Set distance labelings on edges of diamond necklaces

Roger lap

Dep. of Applied Math,
Feng Chia University
Taichung, Taiwan

$$
2019
$$

Introduction

Notations

- Let G be a graph, n be a positive integer and δ_{1}, δ_{2} be non-negative integers.
- Denote $[k]=\{0,1, \ldots, k\}$ and $\binom{[k]}{n}$ the collection of all n-element subsets of $[k]$.
- Let A and B be two sets of numbers. Define $\|A-B\|=\min \{|a-b|: a \in A, b \in B\}$.

Introduction

Definition

An $L_{e}^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling ϕ of a graph G is a function $\phi: E(G) \rightarrow\binom{[k]}{n}$ such that $\left\|\phi\left(e_{1}\right)-\phi\left(e_{2}\right)\right\| \geq \delta_{i}$ whenever the distance between e_{1} and e_{2} is i in G for $i=1,2$, for some k. The value of k is called the edge span of ϕ.
The smallest edge span over all $L_{e}^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labelings is called the $L_{e}^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling number of G and is denoted by $\lambda_{e}^{(n)}\left(G ; \delta_{1}, \delta_{2}\right)$.

Introduction

In this article, we will consider the case where $\left(\delta_{1}, \delta_{2}\right)=(2,1)$. The corresponding labeling is denoted by $\lambda_{e}^{(n)}(G)$ for short.

In the following study, we first consider $n=2$. Once, the problem is solved, it is easy to extend to $n \geq 2$.

In the previous study, we have defined an analogous vertex version of this kind of labeling, called the $L^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling.
The corresponding labeling is denoted by $\lambda^{(n)}\left(G ; \delta_{1}, \delta_{2}\right)$, where $\lambda^{(n)}(G)$ is short for $\lambda^{(n)}(G ; 2,1)$.

Introduction

Example. An $L_{e}^{(2)}(2,1)$-labeling on C_{4}

Introduction

Example. An $L_{e}^{(2)}(2,1)$-labeling on C_{4}

Line Graph

Given a gaph $G=(V, E)$, the line graph $L(G)$ of the graph G, is the graph with $V(L(G))=E(G)$ and two edges e and f are adjacent in G if and only if the corresponding vertices v_{e} and v_{f} are adjacent in $L(G)$.

Line Graph

$L_{e}^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling on $G \longleftrightarrow L^{(n)}\left(\delta_{1}, \delta_{2}\right)$-labeling on $L(G)$

Line Graph

Let P_{t} and C_{t} be path and cycle of order $t \geq 3$, respectively. Then we have
$L\left(P_{t}\right)=P_{t-1}$ and $L\left(C_{t}\right)=C_{t}$.
Hence, $\lambda_{e}^{(n)}\left(P_{t}\right)=\lambda^{(n)}\left(P_{t-1}\right)$ and $\lambda_{e}^{(n)}\left(C_{t}\right)=\lambda^{(n)}\left(C_{t}\right)$.

Edge Coloring on K_{m}

Theorem

$$
\chi^{\prime}\left(K_{m}\right)= \begin{cases}m-1 & \text { if } m \text { is even } \\ m & \text { if } m \text { is odd }\end{cases}
$$

Edge Coloring on K_{7}

$\chi^{\prime}\left(K_{7}\right)=7$

Edge Coloring on K_{6}

$\chi^{\prime}\left(K_{6}\right)=5$

Edge Labeling on K_{m}

Theorem

$$
\lambda_{e}^{(n)}\left(K_{m}\right)= \begin{cases}n \epsilon-1 & \text { if } m=2 \text { or } m \geq 5 \\ n \epsilon+1 & \text { if } m=3,4\end{cases}
$$

where $\epsilon=\binom{m}{2}$ the size of K_{m}.
$\lambda_{e}^{(2)}\left(K_{5}\right)=19$

Diamond Necklaces

$D_{1}\left(t K_{m}\right)$ and $D_{2}\left(t K_{m}\right)$

Diamond Necklaces

Diamond Necklaces

Cycle

From the observation above, we know that $\lambda_{e}^{(2)}\left(C_{t}\right)=\lambda^{(2)}\left(C_{t}\right)$. Thus, by previous results on $\lambda^{(2)}\left(C_{t}\right)$, we have

Theorem

$$
\lambda_{e}^{(2)}\left(C_{t}\right)= \begin{cases}9 & t=5 \\ 8 & t=4,7,10,13 \\ 7 & \text { otherwise }\end{cases}
$$

$\lambda_{e}^{(2)}\left(D_{1}\left(t K_{m}\right)\right)$

$\lambda_{e}^{(2)}\left(D_{1}\left(t K_{m}\right)\right), \lambda_{e}^{(2)}\left(K_{m}\right)$ and $\lambda_{e}^{(2)}\left(C_{t}\right)$???

$\lambda_{e}^{(2)}\left(D_{1}\left(t K_{m}\right)\right)$

$\lambda_{e}^{(2)}\left(D_{1}\left(t K_{m}\right)\right), \lambda_{e}^{(2)}\left(K_{m}\right)$ and $\lambda_{e}^{(2)}\left(C_{t}\right)$???
Take a guess!!!

$\lambda_{e}^{(2)}\left(D_{1}\left(t K_{m}\right)\right)$

$\lambda_{e}^{(2)}\left(D_{1}\left(t K_{m}\right)\right), \lambda_{e}^{(2)}\left(K_{m}\right)$ and $\lambda_{e}^{(2)}\left(C_{t}\right)$???
Take a guess!!!
$\lambda_{e}^{(2)}\left(D_{1}\left(t K_{m}\right)\right)$ is about , $\eta=\lambda_{e}^{(2)}\left(K_{m}\right)+\lambda_{e}^{(2)}\left(C_{t}\right)+1$.

$D_{1}\left(t K_{5}\right), t$ even

Theorem

Let $t \geq 4$ be even. Then

$$
\lambda_{e}^{(2)}\left(D_{1}\left(t K_{5}\right)\right)= \begin{cases}25 & t \equiv 0(\bmod 3) \\ 28 & t=10 \\ 27 & \text { otherwise }\end{cases}
$$

Note. In this case, $\lambda_{e}<\eta$ when $t=4$ or $t \equiv 0(\bmod 3)$, otherwise $\lambda_{e}=\eta$.
$\lambda_{e}^{(2)}=27$

$t \equiv 0(\bmod 3)$

$\lambda_{e}^{(2)}=25$

$D_{2}\left(t K_{5}\right), t$ even

Theorem
 $\lambda_{e}^{(2)}\left(D_{2}\left(t K_{5}\right)\right)=23$.

$D_{1}\left(t K_{6}\right), t$ even

Theorem

Let t be even.

$$
\lambda_{e}^{(2)}\left(D_{1}\left(t K_{6}\right)\right)= \begin{cases}35 & t \equiv 0(\bmod 3) \\ 38 & t=10 \\ 37 & \text { otherwise }\end{cases}
$$

Note: $4 \rightarrow\{4,9\}$

$t \not \equiv 0(\bmod 3)$

Note: $x=38$ if $t=10$, otherwise is 37

$D_{2}\left(t K_{6}\right), t$ even

Theorem
 $\lambda_{e}^{(2)}\left(D_{2}\left(t K_{6}\right)\right)=33$.

When $\lambda_{e}^{(2)}=\eta$?

When $\lambda_{e}^{(2)}=\eta$?

- Suitably label each clique.

When $\lambda_{e}^{(2)}=\eta$?

- Suitably label each clique.
- There are only no-hole optimal labelings of the cycle.

Unsolved Cases

Unsolved Cases

(1) t odd and $m=5$

Unsolved Cases

(1) t odd and $m=5$
(2) t odd, $t \equiv 0(\bmod 3)$ and $m \geq 6$

Thanks for your listening!

