A(2,5, v)$ exists.

$$
t=3, k=5,6
$$

${ }^{a}$ Ji L. and Yin J. Construction of new orthogonal arrays and covering arrays of strength three. J. Combin. Theory Ser.A, 2010, 117: 236-247.

Known results on OA

$$
t=2, k=5,6
$$

- If $v \notin\{2,3,6,10\}$, then an $O A(2,5, v)$ exists.
- If $v \notin\{2,3,4,6,10,22\}$, then an $O A(2,6, v)$ exists.

$$
t=3, k=5,6
$$

${ }^{a}$ Ji L. and Yin J. Construction of new orthogonal arrays and covering arrays of strength three. J. Combin. Theory Ser.A, 2010, 117: 236-247.

Known results on OA

$$
t=2, k=5,6
$$

- If $v \notin\{2,3,6,10\}$, then an $O A(2,5, v)$ exists.
- If $v \notin\{2,3,4,6,10,22\}$, then an $O A(2,6, v)$ exists.

$$
t=3, k=5,6
$$

- Let $v \geq 4$. If $v \not \equiv 2(\bmod 4)$, then an $O A(3,5, v)$ exists.
${ }^{a}$ Ji L. and Yin J. Construction of new orthogonal arrays and covering arrays of strength three. J. Combin. Theory Ser.A, 2010, 117: 236-247.

Known results on OA

$$
t=2, k=5,6
$$

- If $v \notin\{2,3,6,10\}$, then an $O A(2,5, v)$ exists.
- If $v \notin\{2,3,4,6,10,22\}$, then an $O A(2,6, v)$ exists.

$$
t=3, k=5,6
$$

- Let $v \geq 4$. If $v \not \equiv 2(\bmod 4)$, then an $O A(3,5, v)$ exists.
- Let v satisfy $\operatorname{gcd}(v, 4) \neq 2$ and $\operatorname{gcd}(v, 18) \neq 3$. Then there is an $O A(3,6, v)$. Besides, an $O A(3,6,3 u)$ with $u \in\{5,7\}$ exists. ${ }^{a}$
${ }^{a}$ Ji L. and Yin J. Construction of new orthogonal arrays and covering arrays of strength three. J. Combin. Theory Ser.A, 2010, 117: 236-247.

Known results on OA

- If q is a prime power and $t<q$, then an $O A(t, q+1, q)$ exists. Moreover, if $q \geq 4$ is a power of 2 , an $O A(3, q+2, q)$ exists.
${ }^{a}$ Colbourn C J, Dinitz J H. The CRC Handbook of Combinatorial Designs. 2nd, Boca Raton: CRC Press, 2007.

Known results on OA

- If q is a prime power and $t<q$, then an $O A(t, q+1, q)$ exists. Moreover, if $q \geq 4$ is a power of 2 , an $O A(3, q+2, q)$ exists.
- Suppose that $v=q_{1} q_{2} \ldots q_{s}$ is a standard factorization of v into distinct prime powers. If $q_{i}>t$, then an $O A(t, k+1, v)$ exists, where $k=\min \left\{q_{i}\right.$: $1 \leq i \leq s\} .{ }^{a}$
${ }^{a}$ Colbourn C J, Dinitz J H. The CRC Handbook of Combinatorial Designs. 2nd, Boca Raton: CRC Press, 2007.

(1) Background and Notations

(2) Two types of t-uniform states

- 2-uniform states of $k=5,6, q, q+1$ qudits
- 3-uniform states of $k \geq 8$ qubits
(3) Further problems

Research contents

In this talk, we mainly construct some kinds of 2-uniform states of $k=5,6$ quidts with any local dimension and $k=q, q+1$ quidts with local dimension q, where q is a prime power.
i.e., $\operatorname{Ir} O A_{\lambda}(2, k, v)$, where $k=5,6$ with $\lambda \leq v, \lambda \leq v^{2}$ respectively; $\operatorname{Ir} O A_{\lambda}(2, k, q)$, where $k=q, q+1$ with $\lambda \leq v^{q-4}$.

Auxiliary designs

Row-divisible OAs

Auxiliary designs

Row-divisible OAs

Let A be an $O A_{\lambda}(t, k, v)$. Suppose that the rows of A can be partitioned into μ subarrays such that any $k-t$ columns of each subarray contains no identical rows, then we call A a μ-row-divisible $O A_{\lambda}(t, k, v)$.

Auxiliary designs

Row-divisible OAs

Let A be an $O A_{\lambda}(t, k, v)$. Suppose that the rows of A can be partitioned into μ subarrays such that any $k-t$ columns of each subarray contains no identical rows, then we call A a μ-row-divisible $O A_{\lambda}(t, k, v)$.

- An $\operatorname{Ir} O A$ is a 1 -row-divisible $O A_{\lambda}(t, k, v)$

Auxiliary designs

Row-divisible OAs

Let A be an $O A_{\lambda}(t, k, v)$. Suppose that the rows of A can be partitioned into μ subarrays such that any $k-t$ columns of each subarray contains no identical rows, then we call A a μ-row-divisible $O A_{\lambda}(t, k, v)$.

- An $\operatorname{Ir} O A$ is a 1 -row-divisible $O A_{\lambda}(t, k, v)$

Compatible OAs

Auxiliary designs

Row-divisible OAs

Let A be an $O A_{\lambda}(t, k, v)$. Suppose that the rows of A can be partitioned into μ subarrays such that any $k-t$ columns of each subarray contains no identical rows, then we call A a μ-row-divisible $O A_{\lambda}(t, k, v)$.

- An $\operatorname{Ir} O A$ is a 1 -row-divisible $O A_{\lambda}(t, k, v)$

Compatible OAs

Let A_{1} be an $\operatorname{Ir} O A_{\lambda_{1}}(t, k, v)$ and A_{2} be an $\operatorname{Ir} O A_{\lambda_{2}}(t, k, v)$ over the same set $V . A_{1}$ and A_{2} are compatible if their superimposition constitutes an $\operatorname{Ir} O A_{\lambda_{1}+\lambda_{2}}(t, k, v)$ over V.

Auxiliary designs

Row-divisible OAs

Let A be an $O A_{\lambda}(t, k, v)$. Suppose that the rows of A can be partitioned into μ subarrays such that any $k-t$ columns of each subarray contains no identical rows, then we call A a μ-row-divisible $O A_{\lambda}(t, k, v)$.

- An $\operatorname{Ir} O A$ is a 1 -row-divisible $O A_{\lambda}(t, k, v)$

Compatible OAs

Let A_{1} be an $\operatorname{Ir} O A_{\lambda_{1}}(t, k, v)$ and A_{2} be an $\operatorname{Ir} O A_{\lambda_{2}}(t, k, v)$ over the same set $V . A_{1}$ and A_{2} are compatible if their superimposition constitutes an $\operatorname{IrO} A_{\lambda_{1}+\lambda_{2}}(t, k, v)$ over V.

- A set of $\omega \operatorname{Ir} O A$ s over the same set V are termed compatible if they are pairwise compatible.

Construction methods

Construction 1 (Superposing)

For any non-negative integers $m_{1}, m_{2}, \ldots, m_{r}$,

$$
\begin{aligned}
& \mu_{i}-\text { row }- \text { divisible } O A_{\lambda_{i}}(t, k, v), 1 \leq i \leq r \\
& \Rightarrow \sum_{i=1}^{r} m_{i} \mu_{i}-\text { row }- \text { divisible } O A_{\sum_{i=1}^{r} m_{i} \lambda_{i}}(t, k, v) .
\end{aligned}
$$

Construction methods

Construction 1 (Superposing)

For any non-negative integers $m_{1}, m_{2}, \ldots, m_{r}$,

$$
\begin{aligned}
& \mu_{i}-\text { row }- \text { divisible } O A_{\lambda_{i}}(t, k, v), 1 \leq i \leq r \\
& \Rightarrow \sum_{i=1}^{r} m_{i} \mu_{i}-\text { row }- \text { divisible } O A_{\sum_{i=1}^{r} m_{i} \lambda_{i}}(t, k, v) .
\end{aligned}
$$

Construction 2 (Weighting)

Let μ_{1}, μ_{2} be two positive integers,

$$
\left.\begin{array}{l}
\mu_{1}-\text { row }- \text { divisible } O A_{\lambda_{1}}\left(t, k, v_{1}\right) \\
\mu_{2}-\text { row }- \text { divisible } O A_{\lambda_{2}}\left(t, k, v_{2}\right)
\end{array}\right\} \Rightarrow \begin{gathered}
\mu_{1} \mu_{2}-\text { row }- \text { divisible } \\
O A_{\lambda_{1} \lambda_{2}}\left(t, k, v_{1} v_{2}\right)
\end{gathered}
$$

Construction methods

Construction 3

Let v_{1} and v_{2} be two positive integers; $m_{1}, m_{2}, \ldots, m_{r}$ be r non-negative integers; and $\mu_{1}, \mu_{2}, \ldots, \mu_{r}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be $2 r$ positive integers. Moreover they satisfies $m_{1} \mu_{1}+m_{2} \mu_{2}+\cdots+m_{r} \mu_{r} \leq \mu$. Then

$$
\left.\begin{array}{l}
\mu \text { compatible Ir } O A_{\eta}\left(t, k, v_{2}\right) s \\
\mu_{i}-\text { row - divisible } O A_{\lambda_{i}}\left(t, k, v_{1}\right)
\end{array}\right\} \Rightarrow \operatorname{IrO} A_{\eta \sum_{i=1}^{r} m_{i} \lambda_{i}}\left(t, k, v_{1} v_{2}\right) .
$$

Construction methods

Construction 3

Let v_{1} and v_{2} be two positive integers; $m_{1}, m_{2}, \ldots, m_{r}$ be r non-negative integers; and $\mu_{1}, \mu_{2}, \ldots, \mu_{r}, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be $2 r$ positive integers. Moreover they satisfies $m_{1} \mu_{1}+m_{2} \mu_{2}+\cdots+m_{r} \mu_{r} \leq \mu$. Then

$$
\left.\begin{array}{l}
\mu \text { compatible } \operatorname{Ir} O A_{\eta}\left(t, k, v_{2}\right) s \\
\mu_{i}-\text { row }- \text { divisible } O A_{\lambda_{i}}\left(t, k, v_{1}\right)
\end{array}\right\} \Rightarrow \operatorname{IrO} A_{\eta \sum_{i=1}^{r} m_{i} \lambda_{i}}\left(t, k, v_{1} v_{2}\right) .
$$

Construction 4

If an $O A(k-t, 2(k-t), v)$ exists, then $v^{k-2 t}$ compatible $O A(t, k, v) \mathrm{s}$ exist, so does an $\operatorname{Ir} O A_{\lambda}(t, k, v)$ for any $\lambda \leq v^{k-2 t}$.

Construction methods

Corollary

Let v_{1} and v_{2} be two positive integers; m_{1}, m_{2} be two non-negative integers; and $\mu_{1}, \mu_{2}, \lambda_{1}, \lambda_{2}$ be four positive integers. Moreover they satisfies $m_{1} \mu_{1}+m_{2} \mu_{2} \leq \mu$. Then
μ compatible $\operatorname{Ir} O A\left(t, k, v_{2}\right) s$
$\mu_{1}-$ row - divisible $\left.O A_{\lambda_{1}}\left(t, k, v_{1}\right)\right\} \Rightarrow \operatorname{Ir} O A_{\eta\left(m_{1} \lambda_{1}+m_{2} \lambda_{2}\right)}\left(t, k, v_{1} v_{2}\right)$.
μ_{2} - row - divisible $O A_{\lambda_{2}}\left(t, k, v_{1}\right)$)

Main results for $t=2$ and $k=5$

Theorem 1

If v be a positive integer which satisfies $\operatorname{gcd}(v, 4) \neq 2$ and $\operatorname{gcd}(v, 18) \neq 3$, then an $\operatorname{IrO} A_{\lambda}(2,5, v)$ exists for any $\lambda \leq v$.

Main results for $t=2$ and $k=5$

Theorem 1

If v be a positive integer which satisfies $\operatorname{gcd}(v, 4) \neq 2$ and $\operatorname{gcd}(v, 18) \neq 3$, then an $\operatorname{Ir} O A_{\lambda}(2,5, v)$ exists for any $\lambda \leq v$.

Theorem 2

(1) Let $v=2 m$, where $(m, 2)=1$ and $\operatorname{gcd}(m, 18) \neq 3$, then an $\operatorname{Ir} O A_{\lambda}(2,5, v)$ exists for any $2 \leq \lambda \leq \frac{1}{2} v-1$.
(2) Let $v=3 m$, where $(m, 3)=1, m \geq 5$, and $\operatorname{gcd}(m, 4) \neq 2$, then an $\operatorname{Ir} O A_{\lambda}(2,5, v)$ exists for any λ with even $2 \leq \lambda \leq \frac{2}{3} v$ and odd $3 \leq \lambda \leq \frac{2}{3} v-3$.
(3) Let $v=6 m$, where $(m, 6)=1$, then an $\operatorname{Ir} O A_{\lambda}(2,5, v)$ exists for any λ with even $2 \leq \lambda \leq \frac{2}{3} v-2$ and odd $3 \leq \lambda \leq \frac{2}{3} v-11$.

Main results for $t=2$ and $k=6$

Theorem 3

If $v=q_{1} q_{2} \ldots q_{s}$ is a standard factorization of v into distinct prime powers where $q_{i} \geq 7,1 \leq i \leq s$, then an $\operatorname{Ir} O A_{\lambda}(2,6, v)$ exists for any $\lambda \leq v^{2}$.

Main results for $t=2$ and $k=6$

Theorem 3

If $v=q_{1} q_{2} \ldots q_{s}$ is a standard factorization of v into distinct prime powers where $q_{i} \geq 7,1 \leq i \leq s$, then an $\operatorname{Ir} O A_{\lambda}(2,6, v)$ exists for any $\lambda \leq v^{2}$.

Theorem 4

Let $v=s m,(m, s)=1$, and m with a standard prime powers factorization of $q_{1} q_{2} \ldots q_{l}$ satisfying $q_{i} \geq 7$ for $1 \leq i \leq l$.
(1) when $s \in\{2,4,6,10,12,20,30\}$, an $\operatorname{Ir} O A_{\lambda}(2,6, v)$ exists for any λ with even $2 \leq \lambda \leq \frac{2}{s^{2}} v^{2}$ and odd $3 \leq \lambda \leq \frac{2}{s^{2}} v^{2}-3$.
(2) when $s \in\{3,5,15,60\}$, an $\operatorname{Ir} O A_{\lambda}(2,6, v)$ exists for any λ with $2 \leq$ $\lambda \leq \frac{2}{s^{2}} v^{2}$.

Main results for $t=2$ and $k=q, q+1$

Theorem 5

Let q be a prime power with $q>3$, then there exist an $\operatorname{Ir} O A_{\lambda}(2, q, q)$ and an $\operatorname{IrO} A_{\lambda}(2, q+1, q)$ for any λ with $\lambda \leq q^{2}-5 q+5$.

3-uniform states

For 3 -uniform states, we mainly discuss the existence of $k \geq 8$ qubits. i.e., $\operatorname{Ir} O A(N ; 3, k, 2)$, where $k \geq 8$ except for 9 .

Hadamard matrix

Hadamard matrix

A Hadamard matrix of order n is an $n \times n$ matrix H_{n} of +1 's and -1 's whose rows are orthogonal, i.e. which satisfies

$$
H_{n} H_{n}^{\mathrm{T}}=n I_{n},
$$

where I_{n} is the $n \times n$ identity matrix, and H_{n}^{T} is the transpose of H_{n}.

Hadamard matrix

A Hadamard matrix of order n is an $n \times n$ matrix H_{n} of +1 's and -1 's whose rows are orthogonal, i.e. which satisfies

$$
H_{n} H_{n}^{\mathrm{T}}=n I_{n},
$$

where I_{n} is the $n \times n$ identity matrix, and H_{n}^{T} is the transpose of H_{n}.

- A Hadamard matrix is called normalized, if its every entry in the first row or column is " 1 ".

3-uniform states

Construction 5

If H_{n} is a normalized Hadamard matrix of order n, then

$$
\binom{H_{n}}{-H_{n}}
$$

is an orthogonal array $O A(2 n, 3, n, 2)$ of +1 's and -1 's. Moreover, if al1 elements equaling to -1 s are replaced with 0 s , then an orthogonal array $O A(2 n, 3, n, 2)$ of 1 's and 0 's exists.

Main results

There exists a 3 -uniform state of 9 qubits.

$$
\begin{aligned}
\left|\phi_{9}\right\rangle= & -|000000000\rangle-|000001111\rangle+|000110011\rangle+|000111100\rangle \\
& +|001010101\rangle+|001011010\rangle-|001100110\rangle-|001101001\rangle \\
& -|010010110\rangle-|010011001\rangle+|010100101\rangle+|010101010\rangle \\
& +|011000011\rangle+|011001100\rangle-|011110000\rangle-|011111111\rangle \\
& +|100010111\rangle+|100011000\rangle+|100100100\rangle+|100101011\rangle \\
& +|101000010\rangle+|101001101\rangle+|101110001\rangle+|101111110\rangle \\
& +|110000001\rangle+|110001110\rangle+|110110010\rangle+|110111101\rangle \\
& +|111010100\rangle+|111011011\rangle+|111100111\rangle+|111101000\rangle .
\end{aligned}
$$

Main results

Theorem 6

There exists a 3 -uniform state of k qubits for every $k \geq 8$.

Main results

Theorem 6

There exists a 3 -uniform state of k qubits for every $k \geq 8$.
(1) Background and Notations
(2) Two types of t-uniform states
(3) Further problems

Further problems

- Problem 1: Find new methods, construct some IrOAs of strength 2, with large index λ.

Further problems

- Problem 1: Find new methods, construct some IrOAs of strength 2, with large index λ.
- Problem 2: Construct more IrOAs of strength $t \geq 3$ with any $1<\lambda \leq$ $v^{k-2 t}$.

Thank you

 for your attention!
[^0]: ${ }^{a}$ Goyeneche D, Alsina D, Latorre J, Riera A, Życzkowski K. Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices. Phys. Rev. A., 2015, 92: 032316.
 ${ }^{b}$ Feng K Q, Jin L F, Xing C P, Yuan C. Multipartite entangled states, symmetric matrices and error-correcting codes. IEEE Trans. Inform. Theory., 2017, 63: 5618-5627.
 ${ }^{c}$ Raissi Z, Gogolin C, Riera A, Acin A. Constructing optimal quantum error correcting codes from absolute maximally entangled states. arXiv: 1701.03359 .

[^1]: ${ }^{a}$ Goyeneche D, Alsina D, Latorre J, Riera A, Życzkowski K. Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices. Phys. Rev. A., 2015, 92: 032316.
 ${ }^{b}$ Feng K Q, Jin L F, Xing C P, Yuan C. Multipartite entangled states, symmetric matrices and error-correcting codes. IEEE Trans. Inform. Theory., 2017, 63: 5618-5627.
 ${ }^{c}$ Raissi Z, Gogolin C, Riera A, Acin A. Constructing optimal quantum error correcting codes from absolute maximally entangled states. arXiv: 1701.03359.

[^2]: ${ }^{a}$ Goyeneche D, Alsina D, Latorre J, Riera A, Życzkowski K. Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices. Phys. Rev. A., 2015, 92: 032316.
 ${ }^{b}$ Feng K Q, Jin L F, Xing C P, Yuan C. Multipartite entangled states, symmetric matrices and error-correcting codes. IEEE Trans. Inform. Theory., 2017, 63: 5618-5627.
 ${ }^{c}$ Raissi Z, Gogolin C, Riera A, Acin A. Constructing optimal quantum error correcting codes from absolute maximally entangled states. arXiv: 1701.03359.

[^3]: ${ }^{a}$ Goyeneche D, \dot{Z} yczkowski K. Genuinely multi-partite entangled states and orthogonal arrays. Phys. Rev. A., 2014, 90: 022316.
 ${ }^{b}$ Pang S Q, Zhang X, Lin X, Zhang Q J. Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Inf., 2019, https://doi.org/10.1038/s41534-019-0165-8.
 ${ }^{c}$ Li M S, Wang Y L. k-uniform quantum states arising from orthogonal arrays. Phy. Rev. A., 2019, 99: 042332.

[^4]: ${ }^{a}$ Rao C R. Factorial experiments derivable from combinatorial arrangements of arrays. J. Roy. Statist. Soc. Suppl., 1947, 9: 128-139.

[^5]: ${ }^{a}$ Rao C R. Factorial experiments derivable from combinatorial arrangements of arrays. J. Roy. Statist. Soc. Suppl., 1947, 9: 128-139.

