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Sparse hypergraphs

Hypergraphs

Hypergraph H = (V ,E ): vertex set V , edge set E ⊆ 2V (power set of V )

r -uniform hypergraph (henceforth r -graph): E ⊆{r -subsets of V }
e.g. multi-relation

e.g. Fano plane, Fano (1892), r = 3, |V | = 7, |E | = 7
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Sparse hypergraphs

(6,3)-free 3-graphs

(6,3)-configuration: ∃ 3 (distinct) edges A,B,C , s.t. |A ∪ B ∪ C | ≤ 6

e.g. a typical (6,3)-configuration:
A B C
a a ∗
∗ b b
c ∗ c


A 3-graph is called (6,3)-free: ∀ A,B,C ∈ E , |A ∪ B ∪ C | ≥ 7

Question (Brown, Erdős and Sós, 1973): what is the maximum number of

(3-)edges can be contained in a (6,3)-free 3-graph on n vertices?
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Sparse hypergraphs

(6,3)-free 3-graphs

(partial) Answer (Ruzsa and Szemerédi, 1978):

n2−o(1) < f3(n, 6, 3) < o(n2)

as n→∞. (also known as the (6,3)-theorem)

State-of-the-art bound, ∃ constants a, b > 0:

e−a
√
nn2 < f3(n, 6, 3) < εn2,

where ε satisfies log
(

log
(
· · · log(n)

))
:= log∗ n < 1, for b log(ε−1)

iterations of log(·), (Fox, Ann. of Math., 2011)
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Sparse hypergraphs

(6,3)-free 3-graphs

Tools: regularity lemma (Szemerédi, 1976),
graph removal lemma (Ruzsa and Szemerédi, 1978; Fox, 2011),
sets of integers with no 3-term arithmetic progression (Behrend,
1946),

Influence: Extremal Graph Theory, Ramsey Theory, Additive
Combinatorics, Theoretical Computer Science, etc

Notable mathematicians:

Noga Alon (ACM Fellow, AMS Fellow, Israel Prize)

Paul Erdős (Wolf Prize)

Timothy Gowers (Fields Medal)

Terence Tao (Fields Medal)

Endre Szemerédi (Abel Prize)
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Sparse hypergraphs

Sparse hypergraphs

H: an r -graph on n vertices
Gr (v , e): all r -graphs with e edges and at most v vertices

H is Gr (v , e)-free if it does not contain any member of Gr (v , e).
i.e., for arbitrary distinct A1, . . . ,Ae ∈ H, |A1 ∪ · · · ∪ Ae | ≥ v + 1

fr (n, v , e): the maximal number of edges of a Gr (v , e)-free r -graph on
n vertices. i.e., if H contains fr (n, v , e) + 1 edges, H contains at least
one member of Gr (v , e)

Objective: the behavior of fr (n, v , e) with r , v , e fixed as n→∞
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Sparse hypergraphs

Known results

Brown, Erdős and Sós (1973) proved

fr (n, e(r − k) + k , e) = Θ(nk)

Conjecture: for r ≥ k + 1 ≥ 3, e ≥ 3,

nk−o(1) < fr (n, e(r − k) + k+1, e) = o(nk).

(upper bound due to BES, lower bound due to Alon and Shapira,
2006)

e.g. r = 3, e = 3, k = 2: n2−o(1) < f3(n, 6, 3) = o(n2)

Known matching parameters are rare. The first unsolved case:
f3(n, 7, 4) ?
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Sparse hypergraphs

Ruzsa and Szemerédi’s (1976): n2−o(1) < f3(n, 6, 3) = o(n2)

Erdős, Frankl and Rödl (1986): r ≥ 3, k = 2, e = 3,

n2−o(1) < fr (n, 3(r − 2) + 2 + 1, 3) = o(n2)

Alon and Shapira (2006): r > k ≥ 2, e = 3,

nk−o(1) < fr (n, 3(r − k) + k + 1, 3) = o(nk)

Sárközy and Selkow (2005): r > k ≥ 3, e = 4,

fr (n, 4(r − k) + k + 1, 4) = o(nk)

Nagle, Rödl and Schacht (2006): r > k ≥ 2, e = k + 1

fr (n, (k + 1)(r − k) + k + 1, k + 1) = o(nk)

Common point in the upper bound: r ≥ k + 1 ≥ e. A unified proof?
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Sparse hypergraphs

Our results

Conjecture: nk−o(1) < fr (n, e(r − k) + k + 1, e) = o(nk).

The upper bound part holds for all r ≥ k + 1 ≥ e, implying all
previously known tight upper bounds.

The lower bound part holds for r ≥ 3, k = 2, e = 4, 5, 7, 8. (first
general constructions matching the lower bound for e ≥ 4 since 1973)

An improved lower bound for r = 3, k = 2, e = 6

Main tools: hypergraph removal lemma, additive combinatorics
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Perfect and separating hash families

Columns of the matrix: digital fingerprints

Insert digital fingerprints into digital data

Distribute digital data to legal customers

Bob sells his copy of data to other people, he will be caught by testing the

digital fingerprint
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Perfect and separating hash families

Applications: perfect hash families

Let M be an N ×m matrix over a q-ary alphabet.

M is t-perfect hashing if for arbitrary t columns c1, . . . , ct of M there
is a row f , so that f (c1), . . . , f (ct) are all distinct.(

c1 c2 · · · · · · ct
row f f (c1) f (c2) · · · · · · f (ct)

)
Remark: columns of M ⇔ members of a t-perfect hash family.

Let pt(N, q) denote the maximum number of columns in such a
matrix.
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Perfect and separating hash families

Known results and methods

Here we are interested in the behavior of pt(N, q) with fixed t,N as q →∞.
(other case: fixed t, q as N →∞)

Ω(q
N

t−1 ) < pt(N, q) ≤ (t − 1)qd
N

t−1 e

For large q, the exponent is tight when (t − 1)|N

Major open problem: is the exponent tight when - happens?

Conjecture (Walker II and Colbourn, 2007):

p3(3, q) = o(q2).

Remark: very similar to the behavior of fr (n, e(r − k) + k, e) and

fr (n, e(r − k) + k+1, e) mentioned earlier
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Perfect and separating hash families

Known results

Combinatorial counting: p3(3, q) = O(q2).

Probabilistic method: p3(3, q) ≥ Ω(q3/2).

Construction from finite geometry (Fuji-Hara, 2015):
p3(3, q) ≥ Ω(q5/3).

Previous methods: probabilistic method, combinatorial design theory,
algebraic combinatorics, finite geometry, etc.

These traditional methods seem hopeless to obtain a close
lower/upper bound concerning the o(1) term.

Our point of view: sparse hypergraphs and additive combinatorics.
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Perfect and separating hash families

Crucial observation

A linear family defined by a 3×m q-ary matrix is 3-perfect hashing if and
only if it does not contain the following configuration.

c1 c2 c3
R1 a a

R2 b b

R3 c c

rows ⇒ vertex parts of a 3-partite 3-graph; columns ⇒ 3-edges

The above configuration is indeed a (6,3)-configuration,
p3(3, q) = Θ(f3(q, 6, 3))

Theorem (Shangguan and Ge, SIAM DM 2016)

For sufficiently large q, q2−o(1) < C (3, q, {1, 1, 1}) = p3(3, q) = o(q2).
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Centralized coded caching schemes

Applications: centralized coded caching schemes
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Centralized coded caching schemes

Network burden in peak-traffic times and off-peak times
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Centralized coded caching schemes

Fundamental Limits of Caching, Maddah-Ali and Niesen, IT 2014 (SCI

Citation: 502, IEEE Information Theory Society Best Paper Award (2016) )
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Centralized coded caching schemes

Example

In general, F = F (K )= exp(K ), try to reduce it!
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Centralized coded caching schemes

Placement delivery array (Yan, Cheng, Tang and Chen, IT 2017)

PDA: An array of size F × K , P = [pj,k ]F×K , F is a given integer such
that Z := FM/N is an integer.
P consists of a specific symbol ∗ and a set of S integers.
The transmission rate is R = S/F .
Set F = {1, ...,F}, K = {1, ...,K}, S = {1, ...,S}, N = {1, ...,N}.

The following constraints are required:

C1. ∗ appears Z = FM/N times in each column. Each column has F − Z
integer entries.

C2. In each row or each column there do not exist identical integers.
C3. For any two distinct entries pj1,k1 = pj2,k2 = s ∈ S, j1 6= j2 and k1 6= k2,

we have pj1,k2 = pj2,k1 = ∗.
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Centralized coded caching schemes

A hypergraph perspective (Shangguan, Zhang and Ge, IT 2018)
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Centralized coded caching schemes

Our results

PDA ⇔ a linear 3-uniform 3-partite (6,3)-free hypergraph exists.

(6,3)-theorem ⇒ constant rate PDA with F (K ) linear in K does not
exist.

Two new constructions: constant rate PDAs with F (K ) = exp(
√

K ).
(previous constructions: F (K ) = exp(K ))

Open question: does F (K ) = poly(K ) exist?
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The End

T H A N K

Y OU
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