Sparse Hypergraphs: from Theory to Applications

Gennian Ge

Capital Normal University

August, 2019

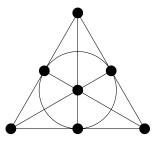
Gennian Ge (Capital Normal University) Sparse Hypergraphs: from Theory to Applicat

- Part I: Sparse hypergraphs
- Part II: Perfect hash families
- Part III: Centralized coded caching schemes

Sparse hypergraphs

Hypergraphs

- Hypergraph $\mathcal{H} = (V, E)$: vertex set V, edge set $E \subseteq 2^V$ (power set of V)
- *r*-uniform hypergraph (henceforth *r*-graph): $E \subseteq \{r$ -subsets of $V\}$
- e.g. multi-relation
- e.g. Fano plane, Fano (1892), r = 3, |V| = 7, |E| = 7



(6,3)-free 3-graphs

- (6,3)-configuration: \exists 3 (distinct) edges A, B, C, s.t. $|A \cup B \cup C| \le 6$
- e.g. a typical (6,3)-configuration:

$$\left(\begin{array}{cccc}
A & B & C \\
a & a & * \\
* & b & b \\
c & * & c
\end{array}\right)$$

- A 3-graph is called (6,3)-free: $\forall A, B, C \in E, |A \cup B \cup C| \ge 7$
- Question (Brown, Erdős and Sós, 1973): what is the maximum number of (3-)edges can be contained in a (6,3)-free 3-graph on n vertices?

(6,3)-free 3-graphs

• (partial) Answer (Ruzsa and Szemerédi, 1978):

$$n^{2-o(1)} < f_3(n, 6, 3) < o(n^2)$$

as $n \to \infty$. (also known as the (6,3)-theorem)

• State-of-the-art bound, \exists constants a, b > 0:

$$e^{-a\sqrt{n}}n^2 < f_3(n,6,3) < \epsilon n^2,$$

where ϵ satisfies $\log \left(\log \left(\cdots \log(n) \right) \right) := \log^* n < 1$, for $b \log(\epsilon^{-1})$ iterations of $\log(\cdot)$, (Fox, Ann. of Math., 2011)

(6,3)-free 3-graphs

- Tools: regularity lemma (Szemerédi, 1976), graph removal lemma (Ruzsa and Szemerédi, 1978; Fox, 2011), sets of integers with no 3-term arithmetic progression (Behrend, 1946),
- Influence: Extremal Graph Theory, Ramsey Theory, Additive Combinatorics, Theoretical Computer Science, etc
- Notable mathematicians:
 - Noga Alon (ACM Fellow, AMS Fellow, Israel Prize)
 - Paul Erdős (Wolf Prize)
 - Timothy Gowers (Fields Medal)
 - Terence Tao (Fields Medal)
 - Endre Szemerédi (Abel Prize)

Sparse hypergraphs

- *H*: an *r*-graph on *n* vertices
 G_r(*v*, *e*): all *r*-graphs with *e* edges and at most *v* vertices
- *H* is *G_r(v, e)*-free if it does not contain any member of *G_r(v, e)*.
 i.e., for arbitrary distinct *A*₁,..., *A_e* ∈ *H*, |*A*₁ ∪ ··· ∪ *A_e*| ≥ *v* + 1
- f_r(n, v, e): the maximal number of edges of a G_r(v, e)-free r-graph on n vertices. i.e., if H contains f_r(n, v, e) + 1 edges, H contains at least one member of G_r(v, e)
- Objective: the behavior of $f_r(n,v,e)$ with r,v,e fixed as $n \to \infty$

Known results

Brown, Erdős and Sós (1973) proved

$$f_r(n, e(r-k)+k, e) = \Theta(n^k)$$

• Conjecture: for $r \ge k + 1 \ge 3$, $e \ge 3$,

$$n^{k-o(1)} < f_r(n, e(r-k) + k+1, e) = o(n^k).$$

(upper bound due to BES, lower bound due to Alon and Shapira, 2006)

- e.g. r = 3, e = 3, k = 2: $n^{2-o(1)} < f_3(n, 6, 3) = o(n^2)$
- Known matching parameters are rare. The first unsolved case: $f_3(n,7,4)$?

- Ruzsa and Szemerédi's (1976): $n^{2-o(1)} < f_3(n, 6, 3) = o(n^2)$
- Erdős, Frankl and Rödl (1986): $r \ge 3$, k = 2, e = 3,

$$n^{2-o(1)} < f_r(n, 3(r-2)+2+1, 3) = o(n^2)$$

• Alon and Shapira (2006): $r > k \ge 2$, e = 3,

$$n^{k-o(1)} < f_r(n,3(r-k)+k+1,3) = o(n^k)$$

• Sárközy and Selkow (2005): $r > k \ge 3$, e = 4,

$$f_r(n,4(r-k)+k+1,4) = o(n^k)$$

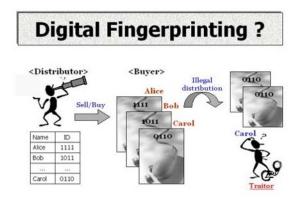
• Nagle, Rödl and Schacht (2006): $r > k \ge 2$, e = k + 1

$$f_r(n, (k+1)(r-k)+k+1, k+1) = o(n^k)$$

• Common point in the upper bound: $r \ge k + 1 \ge e$. A unified proof?

Our results

- Conjecture: $n^{k-o(1)} < f_r(n, e(r-k) + k + 1, e) = o(n^k)$.
- The upper bound part holds for all r ≥ k + 1 ≥ e, implying all previously known tight upper bounds.
- The lower bound part holds for $r \ge 3$, k = 2, e = 4, 5, 7, 8. (first general constructions matching the lower bound for $e \ge 4$ since 1973)
- An improved lower bound for r = 3, k = 2, e = 6
- Main tools: hypergraph removal lemma, additive combinatorics



- Columns of the matrix: digital fingerprints
- Insert digital fingerprints into digital data
- Distribute digital data to legal customers
- Bob sells his copy of data to other people, he will be caught by testing the digital fingerprint

Applications: perfect hash families

- Let M be an $N \times m$ matrix over a q-ary alphabet.
- *M* is *t*-perfect hashing if for arbitrary *t* columns c_1, \ldots, c_t of *M* there is a row *f*, so that $f(c_1), \ldots, f(c_t)$ are all distinct.

•
$$\begin{pmatrix} c_1 & c_2 & \cdots & c_t \\ row f & f(c_1) & f(c_2) & \cdots & \cdots & f(c_t) \end{pmatrix}$$

- Remark: columns of $M \Leftrightarrow$ members of a *t*-perfect hash family.
- Let p_t(N, q) denote the maximum number of columns in such a matrix.

Known results and methods

- Here we are interested in the behavior of $p_t(N,q)$ with fixed t, N as $q \to \infty$. (other case: fixed t, q as $N \to \infty$)
- $\Omega(q^{rac{N}{t-1}}) < p_t(N,q) \leq (t-1)q^{\lceil rac{N}{t-1} \rceil}$
- For large q, the exponent is tight when (t-1)|N
- Major open problem: is the exponent tight when ** happens?
- Conjecture (Walker II and Colbourn, 2007):

$$p_3(3,q) = o(q^2).$$

• Remark: very similar to the behavior of $f_r(n, e(r-k) + k, e)$ and $f_r(n, e(r-k) + k+1, e)$ mentioned earlier

- Known results
 - Combinatorial counting: $p_3(3,q) = O(q^2)$.
 - Probabilistic method: $p_3(3,q) \ge \Omega(q^{3/2})$.
 - Construction from finite geometry (Fuji-Hara, 2015): $p_3(3,q) \ge \Omega(q^{5/3}).$
- Previous methods: probabilistic method, combinatorial design theory, algebraic combinatorics, finite geometry, etc.
- These traditional methods seem hopeless to obtain a close lower/upper bound concerning the o(1) term.
- Our point of view: sparse hypergraphs and additive combinatorics.

Crucial observation

A linear family defined by a $3 \times m$ q-ary matrix is 3-perfect hashing if and only if it does not contain the following configuration.

	<i>c</i> ₁	<i>c</i> ₂	<i>C</i> 3
R_1	а	а	
R_2		b	b
R ₃	С		С

- rows \Rightarrow vertex parts of a 3-partite 3-graph; columns \Rightarrow 3-edges
- The above configuration is indeed a (6,3)-configuration, $p_3(3,q) = \Theta(f_3(q,6,3))$

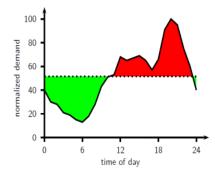
Theorem (Shangguan and Ge, SIAM DM 2016)

For sufficiently large q, $q^{2-o(1)} < C(3, q, \{1, 1, 1\}) = p_3(3, q) = o(q^2)$.

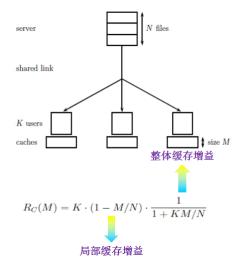
Centralized coded caching schemes

Applications: centralized coded caching schemes

数字产品的普及带来了无线网络 首页 在线影视 设置 的拥挤, 尤其以视频点播服务为 例,在高峰期面对大量的需求, 台 网络堵塞,传输效率低下,进而 电视 严重影响用户体验。 Q 应对方案: 利用网络系统中及用户客户端中 的缓存空间,以一定编码技巧在 网络使用低峰期预先存储部分内 容,从而缓解高峰期的传输压力。 • Network burden in peak-traffic times and off-peak times



 Fundamental Limits of Caching, Maddah-Ali and Niesen, IT 2014 (SCI Citation: 502, IEEE Information Theory Society Best Paper Award (2016))



Example

文件: A=(A1,A2,A3,A4),B=(B1,B2,B3,	B4)						
		(用户1	用户2 \		
	$\mathcal{P}_{4,2} =$	文作	‡分割1	*	1		
Placement Delivery Array	$P_{4,2} =$	文作	‡分割2	1	*		
		文作	‡分割3	*	* 2 *		
	(、文作	‡分割4	2	*)		
存储阶段	用户1缓存: (A1,A3,B1,B3) 用户2缓存: (A2,A4,B2,B4)						
	用户	需求	第一次作	专输 🏼 🖇	第二次传输		
·	(A,	A)	$A2 \bigoplus A$		$A4 \bigoplus A3$		
发布阶段	(A,	B)	$A2 \bigoplus I$		$A4 \bigoplus B3$		
	(B,	A)	$B2 \bigoplus I$	41	$B4 \bigoplus A3$		
	(B,	B)	$B2 \bigoplus I$	B1	$B4 \bigoplus B3$		

• In general, $F = F(K) = \exp(K)$, try to reduce it!

< 回 > < 三 > < 三 >

- Placement delivery array (Yan, Cheng, Tang and Chen, IT 2017)
 - PDA: An array of size F × K, P = [p_{j,k}]_{F×K}, F is a given integer such that Z := FM/N is an integer.
 - \mathcal{P} consists of a specific symbol * and a set of S integers.
 - The transmission rate is R = S/F.
 - Set $\mathcal{F} = \{1, ..., F\}$, $\mathcal{K} = \{1, ..., K\}$, $\mathcal{S} = \{1, ..., S\}$, $\mathcal{N} = \{1, ..., N\}$.
- The following constraints are required:
 - C1. * appears Z = FM/N times in each column. Each column has F Z integer entries.
 - C2. In each row or each column there do not exist identical integers.
 - C3. For any two distinct entries $p_{j_1,k_1} = p_{j_2,k_2} = s \in S$, $j_1 \neq j_2$ and $k_1 \neq k_2$, we have $p_{j_1,k_2} = p_{j_2,k_1} = *$.

• A hypergraph perspective (Shangguan, Zhang and Ge, IT 2018)

Our results

- PDA \Leftrightarrow a linear 3-uniform 3-partite (6,3)-free hypergraph exists.
- (6,3)-theorem \Rightarrow constant rate PDA with F(K) linear in K does not exist.
- Two new constructions: constant rate PDAs with $F(K) = \exp(\sqrt{K})$. (previous constructions: $F(K) = \exp(K)$)
- Open question: does F(K) = poly(K) exist?

References

- Theory
 - Gennian Ge and Chong Shangguan, Sparse hypergraphs: New bounds and constructions, submitted to J. Combin. Theory (B), 2017 (arXiv:1706.03306).
- Applications
 - Chong Shangguan and Gennian Ge, Separating Hash Families: A Johnson-type bound and new constructions. SIAM J. Discrete Math., 30(4):2243–2264, 2016.
 - Chong Shangguan, Yiwei Zhang and Gennian Ge, Centralized coded caching schemes: A hypergraph theoretical approach, IEEE Trans. Inform. Theory, 64(8):5755–5766, 2018.

The End

YOU

イロト イヨト イヨト イヨト