Some new signed Euler-Mahonian identities and polynomials

Yuan-Hsun Lo
Department of Applied Mathematics
National Pingtung University
yhlo0830@gmail.com

August 19, 2019

Joint with Sen-Peng Eu and Zhicong Lin

Outline

(1) Signed Euler-Mahonian Identities
(2) Extensions to Coxeter group of type B_{n}
(3) Extensions to Coxeter Groups of type D_{n}
(4) Extensions to Complex Reflection Groups $G(r, 1, n)$

$\mathfrak{S}_{n}:=$ the set of permutations of $\{1,2, \ldots, n\}$

- $\mathfrak{S}_{n}=\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$, where $s_{i}=(i i+1)$.
- $\ell(\pi):=$ the minimal number of generators needed to represent π
- $41253=(34)(23)(45)(12)=s_{3} s_{2} s_{4} s_{1}$
- $\ell(41253)=4$

$\mathfrak{S}_{n}:=$ the set of permutations of $\{1,2, \ldots, n\}$

- $\mathfrak{S}_{n}=\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$, where $s_{i}=(i i+1)$.
- $\ell(\pi):=$ the minimal number of generators needed to represent π
- $41253=(34)(23)(45)(12)=s_{3} s_{2} s_{4} s_{1}$
- $\ell(41253)=4$
- number of inversions: $\operatorname{inv}(\pi):=\mid\left\{(i, j): i<j\right.$ and $\left.\pi_{i}>\pi_{j}\right\} \mid$.
- $\operatorname{inv}(41253)=3+0+0+1=4$
- $\operatorname{inv}(\pi)=\ell(\pi)$ for $\pi \in \mathfrak{S}_{n}$.

The descent number des and major index maj

$\operatorname{Des}(\pi):=\left\{i: \pi_{i}>\pi_{i+1}, i=1,2, \ldots, n-1\right\}$

- descent of $\pi: \operatorname{des}(\pi):=|\operatorname{Des}(\pi)|$
$\triangleright \operatorname{des}(41253)=2$
- major of $\pi: \operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i \quad \triangleright \operatorname{maj}(41253)=1+4=5$

The descent number des and major index maj

$\operatorname{Des}(\pi):=\left\{i: \pi_{i}>\pi_{i+1}, i=1,2, \ldots, n-1\right\}$

- descent of $\pi: \operatorname{des}(\pi):=|\operatorname{Des}(\pi)| \quad \triangleright \operatorname{des}(41253)=2$
- major of $\pi: \operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i \quad \triangleright \operatorname{maj}(41253)=1+4=5$

Theorem (MacMahon, 1913)

$$
\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{maj}(\pi)}=\sum_{\pi \in \mathfrak{S}_{n}} q^{\operatorname{inv}(\pi)}
$$

- inv and maj are called Mahonian statistics (equi-distributed with ℓ)
- des is called Eulerian statistic
P.A. MacMahon, The indices of permutations and the derivation therefrom of functions of a single variable associated with the permutations of any assemblage of objects, Amer. J. Math. 35 (1913) 281-322.

Signed Euler-Mahonian identities

Theorem (Désarménien-Foata, 1992)

$$
\begin{aligned}
& \sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)}=(1-t)^{n} \sum_{\pi \in \mathfrak{S}_{n}} t^{\operatorname{des}(\pi)} \\
& \sum_{\pi \in \mathfrak{S}_{2 n+1}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)}=(1-t)^{n} \sum_{\pi \in \mathfrak{S}_{n+1}} t^{\operatorname{des}(\pi)}
\end{aligned}
$$

J. Désarménien and D. Foata, The signed Eulerian numbers, Discrete Math. 99 (1992), 49-58.

- M. Wachs, An involution for signed Eulerian numbers, Discrete Math. 99 (1992) 59-62.

Signed Euler-Mahonian identities

Theorem (Désarménien-Foata, 1992)

$$
\begin{aligned}
\sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)} & =(1-t)^{n} \sum_{\pi \in \mathfrak{S}_{n}} t^{\operatorname{des}(\pi)} \\
\sum_{\pi \in \mathfrak{S}_{2 n+1}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)} & =(1-t)^{n} \sum_{\pi \in \mathfrak{S}_{n+1}} t^{\operatorname{des}(\pi)}
\end{aligned}
$$

Theorem (Wachs, 1992)

$$
\sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}=\prod_{i=1}^{n}\left(1-t q^{2 i-1}\right) \sum_{\pi \in \mathfrak{S}_{n}} t^{\operatorname{des}(\pi)} q^{2 \operatorname{maj}(\pi)}
$$

J. Désarménien and D. Foata, The signed Eulerian numbers, Discrete Math. 99 (1992), 49-58.

T- M. Wachs, An involution for signed Eulerian numbers, Discrete Math. 99 (1992) 59-62.

Extend to Coxeter groups

- In \mathfrak{S}_{n} : Coxeter group of type A_{n-1}
- Generalized by $\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$, where $s_{i}=(i i+1)$
- $\mathfrak{S}_{n}=$ permutations of $\{1,2, \ldots, n\}$
e.g. $\mathfrak{S}_{2}=\{12,21\}$
- Signed Euler-Mahonian identity: $\sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}=\cdots$

Extend to Coxeter groups

- In \mathfrak{S}_{n} : Coxeter group of type A_{n-1}
- Generalized by $\left\langle s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$, where $s_{i}=(i i+1)$
- $\mathfrak{S}_{n}=$ permutations of $\{1,2, \ldots, n\}$
e.g. $\mathfrak{S}_{2}=\{12,21\}$
- Signed Euler-Mahonian identity: $\sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}=\cdots$
- In \mathcal{B}_{n} : Coxeter group of type B_{n}
- Generalized by $\left\langle s_{0}, s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$, where $s_{0}=(\overline{1} 1)$
- $\mathcal{B}_{n}=$ signed permutations of $\{1,2, \ldots, n\}$ e.g. $\mathcal{B}_{2}=\{12,1 \overline{1}, \overline{1} 2, \overline{1} \overline{2}, 21,2 \overline{1}, \overline{2} 1, \overline{2} \overline{1}\}$
- $\ell_{B}=\operatorname{inv}(\pi)+\sum_{\pi_{i}<0}\left|\pi_{i}\right|$
- des??
- maj??

Flag descent and major for \mathcal{B}_{n}

$\operatorname{Des}_{F}(\pi):=\left\{i: \pi_{i}>\pi_{i+1}\right\}$ w.r.t. $\overline{1}<\cdots<\bar{n}<1<\cdots<n$

- fdes $(\pi):=2 \cdot\left|\operatorname{Des}_{F}(\pi)\right|+\delta\left(\pi_{i}<0\right)$
- fmaj $(\pi):=2 \cdot \sum_{i \in \operatorname{Des}_{F}(\pi)}+\operatorname{neg}(\pi)$
- $\operatorname{Des}_{F}(\overline{3} 1 \overline{6} \overline{2} \overline{5} 4)=\{2,3\}$
- $\operatorname{fdes}(\overline{3} 1 \overline{6} \overline{2} \overline{5} 4)=2 \cdot 2+1=5$
- $\operatorname{fmaj}(\overline{3} 1 \overline{6} \overline{2} \overline{5} 4)=2 \cdot 5+4=14$

Theorem (Adin-Roichman, 2001)

$$
\sum_{\pi \in \mathcal{B}_{n}} q^{\mathrm{fmaj}(\pi)}=\sum_{\pi \in \mathcal{B}_{n}} q^{\ell_{B}(\pi)}
$$

R.M. Adin, Y. Roichman, The flag major index and group actions on polynomial rings, European J. Combin. 22 (2001) 431-446.

Signed Euler-Mahonian identities for \mathcal{B}_{n}

Theorem (Biagioli, 2006)

$$
\sum_{\pi \in \mathcal{B}_{2 n}}(-1)^{\operatorname{inv}_{B}(\pi)} q^{\mathrm{fmaj}(\pi)}=\prod_{i=1}^{n}\left(1-q^{4 i-2}\right) \sum_{\pi \in \mathcal{B}_{n}} q^{2 \mathrm{fmaj}(\pi)}
$$

R. Biagioli, Signed Mahonian polynomials for classical Weyl groups, European J. Combin. 27 (2006) 207-217.

Signed Euler-Mahonian identities for \mathcal{B}_{n}

Theorem (Biagioli, 2006)

$$
\sum_{\pi \in \mathcal{B}_{2 n}}(-1)^{\operatorname{inv}_{B}(\pi)} q^{\mathrm{fmaj}(\pi)}=\prod_{i=1}^{n}\left(1-q^{4 i-2}\right) \sum_{\pi \in \mathcal{B}_{n}} q^{2 \mathrm{fmaj}(\pi)}
$$

Theorem (-, preprints)

$$
\sum_{\pi \in \mathcal{B}_{2 n}}(-1)^{\operatorname{inv}_{B}(\pi)} t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)}=\prod_{i=1}^{n}\left(1-t^{2} q^{4 i-2)}\right) \sum_{\pi \in \mathcal{B}_{n}} t^{\mathrm{fdes}(\pi)} q^{2 \mathrm{fmaj}(\pi)}
$$

國
R. Biagioli, Signed Mahonian polynomials for classical Weyl groups, European J. Combin. 27 (2006) 207-217.

Extend to 1-dim characters

- 1-dim character of G is a mapping $\chi: G \rightarrow \mathbb{C}$ being a homomorphism.
- 1-dim character χ of Coxeter groups:
- For $\mathfrak{S}_{n}: \chi(\pi)=1,(-1)^{\ell(\pi)}$
- For $\mathcal{B}_{n}: \chi(\pi)=1,(-1)^{\ell_{B}(\pi)},(-1)^{\operatorname{neg}(\pi)},(-1)^{\operatorname{inv}(|\pi|)}$
- χ : any 1-dim character of G
- stat ${ }_{1}$: Eulerian statistic
- stat $_{2}$: Mahonian statistic

Extend to 1-dim characters

- 1-dim character of G is a mapping $\chi: G \rightarrow \mathbb{C}$ being a homomorphism.
- 1-dim character χ of Coxeter groups:
- For $\mathfrak{S}_{n}: \chi(\pi)=1,(-1)^{\ell(\pi)}$
- For $\mathcal{B}_{n}: \chi(\pi)=1,(-1)^{\ell_{B}(\pi)},(-1)^{\mathrm{neg}(\pi)},(-1)^{\mathrm{inv}(|\pi|)}$

Signed Euler-Mahonian Polynomial

$$
\sum_{\pi \in G} \chi(\pi) t^{\operatorname{stat}_{1}(\pi)} q^{\operatorname{stat}_{2}(\pi)}
$$

- χ : any 1-dim character of G
- stat ${ }_{1}$: Eulerian statistic
- stat $_{2}$: Mahonian statistic

Main result 1: signed Euler-(Mahonian) identities for \mathcal{B}_{n}

Theorem (Wachs, 1992)

$$
\sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}=\prod_{i=1}^{n}\left(1-t q^{2 i-1}\right) \sum_{\pi \in \mathfrak{S}_{n}} t^{\operatorname{des}(\pi)} q^{2 \operatorname{maj}(\pi)}
$$

Theorem (-, preprints)

- $\sum_{\pi \in \mathcal{B}_{2 n}}(-1)^{\ell_{B}(\pi)} t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)}=\prod_{i=1}^{n}\left(1-t^{2} q^{4 i-2)}\right) \sum_{\pi \in \mathcal{B}_{n}} t^{\mathrm{fdes}(\pi)} q^{2 \mathrm{fmaj}(\pi)}$
- $\sum_{\pi \in \mathcal{B}_{2 n}}(-1)^{\operatorname{inv}(|\pi|)} t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)}=\prod_{i=1}^{n}\left(1-t^{2} q^{4 i-2)}\right) \sum_{\pi \in \mathcal{B}_{n}} t^{\mathrm{fdes}(\pi)} q^{2 \mathrm{fmaj}(\pi)}$
- $\sum_{\pi \in \mathcal{B}_{n}}(-1)^{\mathrm{neg}(\pi)} t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)}=\sum_{\pi \in \mathcal{B}_{n}} t^{\mathrm{fdes}(\pi)}(-q)^{\mathrm{fmaj}(\pi)}$

Main result 1: signed Euler-(Mahonian) identities for \mathcal{B}_{n}

Theorem (Désarménien-Foata, 1992)

$$
\sum_{\pi \in \mathfrak{S}_{2 n+1}}(-1)^{\ell(\pi)} t^{\operatorname{des}(\pi)}=(1-t)^{n} \sum_{\pi \in \mathfrak{S}_{n+1}} t^{\operatorname{des}(\pi)}
$$

Theorem (-, preprints)

- $\sum_{\pi \in \mathcal{B}_{2 n+1}}(-1)^{\operatorname{inv}(|\pi|)} t^{\mathrm{fdes}(\pi)}=\left(1-t^{2}\right)^{n} \sum_{\pi \in \mathcal{B}_{n+1}} t^{\mathrm{fdes}(\pi)}$
- $\sum_{\pi \in \mathcal{B}_{2 n+1}}(-1)^{\ell_{B}(\pi)} t^{\mathrm{fdes}(\pi)}=\left(1-t^{2}\right)^{n}(1-t) \sum_{\pi \in \mathcal{B}_{n}} t^{2 \cdot \operatorname{des}_{B}(\pi)}$
- $\operatorname{des}_{B}(\pi):=\left|\left\{i: \pi_{i}>\pi_{i+1}, 0 \leq i<n\right\}\right|$, where $\pi_{0}:=0$

Extensions to Coxeter Groups of type D_{n}

Main result 2: signed Euler-(Mahonian) identities for \mathcal{D}_{n}
$\mathcal{D}_{n}=$ even-signed permutations of $\{1,2, \ldots, n\}$

- Generalized by $\left\langle s_{0}^{\prime}, s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$, where $s_{0}^{\prime}=(\overline{1} 2)$
- $\mathcal{D}_{2}=\{12, \overline{1} \overline{2}, 21, \overline{2} \overline{1}\}$
- \mathcal{D}_{n} has two 1-dim characters: 1 and $(-1)^{\ell_{D}}$
- ddes $(\pi):=\operatorname{fdes}\left(\pi_{1} \pi_{2} \cdots \pi_{n-1}\left|\pi_{n}\right|\right)$
- $\operatorname{dmaj}(\pi):=\mathrm{fmaj}\left(\pi_{1} \pi_{2} \cdots \pi_{n-1}\left|\pi_{n}\right|\right)$

Main result 2: signed Euler-(Mahonian) identities for \mathcal{D}_{n}

$\mathcal{D}_{n}=$ even-signed permutations of $\{1,2, \ldots, n\}$

- Generalized by $\left\langle s_{0}^{\prime}, s_{1}, s_{2}, \ldots, s_{n-1}\right\rangle$, where $s_{0}^{\prime}=(\overline{1} 2)$
- $\mathcal{D}_{2}=\{12, \overline{1} \overline{2}, 21, \overline{2} \overline{1}\}$
- \mathcal{D}_{n} has two 1-dim characters: 1 and $(-1)^{\ell_{D}}$
- ddes $(\pi):=\operatorname{fdes}\left(\pi_{1} \pi_{2} \cdots \pi_{n-1}\left|\pi_{n}\right|\right)$
- $\operatorname{dmaj}(\pi):=\operatorname{fmaj}\left(\pi_{1} \pi_{2} \cdots \pi_{n-1}\left|\pi_{n}\right|\right)$

Theorem (-, preprints)

$$
\begin{gathered}
\sum_{\pi \in \mathcal{D}_{2 n}}(-1)^{\ell_{D}} t^{\operatorname{ddes}(\pi)} q^{\mathrm{dmaj}(\pi)}=\prod_{i=1}^{n}\left(1-t^{2} q^{4 i-2}\right) \sum_{\pi \in \mathcal{D}_{n}} t^{\operatorname{ddes}(\pi)} q^{2 \mathrm{dmaj}(\pi)} \\
\sum_{\pi \in \mathcal{D}_{2 n+1}}(-1)^{\ell_{D}(\pi)} t^{\operatorname{ddes}(\pi)}=\left(1-t^{2}\right)^{n} \sum_{\pi \in \mathcal{D}_{n+1}} t^{\operatorname{ddes}(\pi)}
\end{gathered}
$$

Proof Sketch for even case: Step 1

For $\pi \in \mathcal{D}_{2 n}$ let i be the smallest integer such that $2 i-1$ and $2 i$
(1) have opposite signs,
(2) are not in adjacent positions, or
(3) are both at the last two positions with negative signs.

Let $\eta(\pi)$ be the even-signed permutation obtained from π by swapping the two letters $2 i-1$ and $2 i$.
e.g. $\eta(21 \overline{\mathbf{3}} \overline{5} 6 \overline{\mathbf{4}})=21 \overline{\mathbf{4}} \overline{5} 6 \overline{\mathbf{3}}, \quad \eta(\mathbf{2} \overline{\mathbf{1}} \overline{3} \overline{5} 6 \overline{4})=\mathbf{1} \overline{\mathbf{2}} \overline{3} \overline{5} 6 \overline{4}, \quad \eta(21 \overline{3} \overline{4} \overline{\mathbf{5}} \overline{\mathbf{6}})=21 \overline{3} \overline{4} \overline{\mathbf{6}} \overline{\mathbf{5}}$

Proof Sketch for even case: Step 1

For $\pi \in \mathcal{D}_{2 n}$ let i be the smallest integer such that $2 i-1$ and $2 i$
(1) have opposite signs,
(2) are not in adjacent positions, or
(3) are both at the last two positions with negative signs.

Let $\eta(\pi)$ be the even-signed permutation obtained from π by swapping the two letters $2 i-1$ and $2 i$.
e.g. $\eta(21 \overline{\mathbf{3}} \overline{5} 6 \overline{\mathbf{4}})=21 \overline{\mathbf{4}} \overline{5} 6 \overline{\mathbf{3}}, \quad \eta(\mathbf{2} \overline{\mathbf{1}} \overline{3} \overline{5} 6 \overline{4})=\mathbf{1} \overline{\mathbf{2}} \overline{3} \overline{5} 6 \overline{4}, \quad \eta(21 \overline{3} \overline{4} \overline{\mathbf{5}} \overline{\mathbf{6}})=21 \overline{3} \overline{4} \overline{\mathbf{6}} \overline{\mathbf{5}}$

Fixed points $\mathcal{F}_{2 n}$: letters $2 i-1$ and $2 i$ are adjacent and having the same sign, and both $\pi_{2 n-1}$ and $\pi_{2 n}$ are positive

- $\ell_{D}(\pi)=\ell_{D}\left(\pi^{\prime}\right) \pm 1$
- $\operatorname{Des}_{F}\left(\pi_{1} \pi_{2} \cdots \pi_{2 n-1}\left|\pi_{2 n}\right|\right)=\operatorname{Des}_{F}\left(\pi_{1}^{\prime} \pi_{2}^{\prime} \cdots \pi_{2 n-1}^{\prime}\left|\pi_{2 n}^{\prime}\right|\right)$

Proof Sketch for even case: Step 2

Define a bijective correspondence $\phi: \mathcal{F}_{2 n} \rightarrow \widehat{\mathcal{D}}_{n}$ as
(1) Each pair of adjacent entries of type $\pm(2 j-1), \pm 2 j$ in $\mathcal{F}_{2 n}$ is replaced by $\pm j$;
(2) Each pair of adjacent entries of type $\pm 2 j, \pm(2 j-1)$ in $\mathcal{F}_{2 n}$ is replaced by $\pm \hat{j}$;,
(3) After the two steps, if the number of negatives of the resulting permutation is odd, then change the sign of the last entry from positive to negative.
e.g. $\phi(\pi)=\phi(21 \overline{5} \overline{6} 8743)=\hat{1} \overline{3} \hat{4} \hat{\overline{2}}=\pi^{\prime}$

Proof Sketch for even case: Step 2

Define a bijective correspondence $\phi: \mathcal{F}_{2 n} \rightarrow \widehat{\mathcal{D}}_{n}$ as
(1) Each pair of adjacent entries of type $\pm(2 j-1), \pm 2 j$ in $\mathcal{F}_{2 n}$ is replaced by $\pm j$;
(2) Each pair of adjacent entries of type $\pm 2 j, \pm(2 j-1)$ in $\mathcal{F}_{2 n}$ is replaced by $\pm \hat{j}$,
(3) After the two steps, if the number of negatives of the resulting permutation is odd, then change the sign of the last entry from positive to negative.
e.g. $\phi(\pi)=\phi(21 \overline{5} \overline{6} 8743)=\hat{1} \overline{3} \hat{4} \hat{\overline{2}}=\pi^{\prime}$

- $(-1)^{\ell_{D}(\pi)}=(-1)^{\left|\mathbb{P}\left(\pi^{\prime}\right)\right|}$
- $\operatorname{ddes}(\pi)=\operatorname{ddes}\left(\pi^{\prime}\right)+2\left|\mathrm{P}\left(\pi^{\prime}\right)\right|$
- $\operatorname{dmaj}(\pi)=2 \mathrm{dmaj}\left(\pi^{\prime}\right)+\sum_{i \in \mathrm{P}\left(\pi^{\prime}\right)}(4 i-2)$

Proof Sketch for even case: Step 3

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{D}_{2 n}}(-1)^{\ell_{D}} t^{\operatorname{ddes}(\pi)} q^{\mathrm{dmaj}(\pi)} \\
(\text { Step } 1)= & \sum_{\pi \in \mathcal{F}_{2 n}}(-1)^{\ell_{D}} t^{\operatorname{ddes}(\pi)} q^{\mathrm{dmaj}(\pi)} \\
(\text { Step } 2)= & \sum_{\pi^{\prime} \in \widehat{\mathcal{D}}_{n}}\left((-1)^{\left|\mathrm{P}\left(\pi^{\prime}\right)\right|} t^{2\left|\mathrm{P}\left(\pi^{\prime}\right)\right|} q^{\sum_{i \in \mathrm{P}\left(\pi^{\prime}\right)}(4 i-2)}\right) t^{\operatorname{ddes}\left(\pi^{\prime}\right)} q^{2 \mathrm{dmaj}\left(\pi^{\prime}\right)} \\
= & \sum_{\pi^{\prime} \in \mathcal{D}_{n}}\left(\sum_{A \subseteq\{1,2, \ldots, n\}}(-1)^{|A|} t^{2|A|} q^{\sum_{i \in A}(4 i-2)}\right) t^{\operatorname{ddes}\left(\pi^{\prime}\right)} q^{2 \mathrm{dmaj}\left(\pi^{\prime}\right)} \\
= & \prod_{i-1}^{n}\left(1-t^{2} q^{4 i-2}\right) \sum_{\pi^{\prime} \in \mathcal{D}_{n}} t^{\operatorname{ddes}\left(\pi^{\prime}\right)} q^{2 \mathrm{dmaj}\left(\pi^{\prime}\right)}
\end{aligned}
$$

Proof Sketch for odd case: Step 1

For $\pi \in \mathcal{D}_{2 n+1}$ let i be the smallest integer such that $2 i-1$ and $2 i$
(1) are not in adjacent positions,
(2) have opposite signs, and are not both at the last two positions, or
(3) are both at the last two positions and $\pi_{2 n}<0$

Let $\iota(\pi)$ be the even-signed permutation obtained from π by swapping the two letters $2 i-1$ and $2 i$.

$$
\begin{aligned}
& \text { e.g. } \iota(\mathbf{5} 8 \overline{1} \overline{1} \overline{2} 9 \mathbf{6} 3 \overline{4})=\mathbf{6} 8 \overline{7} \overline{1} \overline{2} 953 \overline{4}, \quad \iota(58 \overline{7} \overline{1} \overline{2} 96 \overline{\mathbf{3}} 4)=58 \overline{7} \overline{1} \overline{2} 96 \overline{4} 3 \text {, } \\
& \iota(58 \overline{7} \overline{1} \overline{2} 96 \overline{\mathbf{3}} \overline{4})=58 \overline{7} \overline{1} \overline{2} 96 \overline{\mathbf{4}} \overline{3}
\end{aligned}
$$

Proof Sketch for odd case: Step 1

For $\pi \in \mathcal{D}_{2 n+1}$ let i be the smallest integer such that $2 i-1$ and $2 i$
(1) are not in adjacent positions,
(2) have opposite signs, and are not both at the last two positions, or
(3) are both at the last two positions and $\pi_{2 n}<0$

Let $\iota(\pi)$ be the even-signed permutation obtained from π by swapping the two letters $2 i-1$ and $2 i$.

$$
\begin{aligned}
\text { e.g. } \begin{array}{l}
\iota(\mathbf{5} 8 \overline{7} \overline{1} \overline{2} 963 \overline{4}) \\
\iota(58 \overline{1} \overline{1} \overline{2} 96 \overline{\mathbf{3}} \overline{4})
\end{array}=588 \overline{7} \overline{1} \overline{1} \overline{1} 953 \overline{2} \overline{4}, \quad \iota \overline{\mathbf{4}},
\end{aligned}
$$

Fixed points $\mathcal{F}_{2 n+1}$:

- Letters $2 i-1$ and $2 i$ are adjacent.
- Letters $2 i-1$ and $2 i$ have the same sign if both of them are not at the last two positions.
- If $2 i-1$ and $2 i$ appear at the last two positions for some i, then $\pi_{2 n}>0$.

Proof Sketch for odd case: Step 2

Define a bijective correspondence $\phi: \mathcal{F}_{2 n+1} \rightarrow \widehat{\mathcal{D}}_{n+1}$ as
(1) Each pair of adjacent entries of type $\pm(2 j-1), \pm 2 j$ in $\mathcal{F}_{2 n+1}$ but not at the last two positions is replaced by $\pm j$;
(2) Each pair of adjacent entries of type $\pm 2 j, \pm(2 j-1)$ in $\mathcal{F}_{2 n+1}$ but not at the last two positions is replaced by $\pm \hat{j}$;
(3) The pair of entries of type $(2 j-1), \pm 2 j$ at the last two positions in $\mathcal{F}_{2 n+1}$ is replaced by $\pm j$;
(9) The pair of entries of type $2 j, \pm(2 j-1)$ at the last two positions in $\mathcal{F}_{2 n+1}$ is replaced by $\pm \hat{j}$;
(3) The entry $\pm(2 n+1)$ in $\mathcal{F}_{2 n+1}$ is replaced by $\pm(n+1)$;
(c) After the above steps, if the number of negatives of the resulting permutation is odd, then change the sign of the last entry.

$$
\text { e.g. } \phi(21 \overline{5} \overline{6} 87 \overline{9} 4 \overline{3})=\hat{1} \overline{3} \hat{4} \overline{5} \hat{2} \quad \phi(21 \overline{5} \overline{6} 87439)=\hat{1} \overline{3} \hat{4} \hat{2} \overline{5}
$$

Proof Sketch for odd case: Step 3

- $(-1)^{\ell_{D}(\pi)}=(-1)^{\left|\mathrm{P}\left(\pi^{\prime}\right)\right|}=(-1)^{\left|\mathrm{L}\left(\pi^{\prime}\right)\right|}$
- $\operatorname{ddes}(\pi)=\operatorname{ddes}\left(\pi^{\prime}\right)+2\left|\mathrm{~L}\left(\pi^{\prime}\right)\right|$

$$
\begin{aligned}
& \sum_{\pi \in \mathcal{F}_{2 n+1}}(-1)^{\ell_{D}} t^{\mathrm{ddes}(\pi)}=\sum_{\pi^{\prime} \in \widehat{\mathcal{D}}_{n+1}}(-1)^{\left|\mathrm{L}\left(\pi^{\prime}\right)\right|} t^{\operatorname{ddes}\left(\pi^{\prime}\right)+2\left|\mathrm{~L}\left(\pi^{\prime}\right)\right|} \\
= & \sum_{\pi^{\prime} \in \mathcal{D}_{n+1}}\left(\sum_{A \in[n]}(-1)^{|A|} t^{2|A|}\right) t^{\operatorname{ddes}\left(\pi^{\prime}\right)}=\left(1-t^{2}\right)^{n} \sum_{\pi^{\prime} \in \mathcal{D}_{n+1}} t^{\operatorname{ddes}\left(\pi^{\prime}\right)}
\end{aligned}
$$

Extensions to Complex Reflection Groups $G(r, 1, n)$

$G(r, 1, n)$ and length function ℓ

$$
G(r, 1, n):=\mathbb{Z} r \imath \mathfrak{S}_{n}: \text { Wreath product }
$$

$=$ colored permutation group on $\{1,2, \ldots, n\}$ with r colors
e.g. 1 color, 6 letters: 563142

4 colors, 6 letters: $\overline{5} \overline{\overline{6}} \overline{3} \overline{\overline{1}} 4 \overline{\overline{2}}$

- $G(1,1, n)=\mathfrak{S}_{n} ; \quad G(2,1, n)=\mathcal{B}_{n}$.
$:=$ the minimal number of generators needed to represent π

$G(r, 1, n)$ and length function ℓ

$G(r, 1, n):=\mathbb{Z} r \imath \mathfrak{S}_{n}:$ Wreath product $=$ colored permutation group on $\{1,2, \ldots, n\}$ with r colors
e.g. 1 color, 6 letters: 563142

4 colors, 6 letters: $\overline{5} \overline{\overline{6}} \overline{3} \overline{\overline{1}} 4 \overline{\overline{2}}$

- $G(1,1, n)=\mathfrak{S}_{n} ; \quad G(2,1, n)=\mathcal{B}_{n}$.
- $G(r, 1, n)=\left\langle s_{0}, s_{1}, \ldots, s_{n-1}\right\rangle$ where $s_{0}:=$ add one more bar on the first letter.
- $\ell(\pi):=$ the minimal number of generators needed to represent π

Represent χ in terms of ℓ

Theorem (-, arXiv)

$G(r, 1, n)$ has $2 r$ 1-dim characters

$$
\chi_{a, b}(\pi)=(-1)^{a\left(\ell(\pi)-\sum z_{i}\right)} \omega^{b \sum z_{i}}
$$

where $\omega=e^{2 \pi i / r}, a=0,1$ and $b=0,1, \ldots, r-1$.

For $r=2, \ell=\ell_{B}, \omega=-1$ and the four 1-dim characters are

- $\chi_{0,0}=(-1)^{0}(-1)^{0}=1$,
- $\chi_{0,1}=(-1)^{0}(-1)^{\sum z_{i}}=(-1)^{\mathrm{neg}(\pi)}$,
- $\chi_{1,0}=(-1)^{\ell(\pi)-\sum z_{i}}(-1)^{0}=\cdots=(-1)^{\operatorname{inv}(|\pi|)}$,
- $\chi_{1,1}=(-1)^{\ell(\pi)-\sum z_{i}}(-1)^{\sum z_{i}}=(-1)^{\ell_{B}}$.

Flag descent and major $G(r, 1, n)$

$\operatorname{Des}_{F}(\pi):=\left\{i: \pi_{i}>\pi_{i+1}\right\}$ w.r.t.

$$
1^{[r-1]}<\cdots<n^{[r-1]}<\cdots<\overline{1}<\cdots<\bar{n}<1<\cdots<n
$$

- $\operatorname{fdes}(\pi):=r \cdot\left|\operatorname{Des}_{F}(\pi)\right|+z_{1}$
- $\operatorname{fmaj}(\pi):=r \cdot \sum_{i \in \operatorname{Des}_{F}(\pi)}+\operatorname{col}(\pi)$
- $\operatorname{Des}_{F}(\overline{\overline{4}} \overline{\overline{1}} \overline{\overline{3}} \overline{\overline{6}} \overline{\overline{6}})=\{2,4,5\}$
- fdes $(\overline{\overline{4}} 5 \overline{1} \overline{3} \overline{2} \overline{\overline{6}})=3 \cdot 3+2=9$
- $\operatorname{fmaj}(\overline{\overline{4}} 5 \overline{1} \overline{\overline{1}} \overline{\overline{2}} \overline{\overline{6}})=3 \cdot 11+8=41$
R.M. Adin, Y. Roichman, The flag major index and group actions on polynomial rings, European J. Combin. 22 (2001) 431-446.

Main result 3

Theorem (-, preprints)
For $b=0,1, \cdots, r-1$, we have

$$
\begin{aligned}
\sum_{\in G(r, 1,2 n)} & \chi_{1, b}(\pi) t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)} \\
& =\prod_{i=1}^{n}\left(1-t^{r} q^{r(2 i-1)}\right) \sum_{\pi \in G(r, 1, n)} t^{\mathrm{fdes}(\pi)}\left(\omega^{b} q\right)^{2 \mathrm{fmaj}(\pi)}
\end{aligned}
$$

and

$$
\sum_{\pi \in G(r, 1, n)} \chi_{0, b}(\pi) t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)}=\sum_{\pi \in G(r, 1, n)} t^{\mathrm{fdes}(\pi)}\left(\omega^{b} q\right)^{\mathrm{fmaj}(\pi)}
$$

Main result 3

Theorem (-, preprints)
For $b=0,1, \cdots, r-1$, we have

$$
\begin{aligned}
& \sum_{r \in G(r, 1,2 n)} \chi_{1, b}(\pi) t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)} \\
& \quad=\prod_{i=1}^{n}\left(1-t^{r} q^{r(2 i-1)}\right) \sum_{\pi \in G(r, 1, n)} t^{\mathrm{fdes}(\pi)}\left(\omega^{b} q\right)^{2 \mathrm{fmaj}(\pi)}
\end{aligned}
$$

and

$$
\sum_{\pi \in G(r, 1, n)} \chi_{0, b}(\pi) t^{\mathrm{fdes}(\pi)} q^{\mathrm{fmaj}(\pi)}=\sum_{\pi \in G(r, 1, n)} t^{\mathrm{fdes}(\pi)}\left(\omega^{b} q\right)^{\mathrm{fmaj}(\pi)}
$$

The case $G(r, 1,2 n+1)$ with $\chi_{1, b}$ for any b is missing!

Concluding Remarks

Signed Euler-Mahonian identities

Generalize the following two identities.
Theorem (Wachs, 1992)

$$
\sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\operatorname{inv}(\pi)} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}=\prod_{i=1}^{n}\left(1-t q^{2 i-1}\right) \sum_{\pi \in \mathfrak{S}_{n}} t^{\operatorname{des}(\pi)} q^{2 \mathrm{maj}(\pi)}
$$

Theorem (Désarménien-Foata, 1992)

$$
\sum_{\pi \in \mathfrak{S}_{2 n+1}}(-1)^{\operatorname{inv}(\pi)} t^{\operatorname{des}(\pi)}=(1-t)^{n} \sum_{\pi \in \mathfrak{S}_{n+1}} t^{\operatorname{des}(\pi)}
$$

Signed Euler-Mahonian identities

Theorem (Wachs, 1992)

$$
\sum_{\pi \in \mathfrak{S}_{2 n}}(-1)^{\operatorname{inv}(\pi)} t^{\operatorname{des}(\pi)} q^{\operatorname{maj}(\pi)}=\prod_{i=1}^{n}\left(1-t q^{2 i-1}\right) \sum_{\pi \in \mathfrak{S}_{n}} t^{\operatorname{des}(\pi)} q^{2 \mathrm{maj}(\pi)}
$$

$$
\sum_{\pi \in W} \chi(\pi) t^{\text {stat }_{1}} q^{\text {stat }_{2}}=\cdots
$$

- $W=\mathcal{B}_{2 n}: \quad\left(\right.$ stat $_{1}$, stat $\left._{2}\right)=($ fdes, fmaj $)$
- $W=\mathcal{D}_{2 n}: \quad\left(\right.$ stat $_{1}$, stat $\left._{2}\right)=($ ddes, dmaj $)$
- $W=G(r, 1,2 n): \quad\left(\right.$ stat $_{1}$, stat $\left._{2}\right)=($ fdes, fmaj $)$

Signed Eulerian identities

Theorem (Désarménien-Foata, 1992)

$$
\sum_{\pi \in \mathfrak{S}_{2 n+1}}(-1)^{\operatorname{inv}(\pi)} t^{\operatorname{des}(\pi)}=(1-t)^{n} \sum_{\pi \in \mathfrak{S}_{n+1}} t^{\operatorname{des}(\pi)}
$$

$$
\sum_{\pi \in W} \chi(\pi) t^{\text {stat }_{1}} q^{\text {stat }_{2}}=\cdots
$$

- $W=\mathcal{B}_{2 n+1}: \quad\left(\right.$ stat $_{1}$, stat $\left._{2}\right)=($ fdes, fmaj $)$
- $W=\mathcal{D}_{2 n+1}: \quad\left(\right.$ stat $_{1}$, stat $\left._{2}\right)=($ ddes, dmaj $)$
- $W=G(r, 1,2 n+1)$: ???

More Future works

Let $G(r, p, n)$ denote the complex reflection group with parameters r, p, n, where $p \mid r$.

- $G(1,1, n)=\mathfrak{S}_{n}$, the Coxeter group of type A_{n-1}
- $G(2,1, n)=\mathcal{B}_{n}$, the Coxeter group of type B_{n}
- $G(2,2, n)=\mathcal{D}_{n}$, the Coxeter group of type D_{n}
- $G(r, 1, n)=C_{r} 2 \mathfrak{S}_{n}$, the Wreath product of C_{r} with \mathfrak{S}_{n}

Question.

Is it possible to extend to $G(r, p, n)$?

Thank you for your attention

