## Height and Saturation Level of Random Digital Trees

(joint with M. Drmota, H.-K. Hwang and R. Neininger)

Michael Fuchs

Department of Mathematical Sciences
National Chengchi University

August 21st, 2019

## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Example:

> 011011 010101
> 101110
> 010000 101010
> 001100

## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Example:

> 011011 010101
> 101110
> 010000 101010
> 001100

## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Example:



## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Example:



## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Example:



## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Example:



## Tries

Proposed by René de la Briandais in 1959.
Name from the word data retrieval (suggested by Fredkin).

## Example:



## PATRICIA Tries

Proposed by Donald R. Morrison in 1968.
PATRICIA=Practical Algorithm To Retrieve Information Coded In Alphanumeric

## PATRICIA Tries

Proposed by Donald R. Morrison in 1968.
PATRICIA=Practical Algorithm To Retrieve Information Coded In Alphanumeric


## PATRICIA Tries

Proposed by Donald R. Morrison in 1968.
PATRICIA=Practical Algorithm To Retrieve Information Coded In Alphanumeric


## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

## Example:

011011 010101
101110
010000
101010
001100

## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

## Example:



## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

## Example:



## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

## Example:



## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

## Example:



## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

## Example:



## Digital Search Trees (DSTs)

Proposed by Edward G. Coffman and James Eve in 1970.
Closely related to the Lempel-Ziv compression scheme.

Example:


## Random Model

Bits are generated by independent Bernoulli random variables with mean $p$
$\longrightarrow$ Bernoulli model

## Random Model

Bits are generated by independent Bernoulli random variables with mean $p$
$\longrightarrow$ Bernoulli model

Two types of digital trees:

- $p=1 / 2$ : symmetric digital trees;
- $p \neq 1 / 2$ : asymmetric digital trees.


## Random Model

Bits are generated by independent Bernoulli random variables with mean $p$
$\longrightarrow$ Bernoulli model

Two types of digital trees:

- $p=1 / 2$ : symmetric digital trees;
- $p \neq 1 / 2$ : asymmetric digital trees.

Question: What can be said about the "shape" of the tree?

## Random Model

Bits are generated by independent Bernoulli random variables with mean $p$
$\longrightarrow$ Bernoulli model

Two types of digital trees:

- $p=1 / 2$ : symmetric digital trees;
- $p \neq 1 / 2$ : asymmetric digital trees.

Question: What can be said about the "shape" of the tree?
This question is important because its answer will shed light on the complexity of algorithms performed on digital trees.

## Three Shape Parameters

$H_{n}=$ longest path to a leaf;
$S_{n}=$ shortest path to a leaf;
$F_{n}=$ saturation (or fill-up) level;

## Three Shape Parameters

$H_{n}=$ longest path to a leaf;
$S_{n}=$ shortest path to a leaf;
$F_{n}=$ saturation (or fill-up) level;
Example:


## Three Shape Parameters

$H_{n}=$ longest path to a leaf;
$S_{n}=$ shortest path to a leaf;
$F_{n}=$ saturation (or fill-up) level;

## Example:



## Three Shape Parameters

$H_{n}=$ longest path to a leaf;
$S_{n}=$ shortest path to a leaf;
$F_{n}=$ saturation (or fill-up) level;

## Example:



## Three Shape Parameters

$H_{n}=$ longest path to a leaf;
$S_{n}=$ shortest path to a leaf;
$F_{n}=$ saturation (or fill-up) level;

## Example:



## Results for Tries (i)

## Flajolet (1983):

Theorem
For symmetric tries,

$$
\mathbb{P}\left(H_{n} \leq k\right) \rightarrow e^{-e^{-t}}
$$

where $k$ and $n$ tend to infinity such that $\log \left(2^{k+1} / n^{2}\right) \rightarrow t$.

## Results for Tries (i)

## Flajolet (1983):

## Theorem

For symmetric tries,

$$
\mathbb{P}\left(H_{n} \leq k\right) \rightarrow e^{-e^{-t}}
$$

where $k$ and $n$ tend to infinity such that $\log \left(2^{k+1} / n^{2}\right) \rightarrow t$.

This shows that the "limit distribution" of the height is a Gumbel distribution.

## Results for Tries (i)

## Flajolet (1983):

## Theorem

For symmetric tries,

$$
\mathbb{P}\left(H_{n} \leq k\right) \rightarrow e^{-e^{-t}}
$$

where $k$ and $n$ tend to infinity such that $\log \left(2^{k+1} / n^{2}\right) \rightarrow t$.

This shows that the "limit distribution" of the height is a Gumbel distribution.

The above result was generalized to asymmetric tries by Pittel (with a probabilistic approach) and Jacquet \& Règnier (with a complex-analytic approach) in 1986.

## Results for Tries (ii)

Theorem (Pittel; 1986)
Let $p \geq q$. The distribution of $S_{n}$ is concentrated on two points:

$$
\mathbb{P}\left(S_{n}=k_{S} \text { or } k_{S}+1\right) \longrightarrow 1, \quad \text { as } n \longrightarrow \infty
$$

Here, $k_{S}$ is a sequence of $n$ which satisfies

$$
k_{S}= \begin{cases}\log _{2} n-\log _{2} \log n+\mathcal{O}(1), & \text { if } p=q \\ \log _{1 / q} n-\log _{1 / q} \log \log n+\mathcal{O}(1), & \text { if } p \neq q\end{cases}
$$

## Results for Tries (ii)

Theorem (Pittel; 1986)
Let $p \geq q$. The distribution of $S_{n}$ is concentrated on two points:

$$
\mathbb{P}\left(S_{n}=k_{S} \text { or } k_{S}+1\right) \longrightarrow 1, \quad \text { as } n \longrightarrow \infty
$$

Here, $k_{S}$ is a sequence of $n$ which satisfies

$$
k_{S}= \begin{cases}\log _{2} n-\log _{2} \log n+\mathcal{O}(1), & \text { if } p=q \\ \log _{1 / q} n-\log _{1 / q} \log \log n+\mathcal{O}(1), & \text { if } p \neq q\end{cases}
$$

Theorem (Hwang \& Nicodème \& Park \& Szpankowski; 2006)
We have,

$$
\mathbb{P}\left(F_{n}=S_{n}-1\right) \longrightarrow 1, \quad \text { as } n \longrightarrow \infty
$$

## External and Internal Node Profile

$B_{n, k}=$ number of external nodes at level $k$;
$I_{n, k}=$ number of internal nodes at level $k$.

## External and Internal Node Profile

$B_{n, k}=$ number of external nodes at level $k$;
$I_{n, k}=$ number of internal nodes at level $k$.

## Example:



## External and Internal Node Profile

$B_{n, k}=$ number of external nodes at level $k$;
$I_{n, k}=$ number of internal nodes at level $k$.

## Example:



## External and Internal Node Profile

$B_{n, k}=$ number of external nodes at level $k$;
$I_{n, k}=$ number of internal nodes at level $k$.

Example:


$$
\begin{array}{ll}
B_{6,0}=0 ; & I_{6,0}=1 ; \\
B_{6,1}=0 ; & I_{6,1}=2 ; \\
B_{6,2}=1 ; & I_{6,2}=2 ; \\
B_{6,3}=1 ; & I_{6,3}=2 ; \\
B_{6,4}=4 ; & I_{6,4}=0 ;
\end{array}
$$

## $H_{n}, S_{n}, F_{n}$ and the Profile of Tries

$$
\begin{aligned}
& H_{n}=\max \left\{k: B_{n, k}>0\right\} \\
& S_{n}=\min \left\{k: B_{n, k}>0\right\} \\
& F_{n}=\max \left\{k: I_{n, k}=2^{k}\right\} .
\end{aligned}
$$

## $H_{n}, S_{n}, F_{n}$ and the Profile of Tries

$H_{n}=\max \left\{k: B_{n, k}>0\right\}$;
$S_{n}=\min \left\{k: B_{n, k}>0\right\} ;$
$F_{n}=\max \left\{k: I_{n, k}=2^{k}\right\}$.
So, for instance, we have

$$
S_{n}>k \quad \Longrightarrow \quad B_{n, k}=0
$$

and

$$
S_{n}<k \quad \Longrightarrow \quad B_{n, \ell}>0 \text { for some } \ell<k
$$

## $H_{n}, S_{n}, F_{n}$ and the Profile of Tries

$H_{n}=\max \left\{k: B_{n, k}>0\right\} ;$
$S_{n}=\min \left\{k: B_{n, k}>0\right\} ;$
$F_{n}=\max \left\{k: I_{n, k}=2^{k}\right\}$.
So, for instance, we have

$$
S_{n}>k \quad \Longrightarrow \quad B_{n, k}=0
$$

and

$$
S_{n}<k \quad \Longrightarrow \quad B_{n, \ell}>0 \text { for some } \ell<k
$$

and thus

$$
\mathbb{P}\left(S_{n}>k\right) \leq \mathbb{P}\left(B_{n, k}=0\right) \quad \text { and } \quad \mathbb{P}\left(S_{n}<k\right) \leq \sum_{\ell=0}^{k-1} \mathbb{P}\left(B_{n, \ell}>0\right)
$$

## First and Second Moment Method

Theorem
Let $X$ be a non-negative, integer-valued random variable. Then,

$$
\mathbb{P}(X>0) \leq \mathbb{E}(X)
$$

and

$$
\mathbb{P}(X=0) \leq \frac{\operatorname{Var}(X)}{(\mathbb{E}(X))^{2}}
$$

## First and Second Moment Method

Theorem
Let $X$ be a non-negative, integer-valued random variable. Then,

$$
\mathbb{P}(X>0) \leq \mathbb{E}(X)
$$

and

$$
\mathbb{P}(X=0) \leq \frac{\operatorname{Var}(X)}{(\mathbb{E}(X))^{2}}
$$

Thus,

$$
\mathbb{P}\left(S_{n}>k\right) \leq \frac{\operatorname{Var}\left(B_{n, k}\right)}{\left(\mathbb{E}\left(B_{n, k}\right)\right)^{2}}
$$

and

$$
\mathbb{P}\left(S_{n}<k\right) \leq \sum_{\ell=0}^{k-1} \mathbb{E}\left(B_{n, \ell}\right)
$$

## Profile of Tries (Hwang et al.; 2006)

Let $p \geq q$ and
$\alpha_{1}:=\frac{1}{\log (1 / q)}, \alpha_{2}:=\frac{p^{2}+q^{2}}{p^{2} \log (1 / p)+q^{2} \log (1 / q)}, \alpha_{3}:=\frac{2}{\log \left(1 /\left(p^{2}+q^{2}\right)\right)}$ and

$$
\rho:=\frac{1}{\log (p / q)} \log \left(\frac{1-\alpha \log (1 / p)}{\alpha \log (1 / q)-1}\right) \quad \text { with } \alpha=\lim _{n}(k / \log n)
$$

## Profile of Tries (Hwang et al.; 2006)

Let $p \geq q$ and
$\alpha_{1}:=\frac{1}{\log (1 / q)}, \alpha_{2}:=\frac{p^{2}+q^{2}}{p^{2} \log (1 / p)+q^{2} \log (1 / q)}, \alpha_{3}:=\frac{2}{\log \left(1 /\left(p^{2}+q^{2}\right)\right)}$
and

$$
\rho:=\frac{1}{\log (p / q)} \log \left(\frac{1-\alpha \log (1 / p)}{\alpha \log (1 / q)-1}\right) \quad \text { with } \alpha=\lim _{n}(k / \log n)
$$

Then,

$$
\frac{\log \mathbb{E}\left(B_{n, k}\right)}{\log n} \rightarrow \begin{cases}0, & \text { if } \alpha \leq \alpha_{1} \\ -\rho+\alpha \log \left(p^{-\rho}+q^{-\rho}\right), & \text { if } \alpha_{1} \leq \alpha \leq \alpha_{2} \\ 2+\alpha \log \left(p^{2}+q^{2}\right), & \text { if } \alpha_{2} \leq \alpha \leq \alpha_{3} \\ 0, & \text { if } \alpha \geq \alpha_{3}\end{cases}
$$

and $\operatorname{Var}\left(B_{n, k}\right)=\Theta\left(\mathbb{E}\left(B_{n, k}\right)\right)$.

## Concentration of Saturation Level and Height

Saturation Level:

| Trees | $p=q ?$ | Concentration | Reference |
| :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | 2 points | HNPS2006 |
| DSTs | $p=\frac{1}{2}$ | 2 points | DFHN2019+ |
|  | $p \neq \frac{1}{2}$ | at most 3 points | DF2019+ |
| PATRICIA Tries | $0<p<1$ | $?$ | $?$ |

## Concentration of Saturation Level and Height

Saturation Level:

| Trees | $p=q ?$ | Concentration | Reference |
| :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | 2 points | HNPS2006 |
| DSTs | $p=\frac{1}{2}$ | 2 points | DFHN2019+ |
|  | $p \neq \frac{1}{2}$ | at most 3 points | DF2019+ |
| PATRICIA Tries | $0<p<1$ | $?$ | $?$ |

Height:

| Trees | $p=q ?$ | Concentration | Reference |
| :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | no | F1983; P1986; JR1986 |
| DSTs | $p=\frac{1}{2}$ | 2 points | DFHN2019+ |
|  | $p \neq \frac{1}{2}$ | $?$ | DF2019+ |
| PATRICIA Tries | $p=\frac{1}{2}$ | 3 points | Conjectured by KS2002 |
|  | $p \neq \frac{1}{2}$ | $?$ | $?$ |

## Profile of Symmetric DSTs: Mean

Let

$$
Q(z)=\prod_{\ell=1}^{\infty}\left(1-z 2^{-\ell}\right), \quad Q_{n}=\prod_{\ell=1}^{n}\left(1-2^{-\ell}\right)=\frac{Q\left(2^{-n}\right)}{Q(1)}
$$

## Profile of Symmetric DSTs: Mean

Let

$$
Q(z)=\prod_{\ell=1}^{\infty}\left(1-z 2^{-\ell}\right), \quad Q_{n}=\prod_{\ell=1}^{n}\left(1-2^{-\ell}\right)=\frac{Q\left(2^{-n}\right)}{Q(1)}
$$

Theorem (Drmota \& F. \& Hwang \& Neininger; 2019+)
We have,

$$
\mathbb{E}\left(B_{n, k}\right)=2^{k} F\left(n / 2^{k}\right)+\mathcal{O}(1)
$$

where $F(x)$ is the positive function

$$
F(x)=\sum_{j \geq 0} \frac{(-1)^{j} 2^{-\binom{j}{2}}}{Q_{j} Q(1)} e^{-2^{j} x}
$$

## Profile of Symmetric DSTs: $F(x)$ (i)

As $x \rightarrow \infty$,

$$
F(x)=\frac{e^{-x}}{Q(1)}+\mathcal{O}\left(e^{-2 x}\right)
$$

## Profile of Symmetric DSTs: $F(x)$ (i)

As $x \rightarrow \infty$,

$$
F(x)=\frac{e^{-x}}{Q(1)}+\mathcal{O}\left(e^{-2 x}\right)
$$

and as $x \rightarrow 0$,

$$
F(x) \sim \frac{X^{1 / \log 2}}{\sqrt{2 \pi x}} \exp \left(-\frac{(\log X \log X)^{2}}{2 \log 2}-\sum_{j \in \mathbb{Z}} c_{j}(X \log X)^{-\chi_{j}}\right)
$$

where $X=1 /(x \log 2), \chi_{j}=2 j \pi i / \log 2$,

$$
c_{0}=\frac{\log 2}{12}+\frac{\pi^{2}}{6 \log 2}
$$

and

$$
c_{j}=\frac{1}{2 j \sinh \left(2 j \pi^{2} / \log 2\right)}, \quad(j \neq 0)
$$

## Profile of Symmetric DSTs: $F(x)$ (ii)



## Profile of Symmetric DSTs: Variance

Theorem (Drmota \& F. \& Hwang \& Neininger; 2019+)
We have,

$$
\operatorname{Var}\left(B_{n, k}\right)=2^{k} G\left(n / 2^{k}\right)+\mathcal{O}(1)
$$

where $H(x)$ is a function with

$$
H(x)=\frac{e^{-x}}{Q(1)}+\mathcal{O}\left(x e^{-2 x}\right), \quad(x \rightarrow \infty)
$$

and

$$
H(x) \sim 2 F(x), \quad(x \rightarrow 0)
$$

## Profile of Symmetric DSTs: $G(x)$ (i)

We have,
$G(x)=\sum_{j, r=0}^{\infty} \sum_{0 \leq h, \ell \leq j} \frac{2^{-j}(-1)^{r+h+\ell} 2^{-\binom{r}{2}-\binom{h}{2}-\binom{\ell}{2}+2 h+2 \ell}}{Q_{r} Q(1) Q_{h} Q_{j-h} Q_{\ell} Q_{j-\ell}} \varphi\left(2^{r+j}, 2^{h}+2^{\ell} ; x\right)$,
where

$$
\varphi(u, v ; x)= \begin{cases}\frac{e^{-u x}-((v-u) x+1) e^{-v x}}{(v-u)^{2}}, & \text { if } u \neq v \\ x^{2} e^{-u x} / 2, & \text { if } u=v\end{cases}
$$

## Profile of Symmetric DSTs: $G(x)$ (i)

We have,
$G(x)=\sum_{j, r=0}^{\infty} \sum_{0 \leq h, \ell \leq j} \frac{2^{-j}(-1)^{r+h+\ell} 2^{-\binom{r}{2}-\binom{h}{2}-\binom{\ell}{2}+2 h+2 \ell}}{Q_{r} Q(1) Q_{h} Q_{j-h} Q_{\ell} Q_{j-\ell}} \varphi\left(2^{r+j}, 2^{h}+2^{\ell} ; x\right)$,
where

$$
\varphi(u, v ; x)= \begin{cases}\frac{e^{-u x}-((v-u) x+1) e^{-v x}}{(v-u)^{2}}, & \text { if } u \neq v \\ x^{2} e^{-u x} / 2, & \text { if } u=v\end{cases}
$$

Proposition (Drmota \& F. \& Hwan \& Neininger; 2019+)
$G(x)$ is a positive function on $(0, \infty)$.

## Profile of Symmetric DSTs: $G(x)$ (ii)



## Major Tools for the Proofs

## Major Tools for the Proofs

- Analytic Depoissonization \& JS-admissibility

Developed by Jacquet \& Szpankowski (1998).

## Major Tools for the Proofs

- Analytic Depoissonization \& JS-admissibility

Developed by Jacquet \& Szpankowski (1998).

- Theory of Poisson Variance

Developed by F., Hwang, Zacharovs $(2010,2014)$.

## Major Tools for the Proofs

- Analytic Depoissonization \& JS-admissibility

Developed by Jacquet \& Szpankowski (1998).

- Theory of Poisson Variance

Developed by F., Hwang, Zacharovs $(2010,2014)$.

- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

## Major Tools for the Proofs

- Analytic Depoissonization \& JS-admissibility

Developed by Jacquet \& Szpankowski (1998).

- Theory of Poisson Variance

Developed by F., Hwang, Zacharovs $(2010,2014)$.

- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

- Laplace Transform


## Major Tools for the Proofs

- Analytic Depoissonization \& JS-admissibility

Developed by Jacquet \& Szpankowski (1998).

- Theory of Poisson Variance

Developed by F., Hwang, Zacharovs $(2010,2014)$.

- Mellin Transform

Systemized by Flajolet, Gourdon, Dumas (1995).

- Laplace Transform
- Saddle-point Method


## Profile of Symmetric DSTs: Limit Laws

$$
\begin{aligned}
& k_{f}:=\log _{2} n-\log _{2} \log n+1+\frac{\log _{2} \log n}{\log n} \\
& k_{h}:=\log _{2} n+\sqrt{2 \log _{2} n}-\frac{1}{2} \log _{2} \log _{2} n+\frac{1}{\log 2}-\frac{3 \log \log n}{4 \sqrt{2(\log n)(\log 2)}} .
\end{aligned}
$$

## Profile of Symmetric DSTs: Limit Laws

$k_{f}:=\log _{2} n-\log _{2} \log n+1+\frac{\log _{2} \log n}{\log n} ;$
$k_{h}:=\log _{2} n+\sqrt{2 \log _{2} n}-\frac{1}{2} \log _{2} \log _{2} n+\frac{1}{\log 2}-\frac{3 \log \log n}{4 \sqrt{2(\log n)(\log 2)}}$.
Theorem (Drmota \& F. \& Hwang \& Neininger; 2019+)
(i) $\mathbb{E}\left(B_{n, k}\right), \operatorname{Var}\left(B_{n, k}\right) \rightarrow \infty$ iff there exists $\omega_{n} \rightarrow \infty$ with

$$
k_{f}+\frac{\omega_{n}}{\log n} \leq k \leq k_{h}-\frac{\omega_{n}}{\sqrt{\log n}}
$$

(ii) If $\mathbb{E}\left(B_{n, k}\right) \rightarrow \infty$, then

$$
\frac{B_{n, k}-\mathbb{E}\left(B_{n, k}\right)}{\sqrt{\operatorname{Var}\left(B_{n, k}\right)}} \xrightarrow{d} N(0,1) .
$$

## Saturation Level and Height of Symmetric DSTs (i)

Recall,

$$
\mathbb{E}\left(B_{n, k}\right)=2^{k} F\left(n / 2^{k}\right)+\mathcal{O}(1) .
$$

## Saturation Level and Height of Symmetric DSTs (i)

Recall,

$$
\mathbb{E}\left(B_{n, k}\right)=2^{k} F\left(n / 2^{k}\right)+\mathcal{O}(1)
$$

This result is not precise enough to understand the behavior of the saturation level and height!

## Saturation Level and Height of Symmetric DSTs (i)

Recall,

$$
\mathbb{E}\left(B_{n, k}\right)=2^{k} F\left(n / 2^{k}\right)+\mathcal{O}(1)
$$

This result is not precise enough to understand the behavior of the saturation level and height!

However, it can be refined to

$$
\begin{aligned}
\mathbb{E}\left(B_{n, k}\right)=2^{k} F\left(n / 2^{k}\right) & +F^{\prime}\left(n / 2^{k}\right)-2^{-k-1} n F^{\prime \prime}\left(n / 2^{k}\right) \\
& +\mathcal{O}\left(n^{-1}+n / 4^{k}\right)
\end{aligned}
$$

and for $n / 2^{k} \rightarrow \infty$

$$
\mathbb{E}\left(B_{n, k}\right) \sim \frac{2^{k}}{Q_{k}}\left(1-2^{-k}\right)^{n}
$$

## Saturation Level and Height of Symmetric DSTs (i)

Recall,

$$
\mathbb{E}\left(B_{n, k}\right)=2^{k} F\left(n / 2^{k}\right)+\mathcal{O}(1)
$$

This result is not precise enough to understand the behavior of the saturation level and height!

However, it can be refined to

$$
\begin{aligned}
\mathbb{E}\left(B_{n, k}\right)=2^{k} F\left(n / 2^{k}\right) & +F^{\prime}\left(n / 2^{k}\right)-2^{-k-1} n F^{\prime \prime}\left(n / 2^{k}\right) \\
& +\mathcal{O}\left(n^{-1}+n / 4^{k}\right)
\end{aligned}
$$

and for $n / 2^{k} \rightarrow \infty$

$$
\mathbb{E}\left(B_{n, k}\right) \sim \frac{2^{k}}{Q_{k}}\left(1-2^{-k}\right)^{n}
$$

These results are sufficient!

## Saturation Level and Height of Symmetric DSTs (ii)

Theorem (Drmota \& F. \& Hwang \& Neininger; 2019+)
Let

$$
k_{H}:=\left\lfloor\log _{2} n+\sqrt{2 \log _{2} n}-\frac{1}{2} \log _{2} \log _{2} n+\frac{1}{\log 2}\right\rfloor .
$$

Then, for the height $H_{n}$ of symmetric DSTs,

$$
\mathbb{P}\left(H_{n}=k_{H} \text { or } k_{H}+1\right) \longrightarrow 1, \quad \text { as } n \longrightarrow \infty .
$$

This was conjectured by Aldous \& Shields (1988).

## Saturation Level and Height of Symmetric DSTs (ii)

Theorem (Drmota \& F. \& Hwang \& Neininger; 2019+)
Let

$$
k_{H}:=\left\lfloor\log _{2} n+\sqrt{2 \log _{2} n}-\frac{1}{2} \log _{2} \log _{2} n+\frac{1}{\log 2}\right\rfloor .
$$

Then, for the height $H_{n}$ of symmetric DSTs,

$$
\mathbb{P}\left(H_{n}=k_{H} \text { or } k_{H}+1\right) \longrightarrow 1, \quad \text { as } n \longrightarrow \infty .
$$

This was conjectured by Aldous \& Shields (1988).
Theorem (Drmota \& F. \& Hwang \& Neininger; 2019+)
Let $k_{F}:=\left\lceil\log _{2} n-\log _{2} \log n\right\rceil$. Then, for the saturation level $F_{n}$ of symmetric DSTs,

$$
\mathbb{P}\left(F_{n}=k_{F}-1 \text { or } k_{F}\right) \longrightarrow 1, \quad \text { as } n \longrightarrow \infty .
$$

## Profile of Asymmetric DSTs: Notation

Assume that $p \geq q$.
Set

$$
\alpha_{1}=\frac{1}{\log (1 / q)}, \quad \alpha_{2}=\frac{1}{\log (1 / p)}
$$

and

$$
\rho=\frac{1}{\log (p / q)} \log \left(\frac{1-\alpha \log (1 / p)}{\alpha \log (1 / q)-1}\right),
$$

where

$$
\alpha=\lim _{n \rightarrow \infty} \frac{k}{\log n} .
$$

Moreover, set

$$
v=-\rho+\alpha \log \left(p^{-\rho}+q^{-\rho}\right)
$$

## Profile of Asymmetric DSTs: Mean \& Variance

Theorem (Drmota \& Szpankowski; 2011)
If $\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}-\epsilon\right) \log n$, then

$$
\mathbb{E}\left(B_{n, k}\right) \sim H_{1}\left(\rho ; \log _{p / q} p^{k} n\right) \frac{p^{\rho} q^{\rho}\left(p^{-\rho}+q^{-\rho}\right)}{\sqrt{2 \pi \alpha} \log (p / q)} \cdot \frac{n^{v}}{\sqrt{\log n}}
$$

where $H_{1}(\rho ; x)$ is a 1-periodic function.

## Profile of Asymmetric DSTs: Mean \& Variance

Theorem (Drmota \& Szpankowski; 2011)
If $\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}-\epsilon\right) \log n$, then

$$
\mathbb{E}\left(B_{n, k}\right) \sim H_{1}\left(\rho ; \log _{p / q} p^{k} n\right) \frac{p^{\rho} q^{\rho}\left(p^{-\rho}+q^{-\rho}\right)}{\sqrt{2 \pi \alpha} \log (p / q)} \cdot \frac{n^{v}}{\sqrt{\log n}},
$$

where $H_{1}(\rho ; x)$ is a 1-periodic function.
Theorem (Kazemi \& Vahidi-Asl; 2011)
If $\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}-\epsilon\right) \log n$, then

$$
\operatorname{Var}\left(B_{n, k}\right) \sim H_{2}\left(\rho ; \log _{p / q} p^{k} n\right) \frac{p^{\rho} q^{\rho}\left(p^{-\rho}+q^{-\rho}\right)}{\sqrt{2 \pi \alpha} \log (p / q)} \cdot \frac{n^{v}}{\sqrt{\log n}},
$$

where $H_{2}(\rho ; x)$ is a 1-periodic function.

## Recurrences

$$
B_{n+1, k} \stackrel{d}{=} B_{I_{n}, k-1}+B_{n-I_{n}, k-1}^{*}
$$

- $I_{n} \stackrel{d}{=} \operatorname{Binomial}(n, p)$;
- $B_{n, k} \stackrel{d}{=} B_{n, k}^{*}$;
- $B_{n, k}, B_{n, k}^{*}, I_{n}$ independent.



## Recurrences

$$
B_{n+1, k} \stackrel{d}{=} B_{I_{n}, k-1}+B_{n-I_{n}, k-1}^{*}
$$

- $I_{n} \stackrel{d}{=} \operatorname{Binomial}(n, p)$;
- $B_{n, k} \stackrel{d}{=} B_{n, k}^{*}$;
- $B_{n, k}, B_{n, k}^{*}, I_{n}$ independent.


This gives the following recurrence for the mean $\left(\mu_{n, k}:=\mathbb{E}\left(B_{n, k}\right)\right)$

$$
\mu_{n+1, k}=\sum_{j=0}^{n}\binom{n}{j} p^{j} q^{n-j}\left(\mu_{j, k-1}+\mu_{n-j, k-1}\right)
$$

## Solving the Recurrence for the Mean (i)

$$
\mu_{n+1, k}=\sum_{j=0}^{n}\binom{n}{j} p^{j} q^{n-j}\left(\mu_{j, k-1}+\mu_{n-j, k-1}\right)
$$

## Solving the Recurrence for the Mean (i)

$$
\mu_{n+1, k}=\sum_{j=0}^{n}\binom{n}{j} p^{j} q^{n-j}\left(\mu_{j, k-1}+\mu_{n-j, k-1}\right)
$$

- Consider the Poisson-generating function:

$$
\tilde{f}_{k}(z):=e^{-z} \sum_{n} \mu_{n, k} \frac{z^{n}}{n!}
$$

Then,

$$
\tilde{f}_{k}^{\prime}(z)+\tilde{f}_{k}(z)=\tilde{f}_{k-1}(p z)+\tilde{f}_{k-1}(q z)
$$

## Solving the Recurrence for the Mean (i)

$$
\mu_{n+1, k}=\sum_{j=0}^{n}\binom{n}{j} p^{j} q^{n-j}\left(\mu_{j, k-1}+\mu_{n-j, k-1}\right)
$$

- Consider the Poisson-generating function:

$$
\tilde{f}_{k}(z):=e^{-z} \sum_{n} \mu_{n, k} \frac{z^{n}}{n!} .
$$

Then,

$$
\tilde{f}_{k}^{\prime}(z)+\tilde{f}_{k}(z)=\tilde{f}_{k-1}(p z)+\tilde{f}_{k-1}(q z)
$$

- Consider the (normalized) Mellin-transform:

$$
F_{k}(s):=\frac{1}{\Gamma(s)} \int_{0}^{\infty} \tilde{f}_{k}(z) z^{s-1} \mathrm{~d} s
$$

where $\Gamma(s)$ is the Gamma-function.

## Solving the Recurrence for the Mean (ii)

Then,

$$
F_{k}(s)-F_{k}(s-1)=T(s) F_{k-1}(s)
$$

where

$$
T(s):=p^{-s}+q^{-s} .
$$

## Solving the Recurrence for the Mean (ii)

Then,

$$
F_{k}(s)-F_{k}(s-1)=T(s) F_{k-1}(s)
$$

where

$$
T(s):=p^{-s}+q^{-s} .
$$

- Consider the ordinary generating function:

$$
f(s, \omega):=\sum_{k} F_{k}(s) \omega_{k}
$$

Then,

$$
f(s, \omega)=\frac{f(s-1, \omega)}{1-\omega T(s)}
$$

## Solving the Recurrence for the Mean (ii)

Then,

$$
F_{k}(s)-F_{k}(s-1)=T(s) F_{k-1}(s)
$$

where

$$
T(s):=p^{-s}+q^{-s} .
$$

- Consider the ordinary generating function:

$$
f(s, \omega):=\sum_{k} F_{k}(s) \omega_{k} .
$$

Then,

$$
f(s, \omega)=\frac{f(s-1, \omega)}{1-\omega T(s)}
$$

and by iteration

$$
f(s, \omega)=\frac{g(s, \omega)}{g(0, \omega)}, \quad g(s, \omega):=\prod_{j \geq 0} \frac{1}{1-\omega T(s-j)} .
$$

## Solving the Recurrence for the Mean (iii)

What is left to invert the whole process.

## Solving the Recurrence for the Mean (iii)

What is left to invert the whole process.

- From $f(s, \omega)$ to $F_{k}(s)$ :

$$
F_{k}(s)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{f(s, \omega)}{\omega^{k+1}} \mathrm{~d} \omega
$$

where $\mathcal{C}_{1}$ is a suitable contour.

## Solving the Recurrence for the Mean (iii)

What is left to invert the whole process.

- From $f(s, \omega)$ to $F_{k}(s)$ :

$$
F_{k}(s)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{f(s, \omega)}{\omega^{k+1}} \mathrm{~d} \omega
$$

where $\mathcal{C}_{1}$ is a suitable contour.

- From $F_{k}(s)$ to $\tilde{f}_{k}(z)$ :

$$
\tilde{f}_{k}(z)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} \Gamma(s) F_{k}(s) z^{-s} \mathrm{~d} s
$$

where $\mathcal{C}_{2}$ is a suitable vertical line.

## Solving the Recurrence for the Mean (iii)

What is left to invert the whole process.

- From $f(s, \omega)$ to $F_{k}(s)$ :

$$
F_{k}(s)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{1}} \frac{f(s, \omega)}{\omega^{k+1}} \mathrm{~d} \omega
$$

where $\mathcal{C}_{1}$ is a suitable contour.

- From $F_{k}(s)$ to $\tilde{f}_{k}(z)$ :

$$
\tilde{f}_{k}(z)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{2}} \Gamma(s) F_{k}(s) z^{-s} \mathrm{~d} s
$$

where $\mathcal{C}_{2}$ is a suitable vertical line.

- From $\tilde{f}_{k}(z)$ to $\mu_{n, k}$ :

$$
\mu_{n, k}=\frac{n!}{2 \pi i} \int_{\mathcal{C}_{3}} \frac{e^{z} \tilde{f}_{k}(z)}{z^{n+1}} \mathrm{~d} z
$$

where $\mathcal{C}_{3}$ is a suitable contour.

## Solving the Recurrence for the Mean (iv)

## Drmota \& Szpankowski (2011):

$$
\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}+\epsilon\right) \log n .
$$

## Solving the Recurrence for the Mean (iv)

## Drmota \& Szpankowski (2011):

$\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}+\epsilon\right) \log n$.

- From $f(s, \omega)$ to $F_{k}(s)$ via residue theorem.
- From $F_{k}(s)$ to $\tilde{f}_{k}(z)$ and $\tilde{f}_{k}(z)$ to $\mu_{n, k}$ via saddle-point method.


## Solving the Recurrence for the Mean (iv)

## Drmota \& Szpankowski (2011):

$\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}+\epsilon\right) \log n$.

- From $f(s, \omega)$ to $F_{k}(s)$ via residue theorem.
- From $F_{k}(s)$ to $\tilde{f}_{k}(z)$ and $\tilde{f}_{k}(z)$ to $\mu_{n, k}$ via saddle-point method.
$\longrightarrow$ "double saddle-point approach" (Hwang et al.; 2006)


## Solving the Recurrence for the Mean (iv)

## Drmota \& Szpankowski (2011):

$\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}+\epsilon\right) \log n$.

- From $f(s, \omega)$ to $F_{k}(s)$ via residue theorem.
- From $F_{k}(s)$ to $\tilde{f}_{k}(z)$ and $\tilde{f}_{k}(z)$ to $\mu_{n, k}$ via saddle-point method.


## $\longrightarrow$ "double saddle-point approach" (Hwang et al.; 2006)

Drmota \& F. (2019+):
$k \approx \alpha_{1} \log n$.

## Solving the Recurrence for the Mean (iv)

## Drmota \& Szpankowski (2011):

$\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}+\epsilon\right) \log n$.

- From $f(s, \omega)$ to $F_{k}(s)$ via residue theorem.
- From $F_{k}(s)$ to $\tilde{f}_{k}(z)$ and $\tilde{f}_{k}(z)$ to $\mu_{n, k}$ via saddle-point method.


## $\longrightarrow$ "double saddle-point approach" (Hwang et al.; 2006)

Drmota \& F. (2019+):
$k \approx \alpha_{1} \log n$.
Saddle point method for the inversion from $\tilde{F}_{k}(s)$ to $\tilde{f}_{k}(z)$ has to be replaced by the Poisson summation formula!

## Profile of Asymmetric DSTs: Mean

Theorem (Drmota \& F.; 2019+)
Let $k=\alpha_{1}(\log n-\log \log \log n+D)$, where $D=\mathcal{O}(1)$. Then,

$$
\begin{aligned}
\mathbb{E}\left(B_{n, k}\right)= & \frac{1+o(1)}{\prod_{j \geq 1}\left(1-q^{j}\right)}(\log n)^{\frac{D-\log \log (p / q)-1}{\log (p / q)}} \\
& \times\left(\frac{(\log (1 / q))^{-m_{0}}}{m_{0}!}(\log n)^{-\frac{H\left(m_{0} \log (p / q)-D+\log \log (p / q)\right)}{\log (p / q)}}\right. \\
& \left.\quad+\frac{(\log (1 / q))^{-m_{0}-1}}{\left(m_{0}+1\right)!}(\log n)^{-\frac{H\left(\left(m_{0}+1\right) \log (p / q)-D+\log \log (p / q)\right)}{\log (p / q)}}\right) \\
& +\mathcal{O}\left((\log n)^{\frac{D-\log \log (p / q)-1}{\log (p / q)}}\right),
\end{aligned}
$$

where $m_{0}:=\max \left(\left\lfloor\left(\frac{D-\log \log (p / q)}{\log (p / q)}\right\rfloor, 0\right)\right.$ and $H(x):=e^{x}-1-x$.

## Saturation Level of Asymmetric DSTs

Theorem (Drmota \& F.; 2019+)
For the saturation level of asymmetric DSTs, we have

$$
\mathbb{P}\left(F_{n}=k_{F}-1 \quad \text { or } \quad F_{n}=k_{F} \quad F_{n}=k_{F}+1\right) \longrightarrow 1, \quad \text { as } \longrightarrow \infty,
$$

where $k_{F}$ is a sequence of $n$ which satisfies

$$
k_{F}=\log _{1 / q} n-\log _{1 / q} \log \log n+\mathcal{O}(1)
$$

## Saturation Level of Asymmetric DSTs

Theorem (Drmota \& F.; 2019+)
For the saturation level of asymmetric DSTs, we have

$$
\mathbb{P}\left(F_{n}=k_{F}-1 \quad \text { or } \quad F_{n}=k_{F} \quad F_{n}=k_{F}+1\right) \longrightarrow 1, \quad \text { as } \longrightarrow \infty,
$$

where $k_{F}$ is a sequence of $n$ which satisfies

$$
k_{F}=\log _{1 / q} n-\log _{1 / q} \log \log n+\mathcal{O}(1)
$$

## Remarks:

- Two point concentration holds for $p<2 / 3$.


## Saturation Level of Asymmetric DSTs

Theorem (Drmota \& F.; 2019+)
For the saturation level of asymmetric DSTs, we have

$$
\mathbb{P}\left(F_{n}=k_{F}-1 \quad \text { or } \quad F_{n}=k_{F} \quad F_{n}=k_{F}+1\right) \longrightarrow 1, \quad \text { as } \longrightarrow \infty,
$$

where $k_{F}$ is a sequence of $n$ which satisfies

$$
k_{F}=\log _{1 / q} n-\log _{1 / q} \log \log n+\mathcal{O}(1)
$$

## Remarks:

- Two point concentration holds for $p<2 / 3$.
- We conjecture that two point concentration holds for $1 / 2<p<1$.


## Saturation Level of Asymmetric DSTs

## Theorem (Drmota \& F.; 2019+)

For the saturation level of asymmetric DSTs, we have

$$
\mathbb{P}\left(F_{n}=k_{F}-1 \quad \text { or } \quad F_{n}=k_{F} \quad F_{n}=k_{F}+1\right) \longrightarrow 1, \quad \text { as } \longrightarrow \infty,
$$

where $k_{F}$ is a sequence of $n$ which satisfies

$$
k_{F}=\log _{1 / q} n-\log _{1 / q} \log \log n+\mathcal{O}(1)
$$

## Remarks:

- Two point concentration holds for $p<2 / 3$.
- We conjecture that two point concentration holds for $1 / 2<p<1$.
- We are currently working on a similar concentration result for the height.


## Concentration of Saturation Level and Height

Saturation Level:

| Trees | $p=q ?$ | Concentration | Reference |
| :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | 2 points | HNPS2006 |
| DSTs | $p=\frac{1}{2}$ | 2 points | DFHN2019+ |
|  | $p \neq \frac{1}{2}$ | at most 3 points | DF2019+ |
| PATRICIA Tries | $0<p<1$ | $?$ | $?$ |

Height:

| Trees | $p=q ?$ | Concentration | Reference |
| :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | no | F1983; P1986; JR1986 |
| DSTs | $p=\frac{1}{2}$ | 2 points | DFHN2019+ |
|  | $p \neq \frac{1}{2}$ | $?$ | DF2019+ |
| PATRICIA Tries | $p=\frac{1}{2}$ | 3 points | Conjectured by KS2002 |
|  | $p \neq \frac{1}{2}$ | $?$ | $?$ |

## Profile of Asymmetric PATRICIA Tries

Theorem (Magner \& Szpankowski; 2018)
If $\left(\alpha_{1}+\epsilon\right) \log n \leq k \leq\left(\alpha_{2}-\epsilon\right) \log n$, then

$$
\mu_{n, k} \sim P_{1}\left(\rho ; \log _{p / q} p^{k} n\right) \frac{p^{\rho} q^{\rho}\left(p^{-\rho}+q^{-\rho}\right)}{\sqrt{2 \pi \alpha} \log (p / q)} \cdot \frac{n^{v}}{\sqrt{\log n}},
$$

and

$$
\sigma_{n, k}^{2} \sim P_{2}\left(\rho ; \log _{p / q} p^{k} n\right) \frac{p^{\rho} q^{\rho}\left(p^{-\rho}+q^{-\rho}\right)}{\sqrt{2 \pi \alpha} \log (p / q)} \cdot \frac{n^{v}}{\sqrt{\log n}}
$$

where $P_{1}(\rho ; x)$ and $P_{2}(\rho ; x)$ are 1-periodic functions.
Moreover,

$$
\frac{B_{n, k}-\mu_{n, k}}{\sigma_{n, k}} \xrightarrow{d} N(0,1) .
$$

## Saturation Level and Height of PATRICIA tries

By extending the previous study to the boundary.

## Saturation Level and Height of PATRICIA tries

By extending the previous study to the boundary.
Theorem (Drmota \& Magner \& Szpankowski; 2019)
With high probability,

$$
F_{n}= \begin{cases}\log _{2} n-\log _{2} \log n+o(\log \log n), & \text { if } p=q ; \\ \log _{1 / q} n-\log _{1 / q} \log \log n+o(\log \log \log n), & \text { if } p>q\end{cases}
$$

## Saturation Level and Height of PATRICIA tries

By extending the previous study to the boundary.
Theorem (Drmota \& Magner \& Szpankowski; 2019)
With high probability,

$$
F_{n}= \begin{cases}\log _{2} n-\log _{2} \log n+o(\log \log n), & \text { if } p=q ; \\ \log _{1 / q} n-\log _{1 / q} \log \log n+o(\log \log \log n), & \text { if } p>q\end{cases}
$$

Theorem (Drmota \& Magner \& Szpankowski; 2019)
With high probability,

$$
H_{n}= \begin{cases}\log _{2} n+\sqrt{2 \log _{2} n}+o(\sqrt{\log n}), & \text { if } p=q \\ \log _{1 / p} n+\frac{1}{2} \log _{p / q} \log n+o(\log \log n), & \text { if } p>q\end{cases}
$$

## Summary and Open Problems

## Profile of Random Digital Trees:

| Trees | $p=q ?$ | Mean | Variance | CLT |
| :---: | :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| DSTs | $p=\frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PATRICIA Tries | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $?$ |
|  | $p=\frac{1}{2}$ | $?$ | $?$ | $?$ |
|  | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## Summary and Open Problems

## Profile of Random Digital Trees:

| Trees | $p=q ?$ | Mean | Variance | CLT |
| :---: | :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| DSTs | $p=\frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PATRICIA Tries | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $?$ |
|  | $p=\frac{1}{2}$ | $?$ | $?$ | $?$ |
|  | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

Major Open Tasks:

## Summary and Open Problems

## Profile of Random Digital Trees:

| Trees | $p=q ?$ | Mean | Variance | CLT |
| :---: | :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| DSTs | $p=\frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PATRICIA Tries | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $?$ |
|  | $p=\frac{1}{2}$ | $?$ | $?$ | $?$ |
|  | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

Major Open Tasks:

- profile of symmetric PATRICIA tries;


## Summary and Open Problems

## Profile of Random Digital Trees:

| Trees | $p=q ?$ | Mean | Variance | CLT |
| :---: | :---: | :---: | :---: | :---: |
| Tries | $0<p<1$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| DSTs | $p=\frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| PATRICIA Tries | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $?$ |
|  | $p=\frac{1}{2}$ | $?$ | $?$ | $?$ |
|  | $p \neq \frac{1}{2}$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## Major Open Tasks:

- profile of symmetric PATRICIA tries;
- refined results for the profile at the boundary of the "central range" for asymmetric PATRICIA tries (very complicated!).

